JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Evidence for mitotic recombination within the basidia of a hybrid cross of Cryptococcus neoformans.
PLoS ONE
PUBLISHED: 01-01-2013
In the majority of diploid eukaryotes, each meiotic process generates four haploid gametes with each containing a single recombinant nucleus. In some species and/or some meiotic processes, aneuploid or diploid gametes can also be generated due to chromosomal non-disjunction and/or the co-packaging of two of the four haploid nuclei into the same gamete. Here we show that another process is involved in generating genotypes of sexual progeny from a hybrid cross between two divergent lineages of the human fungal pathogen Cryptococcus neoformans. Through micro-dissection of 1358 basidiospores from 194 basidia and genotyping using 33 co-dominant genetic markers, the genotypes of all 230 germinated basidiospores from 94 basidia were obtained. The minimum haploid genotypes required to constitute the observed genotypes from each basidium were then inferred. Our results demonstrated that more than four haploid nuclear genotypes are required to explain the observed genotypes of basidiospores in seven of the 94 basidia. Our results suggest that mitotic recombination within basidia must be involved to produce the observed genotypes in these seven basidia. The mitotic recombination likely includes both chromosomal loss and crossing over. This novel recombination process could play an important role in generating the genotypic and phenotypic diversities of this important human pathogen.
Authors: Audrey Morin, Adrian W. Moores, Michael Sacher.
Published: 05-19-2009
ABSTRACT
Yeast is a highly tractable model system that is used to study many different cellular processes. The common laboratory strain Saccharomyces cerevisiae exists in either a haploid or diploid state. The ability to combine alleles from two haploids and the ability to introduce modifications to the genome requires the production and dissection of asci. Asci production from haploid cells begins with the mating of two yeast haploid strains with compatible mating types to produce a diploid strain. This can be accomplished in a number of ways either on solid medium or in liquid. It is advantageous to select for the diploids in medium that selectively promotes their growth compared to either of the haploid strains. The diploids are then allowed to sporulate on nutrient-poor medium to form asci, a bundle of four haploid daughter cells resulting from meiotic reproduction of the diploid. A mixture of vegetative cells and asci is then treated with the enzyme zymolyase to digest away the membrane sac surrounding the ascospores of the asci. Using micromanipulation with a microneedle under a dissection microscope one can pick up individual asci and separate and relocate the four ascopores. Dissected asci are grown for several days and tested for the markers or alleles of interest by replica plating onto appropriate selective media.
21 Related JoVE Articles!
Play Button
Separation of Spermatogenic Cell Types Using STA-PUT Velocity Sedimentation
Authors: Jessica M Bryant, Mirella L Meyer-Ficca, Vanessa M Dang, Shelley L Berger, Ralph G Meyer.
Institutions: University of Pennsylvania, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania, University of Pennsylvania.
Mammalian spermatogenesis is a complex differentiation process that occurs in several stages in the seminiferous tubules of the testes. Currently, there is no reliable cell culture system allowing for spermatogenic differentiation in vitro, and most biological studies of spermatogenic cells require tissue harvest from animal models like the mouse and rat. Because the testis contains numerous cell types - both non-spermatogenic (Leydig, Sertoli, myeloid, and epithelial cells) and spermatogenic (spermatogonia, spermatocytes, round spermatids, condensing spermatids and spermatozoa) - studies of the biological mechanisms involved in spermatogenesis require the isolation and enrichment of these different cell types. The STA-PUT method allows for the separation of a heterogeneous population of cells - in this case, from the testes - through a linear BSA gradient. Individual cell types sediment with different sedimentation velocity according to cell size, and fractions enriched for different cell types can be collected and utilized in further analyses. While the STA-PUT method does not result in highly pure fractions of cell types, e.g. as can be obtained with certain cell sorting methods, it does provide a much higher yield of total cells in each fraction (~1 x 108 cells/spermatogenic cell type from a starting population of 7-8 x 108 cells). This high yield method requires only specialized glassware and can be performed in any cold room or large refrigerator, making it an ideal method for labs that have limited access to specialized equipment like a fluorescence activated cell sorter (FACS) or elutriator.
Cellular Biology, Issue 80, Developmental Biology, Spermatogenesis, STA-PUT, cell separation, Spermatogenesis, spermatids, spermatocytes, spermatogonia, sperm, velocity sedimentation
50648
Play Button
2D and 3D Chromosome Painting in Malaria Mosquitoes
Authors: Phillip George, Atashi Sharma, Igor V Sharakhov.
Institutions: Virginia Tech.
Fluorescent in situ hybridization (FISH) of whole arm chromosome probes is a robust technique for mapping genomic regions of interest, detecting chromosomal rearrangements, and studying three-dimensional (3D) organization of chromosomes in the cell nucleus. The advent of laser capture microdissection (LCM) and whole genome amplification (WGA) allows obtaining large quantities of DNA from single cells. The increased sensitivity of WGA kits prompted us to develop chromosome paints and to use them for exploring chromosome organization and evolution in non-model organisms. Here, we present a simple method for isolating and amplifying the euchromatic segments of single polytene chromosome arms from ovarian nurse cells of the African malaria mosquito Anopheles gambiae. This procedure provides an efficient platform for obtaining chromosome paints, while reducing the overall risk of introducing foreign DNA to the sample. The use of WGA allows for several rounds of re-amplification, resulting in high quantities of DNA that can be utilized for multiple experiments, including 2D and 3D FISH. We demonstrated that the developed chromosome paints can be successfully used to establish the correspondence between euchromatic portions of polytene and mitotic chromosome arms in An. gambiae. Overall, the union of LCM and single-chromosome WGA provides an efficient tool for creating significant amounts of target DNA for future cytogenetic and genomic studies.
Immunology, Issue 83, Microdissection, whole genome amplification, malaria mosquito, polytene chromosome, mitotic chromosomes, fluorescence in situ hybridization, chromosome painting
51173
Play Button
Live Imaging of Mitosis in the Developing Mouse Embryonic Cortex
Authors: Louis-Jan Pilaz, Debra L. Silver.
Institutions: Duke University Medical Center, Duke University Medical Center.
Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixed brain sections. This protocol will describe in detail an approach for live imaging of mitosis in ex vivo embryonic brain slices. We will describe the critical steps for this procedure, which include: brain extraction, brain embedding, vibratome sectioning of brain slices, staining and culturing of slices, and time-lapse imaging. We will then demonstrate and describe in detail how to perform post-acquisition analysis of mitosis. We include representative results from this assay using the vital dye Syto11, transgenic mice (histone H2B-EGFP and centrin-EGFP), and in utero electroporation (mCherry-α-tubulin). We will discuss how this procedure can be best optimized and how it can be modified for study of genetic regulation of mitosis. Live imaging of mitosis in brain slices is a flexible approach to assess the impact of age, anatomy, and genetic perturbation in a controlled environment, and to generate a large amount of data with high temporal and spatial resolution. Hence this protocol will complement existing tools for analysis of neural progenitor mitosis.
Neuroscience, Issue 88, mitosis, radial glial cells, developing cortex, neural progenitors, brain slice, live imaging
51298
Play Button
BEST: Barcode Enabled Sequencing of Tetrads
Authors: Adrian C. Scott, Catherine L. Ludlow, Gareth A. Cromie, Aimée M. Dudley.
Institutions: Pacific Northwest Diabetes Research Institute.
Tetrad analysis is a valuable tool for yeast genetics, but the laborious manual nature of the process has hindered its application on large scales. Barcode Enabled Sequencing of Tetrads (BEST)1 replaces the manual processes of isolating, disrupting and spacing tetrads. BEST isolates tetrads by virtue of a sporulation-specific GFP fusion protein that permits fluorescence-activated cell sorting of tetrads directly onto agar plates, where the ascus is enzymatically digested and the spores are disrupted and randomly arrayed by glass bead plating. The haploid colonies are then assigned sister spore relationships, i.e. information about which spores originated from the same tetrad, using molecular barcodes read during genotyping. By removing the bottleneck of manual dissection, hundreds or even thousands of tetrads can be isolated in minutes. Here we present a detailed description of the experimental procedures required to perform BEST in the yeast Saccharomyces cerevisiae, starting with a heterozygous diploid strain through the isolation of colonies derived from the haploid meiotic progeny.
Genetics, Issue 87, Yeast, Tetrad, Genetics, DNA sequencing
51401
Play Button
Assessing Anti-fungal Activity of Isolated Alveolar Macrophages by Confocal Microscopy
Authors: Melissa J. Grimm, Anthony C. D'Auria, Brahm H. Segal.
Institutions: Roswell Park Cancer Institute, University of Buffalo.
The lung is an interface where host cells are routinely exposed to microbes and microbial products. Alveolar macrophages are the first-line phagocytic cells that encounter inhaled fungi and other microbes. Macrophages and other immune cells recognize Aspergillus motifs by pathogen recognition receptors and initiate downstream inflammatory responses. The phagocyte NADPH oxidase generates reactive oxygen intermediates (ROIs) and is critical for host defense. Although NADPH oxidase is critical for neutrophil-mediated host defense1-3, the importance of NADPH oxidase in macrophages is not well defined. The goal of this study was to delineate the specific role of NADPH oxidase in macrophages in mediating host defense against A. fumigatus. We found that NADPH oxidase in alveolar macrophages controls the growth of phagocytosed A. fumigatus spores4. Here, we describe a method for assessing the ability of mouse alveolar macrophages (AMs) to control the growth of phagocytosed Aspergillus spores (conidia). Alveolar macrophages are stained in vivo and ten days later isolated from mice by bronchoalveolar lavage (BAL). Macrophages are plated onto glass coverslips, then seeded with green fluorescent protein (GFP)-expressing A. fumigatus spores. At specified times, cells are fixed and the number of intact macrophages with phagocytosed spores is assessed by confocal microscopy.
Immunology, Issue 89, macrophage, bronchoalveolar lavage, Aspergillus, confocal microscopy, phagocytosis, anti-fungal activity, NADPH oxidase
51678
Play Button
Production of Haploid Zebrafish Embryos by In Vitro Fertilization
Authors: Paul T. Kroeger Jr., Shahram Jevin Poureetezadi, Robert McKee, Jonathan Jou, Rachel Miceli, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish has become a mainstream vertebrate model that is relevant for many disciplines of scientific study. Zebrafish are especially well suited for forward genetic analysis of developmental processes due to their external fertilization, embryonic size, rapid ontogeny, and optical clarity – a constellation of traits that enable the direct observation of events ranging from gastrulation to organogenesis with a basic stereomicroscope. Further, zebrafish embryos can survive for several days in the haploid state. The production of haploid embryos in vitro is a powerful tool for mutational analysis, as it enables the identification of recessive mutant alleles present in first generation (F1) female carriers following mutagenesis in the parental (P) generation. This approach eliminates the necessity to raise multiple generations (F2, F3, etc.) which involves breeding of mutant families, thus saving the researcher time along with reducing the needs for zebrafish colony space, labor, and the husbandry costs. Although zebrafish have been used to conduct forward screens for the past several decades, there has been a steady expansion of transgenic and genome editing tools. These tools now offer a plethora of ways to create nuanced assays for next generation screens that can be used to further dissect the gene regulatory networks that drive vertebrate ontogeny. Here, we describe how to prepare haploid zebrafish embryos. This protocol can be implemented for novel future haploid screens, such as in enhancer and suppressor screens, to address the mechanisms of development for a broad number of processes and tissues that form during early embryonic stages.
Developmental Biology, Issue 89, zebrafish, haploid, in vitro fertilization, forward genetic screen, saturation, recessive mutation, mutagenesis
51708
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae
Authors: Melissa N. Patterson, Patrick H. Maxwell.
Institutions: Rensselaer Polytechnic Institute.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Microbiology, Issue 92, Aging, mutations, genome instability, Saccharomyces cerevisiae, fluctuation test, magnetic sorting, mother cell, replicative aging
51850
Play Button
Ex vivo Culture of Drosophila Pupal Testis and Single Male Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment
Authors: Stefanie M. K. Gärtner, Christina Rathke, Renate Renkawitz-Pohl, Stephan Awe.
Institutions: Philipps-Universität Marburg, Philipps-Universität Marburg.
During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin—the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.
Developmental Biology, Issue 91, Ex vivo culture, testis, male germ-line cells, Drosophila, imaging, pharmacological assay
51868
Play Button
The Tomato/GFP-FLP/FRT Method for Live Imaging of Mosaic Adult Drosophila Photoreceptor Cells
Authors: Pierre Dourlen, Clemence Levet, Alexandre Mejat, Alexis Gambis, Bertrand Mollereau.
Institutions: Ecole Normale Supérieure de Lyon, Université Lille-Nord de France, The Rockefeller University.
The Drosophila eye is widely used as a model for studies of development and neuronal degeneration. With the powerful mitotic recombination technique, elegant genetic screens based on clonal analysis have led to the identification of signaling pathways involved in eye development and photoreceptor (PR) differentiation at larval stages. We describe here the Tomato/GFP-FLP/FRT method, which can be used for rapid clonal analysis in the eye of living adult Drosophila. Fluorescent photoreceptor cells are imaged with the cornea neutralization technique, on retinas with mosaic clones generated by flipase-mediated recombination. This method has several major advantages over classical histological sectioning of the retina: it can be used for high-throughput screening and has proved an effective method for identifying the factors regulating PR survival and function. It can be used for kinetic analyses of PR degeneration in the same living animal over several weeks, to demonstrate the requirement for specific genes for PR survival or function in the adult fly. This method is also useful for addressing cell autonomy issues in developmental mutants, such as those in which the establishment of planar cell polarity is affected.
Developmental Biology, Issue 79, Eye, Photoreceptor Cells, Genes, Developmental, neuron, visualization, degeneration, development, live imaging,Drosophila, photoreceptor, cornea neutralization, mitotic recombination
50610
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
50598
Play Button
Mating and Tetrad Separation of Chlamydomonas reinhardtii for Genetic Analysis
Authors: Xingshan Jiang, David Stern.
Institutions: Cornell University.
The unicellular green alga Chlamydomonas reinhardtii (Chlamydomonas) has become a popular organism for research in diverse areas of cell biology and genetics because of its simple life cycle, ease of growth and manipulation for genetic analysis, genomic resources, and transformability of the nucleus and both organelles. Mating strains is a common practice when genetic approaches are used in Chlamydomonass, to create vegetative diploids for analysis of dominance, or following tetrad dissection to ascertain nuclear vs. organellar inheritance, to test allelism, to analyze epistasy, or to generate populations for the purpose of map-based cloning. Additionally, genetic crosses are routinely used to combine organellar genotypes with particular nuclear genotypes. Here we demonstrate standard methods for gametogenesis, mating, zygote germination and tetrad separation. This protocol consists of an easy-to-follow series of steps that will make genetic approaches amenable to scientists who are less familiar with Chlamydomonas. Key parameters and trouble spots are explained. Finally, resources for further information and alternative methods are provided.
Plant Biology, Issue 30, mating, zygote, tetrad, mating type, Chlamydomonas
1274
Play Button
Making Gynogenetic Diploid Zebrafish by Early Pressure
Authors: Charline Walker, Greg S. Walsh, Cecilia Moens.
Institutions: University of Oregon, Fred Hutchinson Cancer Research Center - FHCRC.
Heterozygosity in diploid eukaryotes often makes genetic studies cumbersome. Methods that produce viable homozygous diploid offspring directly from heterozygous females allow F1 mutagenized females to be screened directly for deleterious mutations in an accelerated forward genetic screen. Streisinger et al.1,2 described methods for making gynogenetic (homozygous) diploid zebrafish by activating zebrafish eggs with ultraviolet light-inactivated sperm and preventing either the second meiotic or the first zygotic cell division using physical treatments (heat or pressure) that deploymerize microtubules. The "early pressure" (EP) method blocks the meiosis II, which occurs shortly after fertilization. The EP method produces a high percentage of viable embryos that can develop to fertile adults of either sex. The method generates embryos that are homozygous at all loci except those that were separated from their centromere by recombination during meiosis I. Homozygous mutations are detected in EP clutches at between 50% for centromeric loci and less than 1% for telomeric loci. This method is reproduced verbatim from the Zebrafish Book3.
Developmental Biology, Issue 28, Zebrafish, Early Pressure, Homozygous Diploid, Haploid, Gynogenesis
1396
Play Button
Adult and Embryonic Skeletal Muscle Microexplant Culture and Isolation of Skeletal Muscle Stem Cells
Authors: Deborah Merrick, Hung-Chih Chen, Dean Larner, Janet Smith.
Institutions: University of Birmingham.
Cultured embryonic and adult skeletal muscle cells have a number of different uses. The micro-dissected explants technique described in this chapter is a robust and reliable method for isolating relatively large numbers of proliferative skeletal muscle cells from juvenile, adult or embryonic muscles as a source of skeletal muscle stem cells. The authors have used micro-dissected explant cultures to analyse the growth characteristics of skeletal muscle cells in wild-type and dystrophic muscles. Each of the components of tissue growth, namely cell survival, proliferation, senescence and differentiation can be analysed separately using the methods described here. The net effect of all components of growth can be established by means of measuring explant outgrowth rates. The micro-explant method can be used to establish primary cultures from a wide range of different muscle types and ages and, as described here, has been adapted by the authors to enable the isolation of embryonic skeletal muscle precursors. Uniquely, micro-explant cultures have been used to derive clonal (single cell origin) skeletal muscle stem cell (SMSc) lines which can be expanded and used for in vivo transplantation. In vivo transplanted SMSc behave as functional, tissue-specific, satellite cells which contribute to skeletal muscle fibre regeneration but which are also retained (in the satellite cell niche) as a small pool of undifferentiated stem cells which can be re-isolated into culture using the micro-explant method.
Cellular Biology, Issue 43, Skeletal muscle stem cell, embryonic tissue culture, apoptosis, growth factor, proliferation, myoblast, myogenesis, satellite cell, skeletal muscle differentiation, muscular dystrophy
2051
Play Button
Protocol for Production of a Genetic Cross of the Rodent Malaria Parasites
Authors: Sittiporn Pattaradilokrat, Jian Li, Xin-zhuan Su.
Institutions: National Institutes of Health, Xiamen University.
Variation in response to antimalarial drugs and in pathogenicity of malaria parasites is of biologic and medical importance. Linkage mapping has led to successful identification of genes or loci underlying various traits in malaria parasites of rodents1-3 and humans4-6. The malaria parasite Plasmodium yoelii is one of many malaria species isolated from wild African rodents and has been adapted to grow in laboratories. This species reproduces many of the biologic characteristics of the human malaria parasites; genetic markers such as microsatellite and amplified fragment length polymorphism (AFLP) markers have also been developed for the parasite7-9. Thus, genetic studies in rodent malaria parasites can be performed to complement research on Plasmodium falciparum. Here, we demonstrate the techniques for producing a genetic cross in P. yoelii that were first pioneered by Drs. David Walliker, Richard Carter, and colleagues at the University of Edinburgh10. Genetic crosses in P. yoelii and other rodent malaria parasites are conducted by infecting mice Mus musculus with an inoculum containing gametocytes of two genetically distinct clones that differ in phenotypes of interest and by allowing mosquitoes to feed on the infected mice 4 days after infection. The presence of male and female gametocytes in the mouse blood is microscopically confirmed before feeding. Within 48 hrs after feeding, in the midgut of the mosquito, the haploid gametocytes differentiate into male and female gametes, fertilize, and form a diploid zygote (Fig. 1). During development of a zygote into an ookinete, meiosis appears to occur11. If the zygote is derived through cross-fertilization between gametes of the two genetically distinct parasites, genetic exchanges (chromosomal reassortment and cross-overs between the non-sister chromatids of a pair of homologous chromosomes; Fig. 2) may occur, resulting in recombination of genetic material at homologous loci. Each zygote undergoes two successive nuclear divisions, leading to four haploid nuclei. An ookinete further develops into an oocyst. Once the oocyst matures, thousands of sporozoites (the progeny of the cross) are formed and released into mosquito hemoceal. Sporozoites are harvested from the salivary glands and injected into a new murine host, where pre-erythrocytic and erythrocytic stage development takes place. Erythrocytic forms are cloned and classified with regard to the characters distinguishing the parental lines prior to genetic linkage mapping. Control infections of individual parental clones are performed in the same way as the production of a genetic cross.
Infectious Disease, Issue 47, Genetic cross, genetic mapping, malaria, rodent
2365
Play Button
Quantitation and Analysis of the Formation of HO-Endonuclease Stimulated Chromosomal Translocations by Single-Strand Annealing in Saccharomyces cerevisiae
Authors: Lauren Liddell, Glenn Manthey, Nicholas Pannunzio, Adam Bailis.
Institutions: Irell & Manella Graduate School of Biological Sciences, City of Hope Comprehensive Cancer Center and Beckman Research Institute, University of Southern California, Norris Comprehensive Cancer Center.
Genetic variation is frequently mediated by genomic rearrangements that arise through interaction between dispersed repetitive elements present in every eukaryotic genome. This process is an important mechanism for generating diversity between and within organisms1-3. The human genome consists of approximately 40% repetitive sequence of retrotransposon origin, including a variety of LINEs and SINEs4. Exchange events between these repetitive elements can lead to genome rearrangements, including translocations, that can disrupt gene dosage and expression that can result in autoimmune and cardiovascular diseases5, as well as cancer in humans6-9. Exchange between repetitive elements occurs in a variety of ways. Exchange between sequences that share perfect (or near-perfect) homology occurs by a process called homologous recombination (HR). By contrast, non-homologous end joining (NHEJ) uses little-or-no sequence homology for exchange10,11. The primary purpose of HR, in mitotic cells, is to repair double-strand breaks (DSBs) generated endogenously by aberrant DNA replication and oxidative lesions, or by exposure to ionizing radiation (IR), and other exogenous DNA damaging agents. In the assay described here, DSBs are simultaneously created bordering recombination substrates at two different chromosomal loci in diploid cells by a galactose-inducible HO-endonuclease (Figure 1). The repair of the broken chromosomes generates chromosomal translocations by single strand annealing (SSA), a process where homologous sequences adjacent to the chromosome ends are covalently joined subsequent to annealing. One of the substrates, his3-Δ3', contains a 3' truncated HIS3 allele and is located on one copy of chromosome XV at the native HIS3 locus. The second substrate, his3-Δ5', is located at the LEU2 locus on one copy of chromosome III, and contains a 5' truncated HIS3 allele. Both substrates are flanked by a HO endonuclease recognition site that can be targeted for incision by HO-endonuclease. HO endonuclease recognition sites native to the MAT locus, on both copies of chromosome III, have been deleted in all strains. This prevents interaction between the recombination substrates and other broken chromosome ends from interfering in the assay. The KAN-MX-marked galactose-inducible HO endonuclease expression cassette is inserted at the TRP1 locus on chromosome IV. The substrates share 311 bp or 60 bp of the HIS3 coding sequence that can be used by the HR machinery for repair by SSA. Cells that use these substrates to repair broken chromosomes by HR form an intact HIS3 allele and a tXV::III chromosomal translocation that can be selected for by the ability to grow on medium lacking histidine (Figure 2A). Translocation frequency by HR is calculated by dividing the number of histidine prototrophic colonies that arise on selective medium by the total number of viable cells that arise after plating appropriate dilutions onto non-selective medium (Figure 2B). A variety of DNA repair mutants have been used to study the genetic control of translocation formation by SSA using this system12-14.
Genetics, Issue 55, translocation formation, HO-endonuclease, Genomic Southern blot, Chromosome blot, Pulsed-field gel electrophoresis, Homologous recombination, DNA double-strand breaks, Single-strand annealing
3150
Play Button
The Green Monster Process for the Generation of Yeast Strains Carrying Multiple Gene Deletions
Authors: Yo Suzuki, Jason Stam, Mark Novotny, Nozomu Yachie, Roger S. Lasken, Frederick P. Roth.
Institutions: J. Craig Venter Institute, J. Craig Venter Institute, University of Toronto, Mt Sinai Hospital.
Phenotypes for a gene deletion are often revealed only when the mutation is tested in a particular genetic background or environmental condition1,2. There are examples where many genes need to be deleted to unmask hidden gene functions3,4. Despite the potential for important discoveries, genetic interactions involving three or more genes are largely unexplored. Exhaustive searches of multi-mutant interactions would be impractical due to the sheer number of possible combinations of deletions. However, studies of selected sets of genes, such as sets of paralogs with a greater a priori chance of sharing a common function, would be informative. In the yeast Saccharomyces cerevisiae, gene knockout is accomplished by replacing a gene with a selectable marker via homologous recombination. Because the number of markers is limited, methods have been developed for removing and reusing the same marker5,6,7,8,9,10. However, sequentially engineering multiple mutations using these methods is time-consuming because the time required scales linearly with the number of deletions to be generated. Here we describe the Green Monster method for routinely engineering multiple deletions in yeast11. In this method, a green fluorescent protein (GFP) reporter integrated into deletions is used to quantitatively label strains according to the number of deletions contained in each strain (Figure 1). Repeated rounds of assortment of GFP-marked deletions via yeast mating and meiosis coupled with flow-cytometric enrichment of strains carrying more of these deletions lead to the accumulation of deletions in strains (Figure 2). Performing multiple processes in parallel, with each process incorporating one or more deletions per round, reduces the time required for strain construction. The first step is to prepare haploid single-mutants termed 'ProMonsters,' each of which carries a GFP reporter in a deleted locus and one of the 'toolkit' loci—either Green Monster GMToolkit-a or GMToolkit-α at the can1Δ locus (Figure 3). Using strains from the yeast deletion collection12, GFP-marked deletions can be conveniently generated by replacing the common KanMX4 cassette existing in these strains with a universal GFP-URA3 fragment. Each GMToolkit contains: either the a- or α-mating-type-specific haploid selection marker1 and exactly one of the two markers that, when both GMToolkits are present, collectively allow for selection of diploids. The second step is to carry out the sexual cycling through which deletion loci can be combined within a single cell by the random assortment and/or meiotic recombination that accompanies each cycle of mating and sporulation.
Microbiology, Issue 70, Genetics, Synthetic Biology, Environmental Genomics, Genomics, Bioengineering, Biomedical Engineering, Cellular Biology, Multi-site genomic engineering, genetic interaction, green fluorescent protein, GFP, flow cytometry, Saccharomyces cerevisiae, yeast, Green Monster
4072
Play Button
Flow Cytometry-based Purification of S. cerevisiae Zygotes
Authors: Serendipity Zapanta Rinonos, Jeremy Saks, Jonida Toska, Chun-Lun Ni, Alan M. Tartakoff.
Institutions: Case Western Reserve University School of Medicine, Case Western Reserve University School of Medicine, Case Western Reserve University School of Medicine.
Zygotes are essential intermediates between haploid and diploid states in the life cycle of many organisms, including yeast (Figure 1) 1. S. cerevisiae zygotes result from the fusion of haploid cells of distinct mating type (MATa, MATalpha) and give rise to corresponding stable diploids that successively generate as many as 20 diploid progeny as a result of their strikingly asymmetric mitotic divisions 2. Zygote formation is orchestrated by a complex sequence of events: In this process, soluble mating factors bind to cognate receptors, triggering receptor-mediated signaling cascades that facilitate interruption of the cell cycle and culminate in cell-cell fusion. Zygotes may be considered a model for progenitor or stem cell function. Although much has been learned about the formation of zygotes and although zygotes have been used to investigate cell-molecular questions of general significance, almost all studies have made use of mating mixtures in which zygotes are intermixed with a majority population of haploid cells 3-8. Many aspects of the biochemistry of zygote formation and the continuing life of the zygote therefore remain uninvestigated. Reports of purification of yeast zygotes describe protocols based on their sedimentation properties 9; however, this sedimentation-based procedure did not yield nearly 90% purity in our hands. Moreover, it has the disadvantage that cells are exposed to hypertonic sorbitol. We therefore have developed a versatile purification procedure. For this purpose, pairs of haploid cells expressing red or green fluorescent proteins were co-incubated to allow zygote formation, harvested at various times, and the resulting zygotes were purified using a flow cytometry-based sorting protocol. This technique provides a convenient visual assessment of purity and maturation. The average purity of the fraction is approximately 90%. According to the timing of harvest, zygotes of varying degrees of maturity can be recovered. The purified samples provide a convenient point of departure for "-omic" studies, for recovery of initial progeny, and for systematic investigation of this progenitor cell.
Developmental Biology, Issue 67, Cellular Biology, Genetics, Molecular Biology, yeast, zygotes, flow sorting, mating, flow cytometry, S. cerevisiae
4197
Play Button
Recombineering Homologous Recombination Constructs in Drosophila
Authors: Arnaldo Carreira-Rosario, Shane Scoggin, Nevine A. Shalaby, Nathan David Williams, P. Robin Hiesinger, Michael Buszczak.
Institutions: University of Texas Southwestern Medical Center at Dallas, University of Texas Southwestern Medical Center at Dallas, University of Texas Southwestern Medical Center at Dallas.
The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineering-based cloning methods to generate vectors that can be used to target and manipulate endogenous loci in vivo. Specifically, we have established a combination of three technologies: (1) BAC transgenesis/recombineering, (2) ends-out homologous recombination and (3) Gateway technology to provide a robust, efficient and flexible method for manipulating endogenous genomic loci. In this protocol, we provide step-by-step details about how to (1) design individual vectors, (2) how to clone large fragments of genomic DNA into the homologous recombination vector using gap repair, and (3) how to replace or tag genes of interest within these vectors using a second round of recombineering. Finally, we will also provide a protocol for how to mobilize these cassettes in vivo to generate a knockout, or a tagged gene via knock-in. These methods can easily be adopted for multiple targets in parallel and provide a means for manipulating the Drosophila genome in a timely and efficient manner.
Genetics, Issue 77, Bioengineering, Molecular Biology, Biomedical Engineering, Physiology, Drosophila melanogaster, genetics (animal and plant), Recombineering, Drosophila, Homologous Recombination, Knock-out, recombination, genetic engineering, gene targeting, gene, genes, DNA, PCR, Primers, sequencing, animal model
50346
Play Button
Visualizing Non-lytic Exocytosis of Cryptococcus neoformans from Macrophages Using Digital Light Microscopy
Authors: Sabriya Stukes, Arturo Casadevall.
Institutions: Albert Einstein College of Medicine.
Many aspects of the infection of macrophages by Cryptococcus neoformans have been extensively studied and well defined. However, one particular interaction that is not clearly understood is non-lytic exocytosis. In this process, yeast cells are released into the extracellular space by a poorly understood mechanism that leaves both the macrophage and Cn viable. Here, we describe how to follow a large number of individually infected macrophages for a 24 hr infection period by time-lapsed microscopy. Infected macrophages are housed in a heating chamber with a CO2 atmosphere attached to a microscope that provides the same conditions as a cell-culture incubator. Live digital microscopy can provide information about the dynamic interactions between a host and pathogen that is not available from static images. Being able to visualize each infected cell can provide clues as to how macrophages handle fungal infections, and vice versa. This technique is a powerful tool in studying the dynamics that are behind a complex phenomenon.
Immunology, Issue 92, Non-Lytic Exocytosis, Macrophages, C. neoformans, Fungus, Host-Pathogen Interactions
52084
Play Button
A high-throughput method to globally study the organelle morphology in S. cerevisiae
Authors: Shabnam Tavassoli, Jesse Tzu-Cheng Chao, Christopher Loewen.
Institutions: University of British Columbia - UBC.
High-throughput methods to examine protein localization or organelle morphology is an effective tool for studying protein interactions and can help achieve an comprehensive understanding of molecular pathways. In Saccharomyces cerevisiae, with the development of the non-essential gene deletion array, we can globally study the morphology of different organelles like the endoplasmic reticulum (ER) and the mitochondria using GFP (or variant)-markers in different gene backgrounds. However, incorporating GFP markers in each single mutant individually is a labor-intensive process. Here, we describe a procedure that is routinely used in our laboratory. By using a robotic system to handle high-density yeast arrays and drug selection techniques, we can significantly shorten the time required and improve reproducibility. In brief, we cross a GFP-tagged mitochondrial marker (Apc1-GFP) to a high-density array of 4,672 nonessential gene deletion mutants by robotic replica pinning. Through diploid selection, sporulation, germination and dual marker selection, we recover both alleles. As a result, each haploid single mutant contains Apc1-GFP incorporated at its genomic locus. Now, we can study the morphology of mitochondria in all non-essential mutant background. Using this high-throughput approach, we can conveniently study and delineate the pathways and genes involved in the inheritance and the formation of organelles in a genome-wide setting.
Microbiology, Issue 25, High throughput, confocal microscopy, Acp1, mitochondria, endoplasmic reticulum, Saccharomyces cerevisiae
1224
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.