JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
DUX4 differentially regulates transcriptomes of human rhabdomyosarcoma and mouse C2C12 cells.
PUBLISHED: 01-01-2013
Facioscapulohumeral muscular dystrophy (FSHD) is linked to the deletion of the D4Z4 arrays at chromosome 4q35. Recent studies suggested that aberrant expression of double homeobox 4 (DUX4) from the last D4Z4 repeat causes FSHD. The aim of this study is to determine transcriptomic responses to ectopically expressed DUX4 in human and mouse cells of muscle lineage. We expression profiled human rhabdomyosarcoma (RD) cells and mouse C2C12 cells transfected with expression vectors of DUX4 using the Affymetrix Human Genome U133 Plus 2.0 Arrays and Mouse Genome 430 2.0 Arrays, respectively. A total of 2267 and 150 transcripts were identified to be differentially expressed in the RD and C2C12 cells, respectively. Amongst the transcripts differentially expressed in the RD cells, MYOD and MYOG (2 fold, p<0.05), and six MYOD downstream targets were up-regulated in RD but not C2C12 cells. Furthermore, 13 transcripts involved in germline function were dramatically induced only in the RD cells expressing DUX4. The top 3 IPA canonical pathways affected by DUX4 were different between the RD (inflammation, BMP signaling and NRF-2 mediated oxidative stress) and the C2C12 cells (p53 signaling, cell cycle regulation and cellular energy metabolism). Amongst the 40 transcripts shared by the RD and C2C12 cells, UTS2 was significantly induced by 76 fold and 224 fold in the RD and C2C12 cells, respectively. The differential expression of MYOD, MYOG and UTS2 were validated using real-time quantitative RT-PCR. We further validated the differentially expressed genes in immortalized FSHD myoblasts and showed up-regulation of MYOD, MYOG, ZSCAN4 and UTS2. The results suggest that DUX4 regulates overlapped and distinct groups of genes and pathways in human and mouse cells as evident by the selective up-regulation of genes involved in myogenesis and gametogenesis in human RD and immortalized cells as well as the different molecular pathways identified in the cells.
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Published: 02-13-2013
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
20 Related JoVE Articles!
Play Button
Covalent Binding of BMP-2 on Surfaces Using a Self-assembled Monolayer Approach
Authors: Theresa L. M. Pohl, Elisabeth H. Schwab, Elisabetta A. Cavalcanti-Adam.
Institutions: University of Heidelberg, Max Planck Institute for Intelligent Systems at Stuttgart.
Bone morphogenetic protein 2 (BMP-2) is a growth factor embedded in the extracellular matrix of bone tissue. BMP-2 acts as trigger of mesenchymal cell differentiation into osteoblasts, thus stimulating healing and de novo bone formation. The clinical use of recombinant human BMP-2 (rhBMP-2) in conjunction with scaffolds has raised recent controversies, based on the mode of presentation and the amount to be delivered. The protocol presented here provides a simple and efficient way to deliver BMP-2 for in vitro studies on cells. We describe how to form a self-assembled monolayer consisting of a heterobifunctional linker, and show the subsequent binding step to obtain covalent immobilization of rhBMP-2. With this approach it is possible to achieve a sustained presentation of BMP-2 while maintaining the biological activity of the protein. In fact, the surface immobilization of BMP-2 allows targeted investigations by preventing unspecific adsorption, while reducing the amount of growth factor and, most notably, hindering uncontrolled release from the surface. Both short- and long-term signaling events triggered by BMP-2 are taking place when cells are exposed to surfaces presenting covalently immobilized rhBMP-2, making this approach suitable for in vitro studies on cell responses to BMP-2 stimulation.
Chemistry, Issue 78, Biochemistry, Chemical Engineering, Bioengineering, Biomedical Engineering, Biophysics, Genetics, Chemical Biology, Physical Chemistry, Proteins, life sciences, Biological Factors, Chemistry and Materials (General), Bone morphogenetic protein 2 (BMP-2), self-assembled monolayer (SAM), covalent immobilization, NHS-linker, BMP-2 signaling, protein, assay
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
Play Button
A Novel Stretching Platform for Applications in Cell and Tissue Mechanobiology
Authors: Dominique Tremblay, Charles M. Cuerrier, Lukasz Andrzejewski, Edward R. O'Brien, Andrew E. Pelling.
Institutions: University of Ottawa, University of Ottawa, University of Calgary, University of Ottawa, University of Ottawa.
Tools that allow the application of mechanical forces to cells and tissues or that can quantify the mechanical properties of biological tissues have contributed dramatically to the understanding of basic mechanobiology. These techniques have been extensively used to demonstrate how the onset and progression of various diseases are heavily influenced by mechanical cues. This article presents a multi-functional biaxial stretching (BAXS) platform that can either mechanically stimulate single cells or quantify the mechanical stiffness of tissues. The BAXS platform consists of four voice coil motors that can be controlled independently. Single cells can be cultured on a flexible substrate that can be attached to the motors allowing one to expose the cells to complex, dynamic, and spatially varying strain fields. Conversely, by incorporating a force load cell, one can also quantify the mechanical properties of primary tissues as they are exposed to deformation cycles. In both cases, a proper set of clamps must be designed and mounted to the BAXS platform motors in order to firmly hold the flexible substrate or the tissue of interest. The BAXS platform can be mounted on an inverted microscope to perform simultaneous transmitted light and/or fluorescence imaging to examine the structural or biochemical response of the sample during stretching experiments. This article provides experimental details of the design and usage of the BAXS platform and presents results for single cell and whole tissue studies. The BAXS platform was used to measure the deformation of nuclei in single mouse myoblast cells in response to substrate strain and to measure the stiffness of isolated mouse aortas. The BAXS platform is a versatile tool that can be combined with various optical microscopies in order to provide novel mechanobiological insights at the sub-cellular, cellular and whole tissue levels.
Bioengineering, Issue 88, cell stretching, tissue mechanics, nuclear mechanics, uniaxial, biaxial, anisotropic, mechanobiology
Play Button
Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale
Authors: Valentina Gandin, Kristina Sikström, Tommy Alain, Masahiro Morita, Shannon McLaughlan, Ola Larsson, Ivan Topisirovic.
Institutions: McGill University, Karolinska Institutet, McGill University.
mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed “anota” algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.
Biochemistry, Issue 87, Cells, Eukaryota, Nutritional and Metabolic Diseases, Neoplasms, Metabolic Phenomena, Cell Physiological Phenomena, mRNA translation, ribosomes, protein synthesis, genome-wide analysis, translatome, mTOR, eIF4E, 4E-BP1
Play Button
Investigating Tissue- and Organ-specific Phytochrome Responses using FACS-assisted Cell-type Specific Expression Profiling in Arabidopsis thaliana
Authors: Sankalpi N. Warnasooriya, Beronda L. Montgomery.
Institutions: Michigan State University (MSU), Michigan State University (MSU).
Light mediates an array of developmental and adaptive processes throughout the life cycle of a plant. Plants utilize light-absorbing molecules called photoreceptors to sense and adapt to light. The red/far-red light-absorbing phytochrome photoreceptors have been studied extensively. Phytochromes exist as a family of proteins with distinct and overlapping functions in all higher plant systems in which they have been studied1. Phytochrome-mediated light responses, which range from seed germination through flowering and senescence, are often localized to specific plant tissues or organs2. Despite the discovery and elucidation of individual and redundant phytochrome functions through mutational analyses, conclusive reports on distinct sites of photoperception and the molecular mechanisms of localized pools of phytochromes that mediate spatial-specific phytochrome responses are limited. We designed experiments based on the hypotheses that specific sites of phytochrome photoperception regulate tissue- and organ-specific aspects of photomorphogenesis, and that localized phytochrome pools engage distinct subsets of downstream target genes in cell-to-cell signaling. We developed a biochemical approach to selectively reduce functional phytochromes in an organ- or tissue-specific manner within transgenic plants. Our studies are based on a bipartite enhancer-trap approach that results in transactivation of the expression of a gene under control of the Upstream Activation Sequence (UAS) element by the transcriptional activator GAL43. The biliverdin reductase (BVR) gene under the control of the UAS is silently maintained in the absence of GAL4 transactivation in the UAS-BVR parent4. Genetic crosses between a UAS-BVR transgenic line and a GAL4-GFP enhancer trap line result in specific expression of the BVR gene in cells marked by GFP expression4. BVR accumulation in Arabidopsis plants results in phytochrome chromophore deficiency in planta5-7. Thus, transgenic plants that we have produced exhibit GAL4-dependent activation of the BVR gene, resulting in the biochemical inactivation of phytochrome, as well as GAL4-dependent GFP expression. Photobiological and molecular genetic analyses of BVR transgenic lines are yielding insight into tissue- and organ-specific phytochrome-mediated responses that have been associated with corresponding sites of photoperception4, 7, 8. Fluorescence Activated Cell Sorting (FACS) of GFP-positive, enhancer-trap-induced BVR-expressing plant protoplasts coupled with cell-type-specific gene expression profiling through microarray analysis is being used to identify putative downstream target genes involved in mediating spatial-specific phytochrome responses. This research is expanding our understanding of sites of light perception, the mechanisms through which various tissues or organs cooperate in light-regulated plant growth and development, and advancing the molecular dissection of complex phytochrome-mediated cell-to-cell signaling cascades.
Plant Biology, Issue 39, Arabidopsis thaliana, confocal microscopy, expression profiling, microarray, fluorescence, FACS, photomorphogenesis, phytochrome, protoplasting
Play Button
MicroRNA Expression Profiles of Human iPS Cells, Retinal Pigment Epithelium Derived From iPS, and Fetal Retinal Pigment Epithelium
Authors: Whitney A. Greene, Alberto. Muñiz, Mark L. Plamper, Ramesh R. Kaini, Heuy-Ching Wang.
Institutions: JBSA Fort Sam Houston.
The objective of this report is to describe the protocols for comparing the microRNA (miRNA) profiles of human induced-pluripotent stem (iPS) cells, retinal pigment epithelium (RPE) derived from human iPS cells (iPS-RPE), and fetal RPE. The protocols include collection of RNA for analysis by microarray, and the analysis of microarray data to identify miRNAs that are differentially expressed among three cell types. The methods for culture of iPS cells and fetal RPE are explained. The protocol used for differentiation of RPE from human iPS is also described. The RNA extraction technique we describe was selected to allow maximal recovery of very small RNA for use in a miRNA microarray. Finally, cellular pathway and network analysis of microarray data is explained. These techniques will facilitate the comparison of the miRNA profiles of three different cell types.
Molecular Biology, Issue 88, microRNA, microarray, human induced-pluripotent stem cells, retinal pigmented epithelium
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
RNA-Seq Analysis of Differential Gene Expression in Electroporated Chick Embryonic Spinal Cord
Authors: Felipe M. Vieceli, C.Y. Irene Yan.
Institutions: Universidade de São Paulo.
In ovo electroporation of the chick neural tube is a fast and inexpensive method for identification of gene function during neural development. Genome wide analysis of differentially expressed transcripts after such an experimental manipulation has the potential to uncover an almost complete picture of the downstream effects caused by the transfected construct. This work describes a simple method for comparing transcriptomes from samples of transfected embryonic spinal cords comprising all steps between electroporation and identification of differentially expressed transcripts. The first stage consists of guidelines for electroporation and instructions for dissection of transfected spinal cord halves from HH23 embryos in ribonuclease-free environment and extraction of high-quality RNA samples suitable for transcriptome sequencing. The next stage is that of bioinformatic analysis with general guidelines for filtering and comparison of RNA-Seq datasets in the Galaxy public server, which eliminates the need of a local computational structure for small to medium scale experiments. The representative results show that the dissection methods generate high quality RNA samples and that the transcriptomes obtained from two control samples are essentially the same, an important requirement for detection of differential expression genes in experimental samples. Furthermore, one example is provided where experimental overexpression of a DNA construct can be visually verified after comparison with control samples. The application of this method may be a powerful tool to facilitate new discoveries on the function of neural factors involved in spinal cord early development.
Developmental Biology, Issue 93, chicken embryo, in ovo electroporation, spinal cord, RNA-Seq, transcriptome profiling, Galaxy workflow
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Generation of Myospheres From hESCs by Epigenetic Reprogramming
Authors: Sonia Albini, Pier Lorenzo Puri.
Institutions: Sanford-Burnham Institute for Medical Research, IRCCS Fondazione Santa Lucia.
Generation of a homogeneous and abundant population of skeletal muscle cells from human embryonic stem cells (hESCs) is a requirement for cell-based therapies and for a "disease in a dish" model of human neuromuscular diseases. Major hurdles, such as low abundance and heterogeneity of the population of interest, as well as a lack of protocols for the formation of three-dimensional contractile structures, have limited the applications of stem cells for neuromuscular disorders. We have designed a protocol that overcomes these limits by ectopic introduction of defined factors in hESCs - the muscle determination factor MyoD and SWI/SNF chromatin remodeling complex component BAF60C - that are able to reprogram hESCs into skeletal muscle cells. Here we describe the protocol established to generate hESC-derived myoblasts and promote their clustering into tridimensional miniaturized structures (myospheres) that functionally mimic miniaturized skeletal muscles7.
Bioengineering, Issue 88, Tissues, Cells, Embryonic Structures, Musculoskeletal System, Musculoskeletal Diseases, hESC, epinegetics, Skeletal Myogenesis, Myosphere, Chromatin, Lentivirus, Infection
Play Button
Isolation, Culture, and Transplantation of Muscle Satellite Cells
Authors: Norio Motohashi, Yoko Asakura, Atsushi Asakura.
Institutions: University of Minnesota Medical School.
Muscle satellite cells are a stem cell population required for postnatal skeletal muscle development and regeneration, accounting for 2-5% of sublaminal nuclei in muscle fibers. In adult muscle, satellite cells are normally mitotically quiescent. Following injury, however, satellite cells initiate cellular proliferation to produce myoblasts, their progenies, to mediate the regeneration of muscle. Transplantation of satellite cell-derived myoblasts has been widely studied as a possible therapy for several regenerative diseases including muscular dystrophy, heart failure, and urological dysfunction. Myoblast transplantation into dystrophic skeletal muscle, infarcted heart, and dysfunctioning urinary ducts has shown that engrafted myoblasts can differentiate into muscle fibers in the host tissues and display partial functional improvement in these diseases. Therefore, the development of efficient purification methods of quiescent satellite cells from skeletal muscle, as well as the establishment of satellite cell-derived myoblast cultures and transplantation methods for myoblasts, are essential for understanding the molecular mechanisms behind satellite cell self-renewal, activation, and differentiation. Additionally, the development of cell-based therapies for muscular dystrophy and other regenerative diseases are also dependent upon these factors. However, current prospective purification methods of quiescent satellite cells require the use of expensive fluorescence-activated cell sorting (FACS) machines. Here, we present a new method for the rapid, economical, and reliable purification of quiescent satellite cells from adult mouse skeletal muscle by enzymatic dissociation followed by magnetic-activated cell sorting (MACS). Following isolation of pure quiescent satellite cells, these cells can be cultured to obtain large numbers of myoblasts after several passages. These freshly isolated quiescent satellite cells or ex vivo expanded myoblasts can be transplanted into cardiotoxin (CTX)-induced regenerating mouse skeletal muscle to examine the contribution of donor-derived cells to regenerating muscle fibers, as well as to satellite cell compartments for the examination of self-renewal activities.
Cellular Biology, Issue 86, skeletal muscle, muscle stem cell, satellite cell, regeneration, myoblast transplantation, muscular dystrophy, self-renewal, differentiation, myogenesis
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
Molecular Imaging to Target Transplanted Muscle Progenitor Cells
Authors: Kelly Gutpell, Rebecca McGirr, Lisa Hoffman.
Institutions: Lawson Health Research Institute, Western University, Western University.
Duchenne muscular dystrophy (DMD) is a severe genetic neuromuscular disorder that affects 1 in 3,500 boys, and is characterized by progressive muscle degeneration1, 2. In patients, the ability of resident muscle satellite cells (SCs) to regenerate damaged myofibers becomes increasingly inefficient4. Therefore, transplantation of muscle progenitor cells (MPCs)/myoblasts from healthy subjects is a promising therapeutic approach to DMD. A major limitation to the use of stem cell therapy, however, is a lack of reliable imaging technologies for long-term monitoring of implanted cells, and for evaluating its effectiveness. Here, we describe a non-invasive, real-time approach to evaluate the success of myoblast transplantation. This method takes advantage of a unified fusion reporter gene composed of genes (firefly luciferase [fluc], monomeric red fluorescent protein [mrfp] and sr39 thymidine kinase [sr39tk]) whose expression can be imaged with different imaging modalities9, 10. A variety of imaging modalities, including positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), optical imaging, and high frequency 3D-ultrasound are now available, each with unique advantages and limitations11. Bioluminescence imaging (BLI) studies, for example, have the advantage of being relatively low cost and high-throughput. It is for this reason that, in this study, we make use of the firefly luciferase (fluc) reporter gene sequence contained within the fusion gene and bioluminescence imaging (BLI) for the short-term localization of viable C2C12 myoblasts following implantation into a mouse model of DMD (muscular dystrophy on the X chromosome [mdx] mouse)12-14. Importantly, BLI provides us with a means to examine the kinetics of labeled MPCs post-implantation, and will be useful to track cells repeatedly over time and following migration. Our reporter gene approach further allows us to merge multiple imaging modalities in a single living subject; given the tomographic nature, fine spatial resolution and ability to scale up to larger animals and humans10,11, PET will form the basis of future work that we suggest may facilitate rapid translation of methods developed in cells to preclinical models and to clinical applications.
Medicine, Issue 73, Medicine, Biophysics, Biomedical Engineering, Cellular Biology, Anatomy, Physiology, Genetics, Surgery, Diseases, Musculoskeletal Diseases, Analytical, Diagnostic and Therapeutic Techniques and Equipment, Therapeutics, Bioluminescence imaging (BLI), Reporter Gene Expression, Non-invasive Targeting, Muscle Progenitor Cells, Myoblasts, transplantation, cell implantation, MRI, PET, SPECT, BLI, imaging, clinical techniques, animal model
Play Button
Engineering Skeletal Muscle Tissues from Murine Myoblast Progenitor Cells and Application of Electrical Stimulation
Authors: Daisy W. J. van der Schaft, Ariane C. C. van Spreeuwel, Kristel J. M. Boonen, Marloes L. P. Langelaan, Carlijn V. C. Bouten, Frank P. T. Baaijens.
Institutions: Eindhoven University of Technology, The Netherlands.
Engineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative 1. The first reported 3D muscle constructs have been made many years ago and pioneers in the field are Vandenburgh and colleagues 2,3. Advances made in muscle tissue engineering are not only the result from the vast gain in knowledge of biochemical factors, stem cells and progenitor cells, but are in particular based on insights gained by researchers that physical factors play essential roles in the control of cell behavior and tissue development. State-of-the-art engineered muscle constructs currently consist of cell-populated hydrogel constructs. In our lab these generally consist of murine myoblast progenitor cells, isolated from murine hind limb muscles or a murine myoblast cell line C2C12, mixed with a mixture of collagen/Matrigel and plated between two anchoring points, mimicking the muscle ligaments. Other cells may be considered as well, e.g. alternative cell lines such as L6 rat myoblasts 4, neonatal muscle derived progenitor cells 5, cells derived from adult muscle tissues from other species such as human 6 or even induced pluripotent stem cells (iPS cells) 7. Cell contractility causes alignment of the cells along the long axis of the construct 8,9 and differentiation of the muscle progenitor cells after approximately one week of culture. Moreover, the application of electrical stimulation can enhance the process of differentiation to some extent 8. Because of its limited size (8 x 2 x 0.5 mm) the complete tissue can be analyzed using confocal microscopy to monitor e.g. viability, differentiation and cell alignment. Depending on the specific application the requirements for the engineered muscle tissue will vary; e.g. use for regenerative medicine requires the up scaling of tissue size and vascularization, while to serve as a meat alternative translation to other species is necessary.
Bioengineering, Issue 73, Biomedical Engineering, Biophysics, Biomechanics, Anatomy, Physiology, Stem Cell Biology, Medicine, Cellular Biology, Molecular Biology, Genetics, Tissue Engineering, skeletal muscle, muscle progenitor cells, biophysical stimulation, iPS cells, myoblasts, muscle tissue, soft tissue, stem cells, cell culture, collagen, Matrigel, animal model
Play Button
Dissecting Host-virus Interaction in Lytic Replication of a Model Herpesvirus
Authors: Xiaonan Dong, Pinghui Feng.
Institutions: UT Southwestern Medical Center, UT Southwestern Medical Center.
In response to viral infection, a host develops various defensive responses, such as activating innate immune signaling pathways that lead to antiviral cytokine production1,2. In order to colonize the host, viruses are obligate to evade host antiviral responses and manipulate signaling pathways. Unraveling the host-virus interaction will shed light on the development of novel therapeutic strategies against viral infection. Murine γHV68 is closely related to human oncogenic Kaposi's sarcoma-associated herpesvirus and Epsten-Barr virus3,4. γHV68 infection in laboratory mice provides a tractable small animal model to examine the entire course of host responses and viral infection in vivo, which are not available for human herpesviruses. In this protocol, we present a panel of methods for phenotypic characterization and molecular dissection of host signaling components in γHV68 lytic replication both in vivo and ex vivo. The availability of genetically modified mouse strains permits the interrogation of the roles of host signaling pathways during γHV68 acute infection in vivo. Additionally, mouse embryonic fibroblasts (MEFs) isolated from these deficient mouse strains can be used to further dissect roles of these molecules during γHV68 lytic replication ex vivo. Using virological and molecular biology assays, we can pinpoint the molecular mechanism of host-virus interactions and identify host and viral genes essential for viral lytic replication. Finally, a bacterial artificial chromosome (BAC) system facilitates the introduction of mutations into the viral factor(s) that specifically interrupt the host-virus interaction. Recombinant γHV68 carrying these mutations can be used to recapitulate the phenotypes of γHV68 lytic replication in MEFs deficient in key host signaling components. This protocol offers an excellent strategy to interrogate host-pathogen interaction at multiple levels of intervention in vivo and ex vivo. Recently, we have discovered that γHV68 usurps an innate immune signaling pathway to promote viral lytic replication5. Specifically, γHV68 de novo infection activates the immune kinase IKKβ and activated IKKβ phosphorylates the master viral transcription factor, replication and transactivator (RTA), to promote viral transcriptional activation. In doing so, γHV68 efficiently couples its transcriptional activation to host innate immune activation, thereby facilitating viral transcription and lytic replication. This study provides an excellent example that can be applied to other viruses to interrogate host-virus interaction.
Immunology, Issue 56, herpesvirus, gamma herpesvirus 68, γHV68, signaling pathways, host-virus interaction, viral lytic replication
Play Button
Visualization of MG53-mediated Cell Membrane Repair Using in vivo and in vitro Systems
Authors: Noah Weisleder, Peihui Lin, Xiaoli Zhao, Matthew Orange, Hua Zhu, Jianjie Ma.
Institutions: Robert Wood Johnson Medical School .
Repair of acute injury to the cell membrane is an elemental process of normal cellular physiology, and defective membrane repair has been linked to many degenerative human diseases. The recent discovery of MG53 as a key component of the membrane resealing machinery allows for a better molecular understanding of the basic biology of tissue repair, as well as for potential translational applications in regenerative medicine. Here we detail the experimental protocols for exploring the in vivo function of MG53 in repair of muscle injury using treadmill exercise protocols on mouse models, for testing the ex vivo membrane repair capacity by measuring dye entry into isolated muscle fibers, and for monitoring the dynamic process of MG53-mediated vesicle trafficking and cell membrane repair in cultured cells using live cell confocal microscopy.
Cell Biology, Issue 52, mouse, cell membrane, muscle injury, tissue repair, treadmill, MG53, confocal microscopy, vesicle trafficking
Play Button
Chromatin Immunoprecipitation Assay for Tissue-specific Genes using Early-stage Mouse Embryos
Authors: Ok Hyun Cho, Jaime A. Rivera-Pérez, Anthony N. Imbalzano.
Institutions: University of Massachusetts Medical School.
Chromatin immunoprecipitation (ChIP) is a powerful tool to identify protein:chromatin interactions that occur in the context of living cells 1-3. This technique has been widely exploited in tissue culture cells, and to a lesser extent, in primary tissue. The application of ChIP to rodent embryonic tissue, especially at early times of development, is complicated by the limited amount of tissue and the heterogeneity of cell and tissue types in the embryo. Here we present a method to perform ChIP using a dissociated embryonic day 8.5 (E8.5) embryo. Sheared chromatin from a single E8.5 embryo can be divided into up to five aliquots, which allows the investigator sufficient material for controls and for investigation of specific protein:chromatin interactions. We have utilized this technique to begin to document protein:chromatin interactions during the specification of tissue-specific gene expression programs. The heterogeneity of cell types in an embryo necessarily restricts the application of this technique because the result is the detection of protein:chromatin interactions without distinguishing whether the interactions occur in all, a subset of, or a single cell type(s). However, examination of tissue-specific genes during or following the onset of tissue-specific gene expression is feasible for two reasons. First, immunoprecipitation of tissue specific factors necessarily isolates chromatin from the cell type where the factor is expressed. Second, immunoprecipitation of coactivators and histones containing post-translational modifications that are associated with gene activation should only be found at genes and gene regulatory sequences in the cell type where the gene is being or has been activated. The technique should be applicable to the study of most tissue-specific gene activation events. In the example described below, we utilized E8.5 and E9.5 mouse embryos to examine factor binding at a skeletal muscle specific gene promoter. Somites, which are the precursor tissues from which the skeletal muscles of the trunk and limbs will form, are present at E8.5-9.54,5. Myogenin is a regulatory factor required for skeletal muscle differentiation 6-9. The data demonstrate that myogenin is associated with its own promoter in E8.5 and E9.5 embryos. Because myogenin is only expressed in somites at this stage of development 6,10, the data indicate that myogenin interactions with its own promoter have already occurred in skeletal muscle precursor cells in E8.5 embryos.
Developmental Biology, Issue 50, Myogenesis, Chromatin, Gene Regulation, Chromatin Immunoprecipitation, Embryo, Mouse
Play Button
Identification of Key Factors Regulating Self-renewal and Differentiation in EML Hematopoietic Precursor Cells by RNA-sequencing Analysis
Authors: Shan Zong, Shuyun Deng, Kenian Chen, Jia Qian Wu.
Institutions: The University of Texas Graduate School of Biomedical Sciences at Houston.
Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.
Genetics, Issue 93, EML Cells, Self-renewal, Differentiation, Hematopoietic precursor cell, RNA-Sequencing, Data analysis
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.