JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Retinal pigmented epithelial cells cytotoxicity and apoptosis through activation of the mitochondrial intrinsic pathway: role of indocyanine green, brilliant blue and implications for chromovitrectomy.
PLoS ONE
PUBLISHED: 01-01-2013
To investigate the in vitro effect of four vital dyes on toxicity and apoptosis in a human retinal pigment epithelial (RPE) cell line.
Authors: Whitney A. Greene, Alberto. Muñiz, Mark L. Plamper, Ramesh R. Kaini, Heuy-Ching Wang.
Published: 06-24-2014
ABSTRACT
The objective of this report is to describe the protocols for comparing the microRNA (miRNA) profiles of human induced-pluripotent stem (iPS) cells, retinal pigment epithelium (RPE) derived from human iPS cells (iPS-RPE), and fetal RPE. The protocols include collection of RNA for analysis by microarray, and the analysis of microarray data to identify miRNAs that are differentially expressed among three cell types. The methods for culture of iPS cells and fetal RPE are explained. The protocol used for differentiation of RPE from human iPS is also described. The RNA extraction technique we describe was selected to allow maximal recovery of very small RNA for use in a miRNA microarray. Finally, cellular pathway and network analysis of microarray data is explained. These techniques will facilitate the comparison of the miRNA profiles of three different cell types.
19 Related JoVE Articles!
Play Button
In utero and ex vivo Electroporation for Gene Expression in Mouse Retinal Ganglion Cells
Authors: Timothy J Petros, Alexandra Rebsam, Carol A Mason.
Institutions: Columbia University College of Physicians and Surgeons, Columbia University College of Physicians and Surgeons.
The retina and its sole output neuron, the retinal ganglion cell (RGC), comprise an excellent model in which to examine biological questions such as cell differentiation, axon guidance, retinotopic organization and synapse formation[1]. One drawback is the inability to efficiently and reliably manipulate gene expression in RGCs in vivo, especially in the otherwise accessible murine visual pathways. Transgenic mice can be used to manipulate gene expression, but this approach is often expensive, time consuming, and can produce unwanted side effects. In chick, in ovo electroporation is used to manipulate gene expression in RGCs for examining retina and RGC development. Although similar electroporation techniques have been developed in neonatal mouse pups[2], adult rats[3], and embryonic murine retinae in vitro[4], none of these strategies allow full characterization of RGC development and axon projections in vivo. To this end, we have developed two applications of electroporation, one in utero and the other ex vivo, to specifically target embryonic murine RGCs[5, 6]. With in utero retinal electroporation, we can misexpress or downregulate specific genes in RGCs and follow their axon projections through the visual pathways in vivo, allowing examination of guidance decisions at intermediate targets, such as the optic chiasm, or at target regions, such as the lateral geniculate nucleus. Perturbing gene expression in a subset of RGCs in an otherwise wild-type background facilitates an understanding of gene function throughout the retinal pathway. Additionally, we have developed a companion technique for analyzing RGC axon growth in vitro. We electroporate embryonic heads ex vivo, collect and incubate the whole retina, then prepare explants from these retinae several days later. Retinal explants can be used in a variety of in vitro assays in order to examine the response of electroporated RGC axons to guidance cues or other factors. In sum, this set of techniques enhances our ability to misexpress or downregulate genes in RGCs and should greatly aid studies examining RGC development and axon projections.
Neuroscience, Developmental Biology, Issue 31, retinal ganglion cells, electroporation, retinal explants, gene transfection, border assays, in utero, ex vivo
1333
Play Button
Blastomere Explants to Test for Cell Fate Commitment During Embryonic Development
Authors: Paaqua A. Grant, Mona B. Herold, Sally A. Moody.
Institutions: The George Washington University, The George Washington University.
Fate maps, constructed from lineage tracing all of the cells of an embryo, reveal which tissues descend from each cell of the embryo. Although fate maps are very useful for identifying the precursors of an organ and for elucidating the developmental path by which the descendant cells populate that organ in the normal embryo, they do not illustrate the full developmental potential of a precursor cell or identify the mechanisms by which its fate is determined. To test for cell fate commitment, one compares a cell's normal repertoire of descendants in the intact embryo (the fate map) with those expressed after an experimental manipulation. Is the cell's fate fixed (committed) regardless of the surrounding cellular environment, or is it influenced by external factors provided by its neighbors? Using the comprehensive fate maps of the Xenopus embryo, we describe how to identify, isolate and culture single cleavage stage precursors, called blastomeres. This approach allows one to assess whether these early cells are committed to the fate they acquire in their normal environment in the intact embryo, require interactions with their neighboring cells, or can be influenced to express alternate fates if exposed to other types of signals.
Developmental Biology, Issue 71, Cellular Biology, Molecular Biology, Anatomy, Physiology, Biochemistry, Xenopus laevis, fate mapping, lineage tracing, cell-cell signaling, cell fate, blastomere, embryo, in situ hybridization, animal model
4458
Play Button
Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells
Authors: Jason D. Vevea, Dana M. Alessi Wolken, Theresa C. Swayne, Adam B. White, Liza A. Pon.
Institutions: Columbia University, Columbia University.
Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.
Bioengineering, Issue 77, Microbiology, Cellular Biology, Molecular Biology, Biochemistry, life sciences, roGFP, redox-sensitive green fluorescent protein, GO-ATeam, ATP, FRET, ROS, mitochondria, biosensors, GFP, ImageJ, microscopy, confocal microscopy, cell, imaging
50633
Play Button
Retinal Detachment Model in Rodents by Subretinal Injection of Sodium Hyaluronate
Authors: Hidetaka Matsumoto, Joan W. Miller, Demetrios G. Vavvas.
Institutions: Massachusetts Eye and Ear Infirmary, Harvard Medical School.
Subretinal injection of sodium hyaluronate is a widely accepted method of inducing retinal detachment (RD). However, the height and duration of RD or the occurrence of subretinal hemorrhage can affect photoreceptor cell death in the detached retina. Hence, it is advantageous to create reproducible RDs without subretinal hemorrhage for evaluating photoreceptor cell death. We modified a previously reported method to create bullous and persistent RDs in a reproducible location with rare occurrence of subretinal hemorrhage. The critical step of this modified method is the creation of a self-sealing scleral incision, which can prevent leakage of sodium hyaluronate after injection into the subretinal space. To make the self-sealing scleral incision, a scleral tunnel is created, followed by scleral penetration into the choroid with a 30 G needle. Although choroidal hemorrhage may occur during this step, astriction with a surgical spear reduces the rate of choroidal hemorrhage. This method allows a more reproducible and reliable model of photoreceptor death in diseases that involve RD such as rhegmatogenous RD, retinopathy of prematurity, diabetic retinopathy, central serous chorioretinopathy, and age-related macular degeneration (AMD).
Medicine, Issue 79, Photoreceptor Cells, Rodentia, Retinal Degeneration, Retinal Detachment, animal models, Neuroscience, ophthalmology, retina, mouse, photoreceptor cell death, retinopathy, age-related macular degeneration (AMD)
50660
Play Button
A Novel Light Damage Paradigm for Use in Retinal Regeneration Studies in Adult Zebrafish
Authors: Jennifer L. Thomas, Ryan Thummel.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine.
Light-induced retinal degeneration (LIRD) is commonly used in both rodents and zebrafish to damage rod and cone photoreceptors. In adult zebrafish, photoreceptor degeneration triggers Müller glial cells to re-enter the cell cycle and produce transient-amplifying progenitors. These progenitors continue to proliferate as they migrate to the damaged area, where they ultimately give rise to new photoreceptors. Currently, there are two widely-used LIRD paradigms, each of which results in varying degrees of photoreceptor loss and corresponding differences in the regeneration response. As more genetic and pharmacological tools are available to test the role of individual genes of interest during regeneration, there is a need to develop a robust LIRD paradigm. Here we describe a LIRD protocol that results in widespread and consistent loss of both rod and cone photoreceptors in which we have combined the use of two previously established LIRD techniques. Furthermore, this protocol can be extended for use in pigmented animals, which eliminates the need to maintain transgenic lines of interest on the albino background for LIRD studies.
Neuroscience, Issue 80, Zebrafish, Retinal Degeneration, Retina, Photoreceptor, Müller glia, Light damage
51017
Play Button
Analysis of Apoptosis in Zebrafish Embryos by Whole-mount Immunofluorescence to Detect Activated Caspase 3
Authors: Shelly Sorrells, Cristhian Toruno, Rodney A. Stewart, Cicely Jette.
Institutions: University of Utah.
Whole-mount immunofluorescence to detect activated Caspase 3 (Casp3 assay) is useful to identify cells undergoing either intrinsic or extrinsic apoptosis in zebrafish embryos. The whole-mount analysis provides spatial information in regard to tissue specificity of apoptosing cells, although sectioning and/or colabeling is ultimately required to pinpoint the exact cell types undergoing apoptosis. The whole-mount Casp3 assay is optimized for analysis of fixed embryos between the 4-cell stage and 32 hr-post-fertilization and is useful for a number of applications, including analysis of zebrafish mutants and morphants, overexpression of mutant and wild-type mRNAs, and exposure to chemicals. Compared to acridine orange staining, which can identify apoptotic cells in live embryos in a matter of hours, Casp3 and TUNEL assays take considerably longer to complete (2-4 days). However, because of the dynamic nature of apoptotic cell formation and clearance, analysis of fixed embryos ensures accurate comparison of apoptotic cells across multiple samples at specific time points. We have also found the Casp3 assay to be superior to analysis of apoptotic cells by the whole-mount TUNEL assay in regard to cost and reliability. Overall, the Casp3 assay represents a robust, highly reproducible assay in which to analyze apoptotic cells in early zebrafish embryos.
Developmental Biology, Issue 82, zebrafish, embryo, apoptosis, Caspase 3, Immunofluorescence, whole-mount, cell death
51060
Play Button
Detecting Abnormalities in Choroidal Vasculature in a Mouse Model of Age-related Macular Degeneration by Time-course Indocyanine Green Angiography
Authors: Sandeep Kumar, Zachary Berriochoa, Alex D. Jones, Yingbin Fu.
Institutions: University of Utah Health Sciences Center, University of Utah Health Sciences Center.
Indocyanine Green Angiography (or ICGA) is a technique performed by ophthalmologists to diagnose abnormalities of the choroidal and retinal vasculature of various eye diseases such as age-related macular degeneration (AMD). ICGA is especially useful to image the posterior choroidal vasculature of the eye due to its capability of penetrating through the pigmented layer with its infrared spectrum. ICGA time course can be divided into early, middle, and late phases. The three phases provide valuable information on the pathology of eye problems. Although time-course ICGA by intravenous (IV) injection is widely used in the clinic for the diagnosis and management of choroid problems, ICGA by intraperitoneal injection (IP) is commonly used in animal research. Here we demonstrated the technique to obtain high-resolution ICGA time-course images in mice by tail-vein injection and confocal scanning laser ophthalmoscopy. We used this technique to image the choroidal lesions in a mouse model of age-related macular degeneration. Although it is much easier to introduce ICG to the mouse vasculature by IP, our data indicate that it is difficult to obtain reproducible ICGA time course images by IP-ICGA. In contrast, ICGA via tail vein injection provides high quality ICGA time-course images comparable to human studies. In addition, we showed that ICGA performed on albino mice gives clearer pictures of choroidal vessels than that performed on pigmented mice. We suggest that time-course IV-ICGA should become a standard practice in AMD research based on animal models.
Medicine, Issue 84, Indocyanine Green Angiography, ICGA, choroid vasculature, age-related macular degeneration, AMD, Polypoidal Choroidal Vasculopathy, PCV, confocal scanning laser ophthalmoscope, IV-ICGA, time-course ICGA, tail-vein injection
51061
Play Button
In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice
Authors: Stefanie Fischer, Christian Engelmann, Karl-Heinz Herrmann, Jürgen R. Reichenbach, Otto W. Witte, Falk Weih, Alexandra Kretz, Ronny Haenold.
Institutions: Jena University Hospital, Fritz Lipmann Institute, Jena, Jena University Hospital.
The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or inducible phenotypes.
Neuroscience, Issue 89, manganese-enhanced MRI, mouse retino-tectal projection, visual system, neurodegeneration, optic nerve injury, NF-κB
51274
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
52043
Play Button
Assessment of Mitochondrial Functions and Cell Viability in Renal Cells Overexpressing Protein Kinase C Isozymes
Authors: Grażyna Nowak, Diana Bakajsova.
Institutions: University of Arkansas for Medical Sciences .
The protein kinase C (PKC) family of isozymes is involved in numerous physiological and pathological processes. Our recent data demonstrate that PKC regulates mitochondrial function and cellular energy status. Numerous reports demonstrated that the activation of PKC-a and PKC-ε improves mitochondrial function in the ischemic heart and mediates cardioprotection. In contrast, we have demonstrated that PKC-α and PKC-ε are involved in nephrotoxicant-induced mitochondrial dysfunction and cell death in kidney cells. Therefore, the goal of this study was to develop an in vitro model of renal cells maintaining active mitochondrial functions in which PKC isozymes could be selectively activated or inhibited to determine their role in regulation of oxidative phosphorylation and cell survival. Primary cultures of renal proximal tubular cells (RPTC) were cultured in improved conditions resulting in mitochondrial respiration and activity of mitochondrial enzymes similar to those in RPTC in vivo. Because traditional transfection techniques (Lipofectamine, electroporation) are inefficient in primary cultures and have adverse effects on mitochondrial function, PKC-ε mutant cDNAs were delivered to RPTC through adenoviral vectors. This approach results in transfection of over 90% cultured RPTC. Here, we present methods for assessing the role of PKC-ε in: 1. regulation of mitochondrial morphology and functions associated with ATP synthesis, and 2. survival of RPTC in primary culture. PKC-ε is activated by overexpressing the constitutively active PKC-ε mutant. PKC-ε is inhibited by overexpressing the inactive mutant of PKC-ε. Mitochondrial function is assessed by examining respiration, integrity of the respiratory chain, activities of respiratory complexes and F0F1-ATPase, ATP production rate, and ATP content. Respiration is assessed in digitonin-permeabilized RPTC as state 3 (maximum respiration in the presence of excess substrates and ADP) and uncoupled respirations. Integrity of the respiratory chain is assessed by measuring activities of all four complexes of the respiratory chain in isolated mitochondria. Capacity of oxidative phosphorylation is evaluated by measuring the mitochondrial membrane potential, ATP production rate, and activity of F0F1-ATPase. Energy status of RPTC is assessed by determining the intracellular ATP content. Mitochondrial morphology in live cells is visualized using MitoTracker Red 580, a fluorescent dye that specifically accumulates in mitochondria, and live monolayers are examined under a fluorescent microscope. RPTC viability is assessed using annexin V/propidium iodide staining followed by flow cytometry to determine apoptosis and oncosis. These methods allow for a selective activation/inhibition of individual PKC isozymes to assess their role in cellular functions in a variety of physiological and pathological conditions that can be reproduced in in vitro.
Cellular Biology, Issue 71, Biochemistry, Molecular Biology, Genetics, Pharmacology, Physiology, Medicine, Protein, Mitochondrial dysfunction, mitochondria, protein kinase C, renal proximal tubular cells, reactive oxygen species, oxygen consumption, electron transport chain, respiratory complexes, ATP, adenovirus, primary culture, ischemia, cells, flow cytometry
4301
Play Button
Microdissection of Zebrafish Embryonic Eye Tissues
Authors: Liyun Zhang, Yuk Fai Leung.
Institutions: Purdue University.
Zebrafish is a popular animal model for research on eye development because of its rapid ex utero development and good fecundity. By 3 days post fertilization (dpf), the larvae will show the first visual response. Many genes have been identified to control a proper eye development, but we are far from a complete understanding of the underlying genetic architecture. Whole genome gene expression profiling is a useful tool to elucidate genetic regulatory network for eye development. However, the small size of the embryonic eye in zebrafish makes it challenging to obtain intact and pure eye tissues for expression analysis. For example, the anterior-posterior length of the eye between day 2 and 3 is only approximately 200-300 μm, while the diameter of the lens is less 100 μm. Also, the retinal pigment epithelium (RPE) underlying the retina is just a single-layer epithelium. While gene expression profiles can be obtained from the whole embryo, they do not accurately represent the expression of these tissues. Therefore pure tissue must be obtained for a successful gene expression profiling of eye development. To address this issue, we have developed an approach to microdissect intact retina and retina with RPE attached from 1-3 dpf, which cover major stages of eye morphogenesis. All procedures can be done with fine forceps and general laboratory supplies under standard stereomicroscopes. For retinal dissection, the single-layer RPE is removed and peeled off by brushing action and the preferential adherence of the RPE remnants to the surface of the culture plate for dissection. For RPE-attached retinal dissection, the adherence of RPE to the dissection plate is removed before the dissection so that the RPE can be completely preserved with the retina. A careful lifting action of this tissue can efficiently separate the presumptive choroid and sclera. The lens can be removed in both cases by a chemically etched tungsten needle. In short, our approach can obtain intact eye tissues and has been successfully utilized to study tissue-specific expression profiles of zebrafish retina1, 2 and retinal pigment epithelium3.
Developmental biology, Issue 40, zebrafish, retina, retinal pigment epithelium, microdissection, development, gene expression, microarrays
2028
Play Button
Experimental Models for Study of Retinal Pigment Epithelial Physiology and Pathophysiology
Authors: Arvydas Maminishkis, Sheldon S. Miller.
Institutions: National Institutes of Health.
We have developed a cell culture procedure that can produce large quantities of confluent monolayers of primary human fetal retinal pigment epithelium (hfRPE) cultures with morphological, physiological and genetic characteristics of native human RPE. These hfRPE cell cultures exhibit heavy pigmentation, and electron microscopy show extensive apical membrane microvilli. The junctional complexes were identified with immunofluorescence labeling of various tight junction proteins. Epithelial polarity and function of these easily reproducible primary cultures closely resemble previously studied mammalian models of native RPE, including human. These results were extended by the development of therapeutic interventions in several animal models of human eye disease. We have focused on strategies for the removal of abnormal fluid accumulation in the retina or subretinal space. The extracellular subretinal space separates the photoreceptor outer segments and the apical membrane of the RPE and is critical for maintenance of retinal attachments and a whole host of RPE/retina interactions.
Neuroscience, Issue 45, epithelia, cultures, fluid transport, channels, polarization, edema, retina, detachment, monolayer
2032
Play Button
Isolation of Retinal Stem Cells from the Mouse Eye
Authors: Brenda L.K. Coles, Derek van der Kooy.
Institutions: University of Toronto.
The adult mouse retinal stem cell (RSC) is a rare quiescent cell found within the ciliary epithelium (CE) of the mammalian eye1,2,3. The CE is made up of non-pigmented inner and pigmented outer cell layers, and the clonal RSC colonies that arise from a single pigmented cell from the CE are made up of both pigmented and non-pigmented cells which can be differentiated to form all the cell types of the neural retina and the RPE. There is some controversy about whether all the cells within the spheres all contain at least some pigment4; however the cells are still capable of forming the different cell types found within the neural retina1-3. In some species, such as amphibians and fish, their eyes are capable of regeneration after injury5, however; the mammalian eye shows no such regenerative properties. We seek to identify the stem cell in vivo and to understand the mechanisms that keep the mammalian retinal stem cells quiescent6-8, even after injury as well as using them as a potential source of cells to help repair physical or genetic models of eye injury through transplantation9-12. Here we describe how to isolate the ciliary epithelial cells from the mouse eye and grow them in culture in order to form the clonal retinal stem cell spheres. Since there are no known markers of the stem cell in vivo, these spheres are the only known way to prospectively identify the stem cell population within the ciliary epithelium of the eye.
Cellular Biology, Issue 43, Stem Cells, Eye, Ciliary Epithelium, Tissue Culture, Mouse
2209
Play Button
Dissection of a Mouse Eye for a Whole Mount of the Retinal Pigment Epithelium
Authors: Alison Claybon, Alexander J. R. Bishop.
Institutions: Greehey Children's Cancer Research Institute and Department of Cellular and Structural Biology.
The retinal pigment epithelium (RPE) lies at the back of the mammalian eye, just under the neural retina, which contains the photoreceptors (rods and cones). The RPE is a monolayer of pigmented cuboidal cells and associates closely with the neural retina just above it. This association makes the RPE of great interest to researchers studying retinal diseases. The RPE is also the site of an in vivo assay of homology-directed DNA repair, the pun assay. The mouse eye is particularly difficult to dissect due to its small size (about 3.5mm in diameter) and its spherical shape. This article demonstrates in detail a procedure for dissection of the eye resulting in a whole mount of the RPE. In this procedure, we show how to work with, rather than against, the spherical structure of the eye. Briefly, the connective tissue, muscle, and optic nerve are removed from the back of the eye. Then, the cornea and lens are removed. Next, strategic cuts are made that result in significant flattening of the remaining tissue. Finally, the neural retina is gently lifted off, revealing an intact RPE, which is still attached to the underlying choroid and sclera. This whole mount can be used to perform the pun assay or for immunohistochemistry or immunofluorescent assessment of the RPE tissue.
Neuroscience, Issue 48, mouse, dissection, eye, retinal pigment epithelium, flat mount, whole mount, RPE
2563
Play Button
Organotypic Culture of Full-thickness Adult Porcine Retina
Authors: Jianfeng Wang, Anton M. Kolomeyer, Marco A. Zarbin, Ellen Townes-Anderson.
Institutions: University of Medicine and Dentistry of New Jersey - UMDNJ, University of Medicine and Dentistry of New Jersey - UMDNJ.
There is a recognized demand for in vitro models that can replace or reduce animal experiments. Porcine retina has a similar neuronal structure to human retina and is therefore a valuable species for studying mechanisms of human retinal injury and degenerative disease. Here we describe a cost-effective technique for organotypic culture of adult porcine retina isolated from eyes obtained from an abattoir. After removing the anterior segment, a trephine blade was used to create multiple neural retina-Bruch's membrane-RPE-choroid-sclera explants from the posterior segment of adult porcine eyes. A piece of sterile filter paper was used to lift the neural retina off from each explant. The filter paper-retina complex was cultured (photoreceptor side up) atop an insert, which was held away from the bottom of the culture dish by a custom-made stand. The stand allows for good circulation of the culture medium to both sides of the retina. Overall, this procedure is simple, reproducible, and permits preservation of native retinal structure for at least seven days, making it a useful model for a variety of morphological, pharmacological, and biochemical studies on mammalian retina.
Neuroscience, Issue 49, Retina, in vitro, Porcine, Photoreceptor
2655
Play Button
Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen
Authors: Dennis Ma, Jonathan Collins, Tomas Hudlicky, Siyaram Pandey.
Institutions: University of Windsor, Brock University.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Cancer Biology, Issue 63, Medicine, Biochemistry, Breast adenocarcinoma, neuroblastoma, tamoxifen, combination therapy, apoptosis, autophagy
3586
Play Button
Use of LysoTracker to Detect Programmed Cell Death in Embryos and Differentiating Embryonic Stem Cells
Authors: Jennifer L. Fogel, Thu Zan Tun Thein, Francesca V. Mariani.
Institutions: University of Southern California.
Programmed cell death (PCD) occurs in adults to maintain normal tissue homeostasis and during embryological development to shape tissues and organs1,2,6,7. During development, toxic chemicals or genetic alterations can cause an increase in PCD or change PCD patterns resulting in developmental abnormalities and birth defects3-5. To understand the etiology of these defects, the study of embryos can be complemented with in vitro assays that use differentiating embryonic stem (ES) cells. Apoptosis is a well-studied form of PCD that involves both intrinsic and extrinsic signaling to activate the caspase enzyme cascade. Characteristic cell changes include membrane blebbing, nuclear shrinking, and DNA fragmentation. Other forms of PCD do not involve caspase activation and may be the end-result of prolonged autophagy. Regardless of the PCD pathway, dying cells need to be removed. In adults, the immune cells perform this function, while in embryos, where the immune system has not yet developed, removal occurs by an alternative mechanism. This mechanism involves neighboring cells (called "non-professional phagocytes") taking on a phagocytic role-they recognize the 'eat me' signal on the surface of the dying cell and engulf it8-10. After engulfment, the debris is brought to the lysosome for degradation. Thus regardless of PCD mechanism, an increase in lysosomal activity can be correlated with increased cell death. To study PCD, a simple assay to visualize lysosomes in thick tissues and multilayer differentiating cultures can be useful. LysoTracker dye is a highly soluble small molecule that is retained in acidic subcellular compartments such as the lysosome11-13. The dye is taken up by diffusion and through the circulation. Since penetration is not a hindrance, visualization of PCD in thick tissues and multi-layer cultures is possible12,13. In contrast, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) analysis14, is limited to small samples, histological sections, and monolayer cultures because the procedure requires the entry/permeability of a terminal transferase. In contrast to Aniline blue, which diffuses and is dissolved by solvents, LysoTracker Red DND-99 is fixable, bright, and stable. Staining can be visualized with standard fluorescent or confocal microscopy in whole-mount or section using aqueous or solvent-based mounting media12,13. Here we describe protocols using this dye to look at PCD in normal and sonic hedgehog null mouse embryos. In addition, we demonstrate analysis of PCD in differentiating ES cell cultures and present a simple quantification method. In summary, LysoTracker staining can be a great complement to other methods of detecting PCD.
Developmental Biology, Issue 68, Molecular Biology, Stem Cell Biology, Cellular Biology, mouse embryo, embryonic stem cells, lysosome, programmed cell death, imaging, sonic hedgehog
4254
Play Button
Subretinal Injection of Gene Therapy Vectors and Stem Cells in the Perinatal Mouse Eye
Authors: Katherine J. Wert, Jessica M. Skeie, Richard J. Davis, Stephen H. Tsang, Vinit B. Mahajan.
Institutions: Columbia University , Columbia University , University of Iowa , University of Iowa .
The loss of sight affects approximately 3.4 million people in the United States and is expected to increase in the upcoming years.1 Recently, gene therapy and stem cell transplantations have become key therapeutic tools for treating blindness resulting from retinal degenerative diseases. Several forms of autologous transplantation for age-related macular degeneration (AMD), such as iris pigment epithelial cell transplantation, have generated encouraging results, and human clinical trials have begun for other forms of gene and stem cell therapies.2 These include RPE65 gene replacement therapy in patients with Leber's congenital amaurosis and an RPE cell transplantation using human embryonic stem (ES) cells in Stargardt's disease.3-4 Now that there are gene therapy vectors and stem cells available for treating patients with retinal diseases, it is important to verify these potential therapies in animal models before applying them in human studies. The mouse has become an important scientific model for testing the therapeutic efficacy of gene therapy vectors and stem cell transplantation in the eye.5-8 In this video article, we present a technique to inject gene therapy vectors or stem cells into the subretinal space of the mouse eye while minimizing damage to the surrounding tissue.
Stem Cell Biology, Issue 69, Medicine, Ophthalmology, Anatomy, Physiology, Cellular Biology, Genetics, mouse, subretinal injection, iPS cells, stem cells, retina, eye, gene therapy
4286
Play Button
Integrated Photoacoustic Ophthalmoscopy and Spectral-domain Optical Coherence Tomography
Authors: Wei Song, Qing Wei, Shuliang Jiao, Hao F. Zhang.
Institutions: Northwestern University, Harbin Institute of Technology, University of Southern California, Northwestern University.
Both the clinical diagnosis and fundamental investigation of major ocular diseases greatly benefit from various non-invasive ophthalmic imaging technologies. Existing retinal imaging modalities, such as fundus photography1, confocal scanning laser ophthalmoscopy (cSLO)2, and optical coherence tomography (OCT)3, have significant contributions in monitoring disease onsets and progressions, and developing new therapeutic strategies. However, they predominantly rely on the back-reflected photons from the retina. As a consequence, the optical absorption properties of the retina, which are usually strongly associated with retinal pathophysiology status, are inaccessible by the traditional imaging technologies. Photoacoustic ophthalmoscopy (PAOM) is an emerging retinal imaging modality that permits the detection of the optical absorption contrasts in the eye with a high sensitivity4-7 . In PAOM nanosecond laser pulses are delivered through the pupil and scanned across the posterior eye to induce photoacoustic (PA) signals, which are detected by an unfocused ultrasonic transducer attached to the eyelid. Because of the strong optical absorption of hemoglobin and melanin, PAOM is capable of non-invasively imaging the retinal and choroidal vasculatures, and the retinal pigment epithelium (RPE) melanin at high contrasts 6,7. More importantly, based on the well-developed spectroscopic photoacoustic imaging5,8 , PAOM has the potential to map the hemoglobin oxygen saturation in retinal vessels, which can be critical in studying the physiology and pathology of several blinding diseases 9 such as diabetic retinopathy and neovascular age-related macular degeneration. Moreover, being the only existing optical-absorption-based ophthalmic imaging modality, PAOM can be integrated with well-established clinical ophthalmic imaging techniques to achieve more comprehensive anatomic and functional evaluations of the eye based on multiple optical contrasts6,10 . In this work, we integrate PAOM and spectral-domain OCT (SD-OCT) for simultaneously in vivo retinal imaging of rat, where both optical absorption and scattering properties of the retina are revealed. The system configuration, system alignment and imaging acquisition are presented.
Biomedical Engineering, Issue 71, Bioengineering, Medicine, Anatomy, Physiology, Opthalmology, Physics, Biophysics, Photoacoustic ophthalmology, ophthalmoscopy, optical coherence tomography, retinal imaging, spectral-domain, tomography, rat, animal model, imaging
4390
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.