JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Separate populations of neurons in ventral striatum encode value and motivation.
PLoS ONE
PUBLISHED: 01-01-2013
Neurons in the ventral striatum (VS) fire to cues that predict differently valued rewards. It is unclear whether this activity represents the value associated with the expected reward or the level of motivation induced by reward anticipation. To distinguish between the two, we trained rats on a task in which we varied value independently from motivation by manipulating the size of the reward expected on correct trials and the threat of punishment expected upon errors. We found that separate populations of neurons in VS encode expected value and motivation.
Authors: Hisham Ziauddeen, Naresh Subramaniam, Victoria C. Cambridge, Nenad Medic, Ismaa Sadaf Farooqi, Paul C. Fletcher.
Published: 03-19-2014
ABSTRACT
A key challenge in studying reward processing in humans is to go beyond subjective self-report measures and quantify different aspects of reward such as hedonics, motivation, and goal value in more objective ways. This is particularly relevant for the understanding of overeating and obesity as well as their potential treatments. In this paper are described a set of measures of food-related motivation using handgrip force as a motivational measure. These methods can be used to examine changes in food related motivation with metabolic (satiety) and pharmacological manipulations and can be used to evaluate interventions targeted at overeating and obesity. However to understand food-related decision making in the complex food environment it is essential to be able to ascertain the reward goal values that guide the decisions and behavioral choices that people make. These values are hidden but it is possible to ascertain them more objectively using metrics such as the willingness to pay and a method for this is described. Both these sets of methods provide quantitative measures of motivation and goal value that can be compared within and between individuals.
25 Related JoVE Articles!
Play Button
Low-stress Route Learning Using the Lashley III Maze in Mice
Authors: Amanda Bressler, David Blizard, Anne Andrews.
Institutions: Pennsylvania State University, Pennsylvania State University, Pennsylvania State University, Pennsylvania State University, University of California, Los Angeles, University of California, Los Angeles.
Many behavior tests designed to assess learning and memory in rodents, particularly mice, rely on visual cues, food and/or water deprivation, or other aversive stimuli to motivate task acquisition. As animals age, sensory modalities deteriorate. For example, many strains of mice develop hearing deficits or cataracts. Changes in the sensory systems required to guide mice during task acquisition present potential confounds in interpreting learning changes in aging animals. Moreover, the use of aversive stimuli to motivate animals to learn tasks is potentially confounding when comparing mice with differential sensitivities to stress. To minimize these types of confounding effects, we have implemented a modified version of the Lashley III maze. This maze relies on route learning, whereby mice learn to navigate a maze via repeated exposure under low stress conditions, e.g. dark phase, no food/water deprivation, until they navigate a path from the start location to a pseudo-home cage with 0 or 1 error(s) on two consecutive trials. We classify this as a low-stress behavior test because it does not rely on aversive stimuli to encourage exploration of the maze and learning of the task. The apparatus consists of a modular start box, a 4-arm maze body, and a goal box. At the end of the goal box is a pseudo-home cage that contains bedding similar to that found in the animal’s home cage and is specific to each animal for the duration of maze testing. It has been demonstrated previously that this pseudo-home cage provides sufficient reward to motivate mice to learn to navigate the maze1. Here, we present the visualization of the Lashley III maze procedure in the context of evaluating age-related differences in learning and memory in mice along with a comparison of learning behavior in two different background strains of mice. We hope that other investigators interested in evaluating the effects of aging or stress vulnerability in mice will consider this maze an attractive alternative to behavioral tests that involve more stressful learning tasks and/or visual cues.
Neuroscience, Issue 39, mouse, behavior testing, learning, memory, neuroscience, phenotyping, aging
1786
Play Button
A Fully Automated Rodent Conditioning Protocol for Sensorimotor Integration and Cognitive Control Experiments
Authors: Ali Mohebi, Karim G. Oweiss.
Institutions: Michigan State University, Michigan State University, Michigan State University.
Rodents have been traditionally used as a standard animal model in laboratory experiments involving a myriad of sensory, cognitive, and motor tasks. Higher cognitive functions that require precise control over sensorimotor responses such as decision-making and attentional modulation, however, are typically assessed in nonhuman primates. Despite the richness of primate behavior that allows multiple variants of these functions to be studied, the rodent model remains an attractive, cost-effective alternative to primate models. Furthermore, the ability to fully automate operant conditioning in rodents adds unique advantages over the labor intensive training of nonhuman primates while studying a broad range of these complex functions. Here, we introduce a protocol for operantly conditioning rats on performing working memory tasks. During critical epochs of the task, the protocol ensures that the animal's overt movement is minimized by requiring the animal to 'fixate' until a Go cue is delivered, akin to nonhuman primate experimental design. A simple two alternative forced choice task is implemented to demonstrate the performance. We discuss the application of this paradigm to other tasks.
Behavior, Issue 86, operant conditioning, cognitive function, sensorimotor integration, decision making, Neurophysiology
51128
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
51194
Play Button
Recording Single Neurons' Action Potentials from Freely Moving Pigeons Across Three Stages of Learning
Authors: Sarah Starosta, Maik C. Stüttgen, Onur Güntürkün.
Institutions: Ruhr-University Bochum.
While the subject of learning has attracted immense interest from both behavioral and neural scientists, only relatively few investigators have observed single-neuron activity while animals are acquiring an operantly conditioned response, or when that response is extinguished. But even in these cases, observation periods usually encompass only a single stage of learning, i.e. acquisition or extinction, but not both (exceptions include protocols employing reversal learning; see Bingman et al.1 for an example). However, acquisition and extinction entail different learning mechanisms and are therefore expected to be accompanied by different types and/or loci of neural plasticity. Accordingly, we developed a behavioral paradigm which institutes three stages of learning in a single behavioral session and which is well suited for the simultaneous recording of single neurons' action potentials. Animals are trained on a single-interval forced choice task which requires mapping each of two possible choice responses to the presentation of different novel visual stimuli (acquisition). After having reached a predefined performance criterion, one of the two choice responses is no longer reinforced (extinction). Following a certain decrement in performance level, correct responses are reinforced again (reacquisition). By using a new set of stimuli in every session, animals can undergo the acquisition-extinction-reacquisition process repeatedly. Because all three stages of learning occur in a single behavioral session, the paradigm is ideal for the simultaneous observation of the spiking output of multiple single neurons. We use pigeons as model systems, but the task can easily be adapted to any other species capable of conditioned discrimination learning.
Neuroscience, Issue 88, pigeon, single unit recording, learning, memory, extinction, spike sorting, operant conditioning, reward, electrophysiology, animal cognition, model species
51283
Play Button
Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze
Authors: Tara K. Jacobson, Jonathan W. Ho, Brendon W. Kent, Fang-Chi Yang, Rebecca D. Burwell.
Institutions: Brown University, Brown University.
Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes.
Neurobiology, Issue 84, Rat behavioral tasks, visual discrimination, chronic electrophysiological recordings, Floor Projection Maze, neuropsychology, learning, memory
51316
Play Button
The 5-Choice Serial Reaction Time Task: A Task of Attention and Impulse Control for Rodents
Authors: Samuel K. Asinof, Tracie A. Paine.
Institutions: Oberlin College.
This protocol describes the 5-choice serial reaction time task, which is an operant based task used to study attention and impulse control in rodents. Test day challenges, modifications to the standard task, can be used to systematically tax the neural systems controlling either attention or impulse control. Importantly, these challenges have consistent effects on behavior across laboratories in intact animals and can reveal either enhancements or deficits in cognitive function that are not apparent when rats are only tested on the standard task. The variety of behavioral measures that are collected can be used to determine if other factors (i.e., sedation, motivation deficits, locomotor impairments) are contributing to changes in performance. The versatility of the 5CSRTT is further enhanced because it is amenable to combination with pharmacological, molecular, and genetic techniques.
Neuroscience, Issue 90, attention, impulse control, neuroscience, cognition, rodent
51574
Play Button
Primary Culture of Mouse Dopaminergic Neurons
Authors: Florence Gaven, Philippe Marin, Sylvie Claeysen.
Institutions: Institut de Génomique Fonctionnelle, Montpellier, U661, Montpellier, Universités de Montpellier.
Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson's disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment.
Neurobiology, Issue 91, Mus musculus, mesencephalon, embryonic, tyrosine hydroxylase, dopamine transporter, Parkinson's disease in vitro model
51751
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
51905
Play Button
Imaging Intracellular Ca2+ Signals in Striatal Astrocytes from Adult Mice Using Genetically-encoded Calcium Indicators
Authors: Ruotian Jiang, Martin D. Haustein, Michael V. Sofroniew, Baljit S. Khakh.
Institutions: University of California Los Angeles, University of California Los Angeles.
Astrocytes display spontaneous intracellular Ca2+ concentration fluctuations ([Ca2+]i) and in several settings respond to neuronal excitation with enhanced [Ca2+]i signals. It has been proposed that astrocytes in turn regulate neurons and blood vessels through calcium-dependent mechanisms, such as the release of signaling molecules. However, [Ca2+]i imaging in entire astrocytes has only recently become feasible with genetically encoded calcium indicators (GECIs) such as the GCaMP series. The use of GECIs in astrocytes now provides opportunities to study astrocyte [Ca2+]i signals in detail within model microcircuits such as the striatum, which is the largest nucleus of the basal ganglia. In the present report, detailed surgical methods to express GECIs in astrocytes in vivo, and confocal imaging approaches to record [Ca2+]i signals in striatal astrocytes in situ, are described. We highlight precautions, necessary controls and tests to determine if GECI expression is selective for astrocytes and to evaluate signs of overt astrocyte reactivity. We also describe brain slice and imaging conditions in detail that permit reliable [Ca2+]i imaging in striatal astrocytes in situ. The use of these approaches revealed the entire territories of single striatal astrocytes and spontaneous [Ca2+]i signals within their somata, branches and branchlets. The further use and expansion of these approaches in the striatum will allow for the detailed study of astrocyte [Ca2+]i signals in the striatal microcircuitry.
Neuroscience, Issue 93, astrocyte, calcium, striatum, GECI, GCaMP3, AAV2/5, stereotaxic injection, brain slice, imaging
51972
Play Button
Training Rats to Voluntarily Dive Underwater: Investigations of the Mammalian Diving Response
Authors: Paul F. McCulloch.
Institutions: Midwestern University.
Underwater submergence produces autonomic changes that are observed in virtually all diving animals. This reflexly-induced response consists of apnea, a parasympathetically-induced bradycardia and a sympathetically-induced alteration of vascular resistance that maintains blood flow to the heart, brain and exercising muscles. While many of the metabolic and cardiorespiratory aspects of the diving response have been studied in marine animals, investigations of the central integrative aspects of this brainstem reflex have been relatively lacking. Because the physiology and neuroanatomy of the rat are well characterized, the rat can be used to help ascertain the central pathways of the mammalian diving response. Detailed instructions are provided on how to train rats to swim and voluntarily dive underwater through a 5 m long Plexiglas maze. Considerations regarding tank design and procedure room requirements are also given. The behavioral training is conducted in such a way as to reduce the stressfulness that could otherwise be associated with forced underwater submergence, thus minimizing activation of central stress pathways. The training procedures are not technically difficult, but they can be time-consuming. Since behavioral training of animals can only provide a model to be used with other experimental techniques, examples of how voluntarily diving rats have been used in conjunction with other physiological and neuroanatomical research techniques, and how the basic training procedures may need to be modified to accommodate these techniques, are also provided. These experiments show that voluntarily diving rats exhibit the same cardiorespiratory changes typically seen in other diving animals. The ease with which rats can be trained to voluntarily dive underwater, and the already available data from rats collected in other neurophysiological studies, makes voluntarily diving rats a good behavioral model to be used in studies investigating the central aspects of the mammalian diving response.
Behavior, Issue 93, Rat, Rattus norvegicus, voluntary diving, diving response, diving reflex, autonomic reflex, central integration
52093
Play Button
The Swimmeret System of Crayfish: A Practical Guide for the Dissection of the Nerve Cord and Extracellular Recordings of the Motor Pattern
Authors: Henriette A. Seichter, Felix Blumenthal, Carmen R. Smarandache-Wellmann.
Institutions: University of Cologne.
Here we demonstrate the dissection of the crayfish abdominal nerve cord. The preparation comprises the last two thoracic ganglia (T4, T5) and the chain of abdominal ganglia (A1 to A6). This chain of ganglia includes the part of the central nervous system (CNS) that drives coordinated locomotion of the pleopods (swimmerets): the swimmeret system. It is known for over five decades that in crayfish each swimmeret is driven by its own independent pattern generating kernel that generates rhythmic alternating activity 1-3. The motor neurons innervating the musculature of each swimmeret comprise two anatomically and functionally distinct populations 4. One is responsible for the retraction (power stroke, PS) of the swimmeret. The other drives the protraction (return stroke, RS) of the swimmeret. Motor neurons of the swimmeret system are able to produce spontaneously a fictive motor pattern, which is identical to the pattern recorded in vivo 1. The aim of this report is to introduce an interesting and convenient model system for studying rhythm generating networks and coordination of independent microcircuits for students’ practical laboratory courses. The protocol provided includes step-by-step instructions for the dissection of the crayfish’s abdominal nerve cord, pinning of the isolated chain of ganglia, desheathing the ganglia and recording the swimmerets fictive motor pattern extracellularly from the isolated nervous system. Additionally, we can monitor the activity of swimmeret neurons recorded intracellularly from dendrites. Here we also describe briefly these techniques and provide some examples. Furthermore, the morphology of swimmeret neurons can be assessed using various staining techniques. Here we provide examples of intracellular (by iontophoresis) dye filled neurons and backfills of pools of swimmeret motor neurons. In our lab we use this preparation to study basic functions of fictive locomotion, the effect of sensory feedback on the activity of the CNS, and coordination between microcircuits on a cellular level.
Neurobiology, Issue 93, crustacean, dissection, extracellular recording, fictive locomotion, motor neurons, locomotion
52109
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
51057
Play Button
A Procedure for Implanting Organized Arrays of Microwires for Single-unit Recordings in Awake, Behaving Animals
Authors: David J. Barker, David H. Root, Kevin R. Coffey, Sisi Ma, Mark O. West.
Institutions: Rutgers, the State University of New Jersey, National Institute on Drug Abuse.
In vivo electrophysiological recordings in the awake, behaving animal provide a powerful method for understanding neural signaling at the single-cell level. The technique allows experimenters to examine temporally and regionally specific firing patterns in order to correlate recorded action potentials with ongoing behavior. Moreover, single-unit recordings can be combined with a plethora of other techniques in order to produce comprehensive explanations of neural function. In this article, we describe the anesthesia and preparation for microwire implantation. Subsequently, we enumerate the necessary equipment and surgical steps to accurately insert a microwire array into a target structure. Lastly, we briefly describe the equipment used to record from each individual electrode in the array. The fixed microwire arrays described are well-suited for chronic implantation and allow for longitudinal recordings of neural data in almost any behavioral preparation. We discuss tracing electrode tracks to triangulate microwire positions as well as ways to combine microwire implantation with immunohistochemical techniques in order to increase the anatomical specificity of recorded results.
Neuroscience, Issue 84, Single-unit Recordings, Electrophysiology, Microwire, Neurophysiology, Neural signaling
51004
Play Button
Novel Apparatus and Method for Drug Reinforcement
Authors: Allison A. Feduccia, Christine L. Duvauchelle.
Institutions: University of Texas at Austin.
Animal models of reinforcement have proven to be useful for understanding the neurobiological mechanisms underlying drug addiction. Operant drug self-administration and conditioned place preference (CPP) procedures are expansively used in animal research to model various components of drug reinforcement, consumption, and addiction in humans. For this study, we used a novel approach to studying drug reinforcement in rats by combining traditional CPP and self-administration methodologies. We assembled an apparatus using two Med Associate operant chambers, sensory stimuli, and a Plexiglas-constructed neutral zone. These modifications allowed our experiments to encompass motivational aspects of drug intake through self-administration and drug-free assessment of drug/cue conditioning strength with the CPP test. In our experiments, rats self-administered cocaine (0.75 mg/kg/inj, i.v.) during either four (e.g., the "short-term") or eight (e.g., the "long-term") alternating-day sessions in an operant environment containing distinctive sensory cues (e.g., olfactory and visual). On the alternate days, in the other (differently-cued) operant environment, saline was available for self-infusion (0.1 ml, i.v.). Twenty-four hours after the last self-administration/cue-pairing session, a CPP test was conducted. Consistent with typical CPP findings, there was a significant preference for the chamber associated with cocaine self-administration. In addition, in animals undergoing the long-term experiment, a significant positive correlation between CPP magnitude and the number of cocaine-reinforced lever responses. In conclusion, this apparatus and approach is time and cost effective, can be used to examine a wide array of topics pertaining to drug abuse, and provides more flexibility in experimental design than CPP or self-administration methods alone.
Neuroscience, Issue 42, conditioned place preference (CPP), self-administration, rat, behavioral neuroscience, drug reinforcement, cocaine, animal models
1998
Play Button
Assessment of Ultrasonic Vocalizations During Drug Self-administration in Rats
Authors: Esther Y. Maier, Sean T. Ma, Allison Ahrens, Timothy J. Schallert, Christine L. Duvauchelle.
Institutions: University of Texas at Austin, University of Texas at Austin, University of Michigan, University of Texas at Austin, University of Texas at Austin.
Drug self-administration procedures are commonly used to study behavioral and neurochemical changes associated with human drug abuse, addiction and relapse. Various types of behavioral activity are commonly utilized as measures of drug motivation in animals. However, a crucial component of drug abuse relapse in abstinent cocaine users is "drug craving", which is difficult to model in animals, as it often occurs in the absence of overt behaviors. Yet, it is possible that a class of ultrasonic vocalizations (USVs) in rats may be a useful marker for affective responses to drug administration, drug anticipation and even drug craving. Rats vocalize in ultrasonic frequencies that serve as a communicatory function and express subjective emotional states. Several studies have shown that different call frequency ranges are associated with negative and positive emotional states. For instance, high frequency calls ("50-kHz") are associated with positive affect, whereas low frequency calls ("22-kHz") represent a negative emotional state. This article describes a procedure to assess rat USVs associated with daily cocaine self-administration. For this procedure, we utilized standard single-lever operant chambers housed within sound-attenuating boxes for cocaine self-administration sessions and utilized ultrasonic microphones, multi-channel recording hardware and specialized software programs to detect and analyze USVs. USVs measurements reflect emotionality of rats before, during and after drug availability and can be correlated with commonly assessed drug self-administration behavioral data such lever responses, inter-response intervals and locomotor activity. Since USVs can be assessed during intervals prior to drug availability (e.g., anticipatory USVs) and during drug extinction trials, changes in affect associated with drug anticipation and drug abstinence can also be determined. In addition, determining USV changes over the course of short- and long-term drug exposure can provide a more detailed interpretation of drug exposure effects on affective functioning.
JoVE Neuroscience, Issue 41, ultrasound, behavior, self-administration, emotionality, anticipation, reward
2041
Play Button
A General Method for Evaluating Incubation of Sucrose Craving in Rats
Authors: Jeffrey W. Grimm, Jesse Barnes, Kindsey North, Stefan Collins, Rachel Weber.
Institutions: Western Washington University.
For someone on a food-restricted diet, food craving in response to food-paired cues may serve as a key behavioral transition point between abstinence and relapse to food taking 1. Food craving conceptualized in this way is akin to drug craving in response to drug-paired cues. A rich literature has been developed around understanding the behavioral and neurobiological determinants of drug craving; we and others have been focusing recently on translating techniques from basic addiction research to better understand addiction-like behaviors related to food 2-4. As done in previous studies of drug craving, we examine sucrose craving behavior by utilizing a rat model of relapse. In this model, rats self-administer either drug or food in sessions over several days. In a session, lever responding delivers the reward along with a tone+light stimulus. Craving behavior is then operationally defined as responding in a subsequent session where the reward is not available. Rats will reliably respond for the tone+light stimulus, likely due to its acquired conditioned reinforcing properties 5. This behavior is sometimes referred to as sucrose seeking or cue reactivity. In the present discussion we will use the term "sucrose craving" to subsume both of these constructs. In the past decade, we have focused on how the length of time following reward self-administration influences reward craving. Interestingly, rats increase responding for the reward-paired cue over the course of several weeks of a period of forced-abstinence. This "incubation of craving" is observed in rats that have self-administered either food or drugs of abuse 4,6. This time-dependent increase in craving we have identified in the animal model may have great potential relevance to human drug and food addiction behaviors. Here we present a protocol for assessing incubation of sucrose craving in rats. Variants of the procedure will be indicated where craving is assessed as responding for a discrete sucrose-paired cue following extinction of lever pressing within the sucrose self-administration context (Extinction without cues) or as responding for sucrose-paired cues in a general extinction context (Extinction with cues).
Neuroscience, Issue 57, addiction, craving, cue-reactivity, extinction, reinstatement, relapse, sucrose seeking
3335
Play Button
Progressive-ratio Responding for Palatable High-fat and High-sugar Food in Mice
Authors: Sandeep Sharma, Cecile Hryhorczuk, Stephanie Fulton.
Institutions: University of Montreal.
Foods that are rich in fat and sugar significantly contribute to over-eating and escalating rates of obesity. The consumption of palatable foods can produce a rewarding effect that strengthens action-outcome associations and reinforces future behavior directed at obtaining these foods. Increasing evidence that the rewarding effects of energy-dense foods play a profound role in overeating and the development of obesity has heightened interest in studying the genes, molecules and neural circuitry that modulate food reward1,2. The rewarding impact of different stimuli can be studied by measuring the willingness to work to obtain them, such as in operant conditioning tasks3. Operant models of food reward measure acquired and voluntary behavioral responses that are directed at obtaining food. A commonly used measure of reward strength is an operant procedure known as the progressive ratio (PR) schedule of reinforcement.4,5 In the PR task, the subject is required to make an increasing number of operant responses for each successive reward. The pioneering study of Hodos (1961) demonstrated that the number of responses made to obtain the last reward, termed the breakpoint, serves as an index of reward strength4. While operant procedures that measure changes in response rate alone cannot separate changes in reward strength from alterations in performance capacity, the breakpoint derived from the PR schedule is a well-validated measure of the rewarding effects of food. The PR task has been used extensively to assess the rewarding impact of drugs of abuse and food in rats (e.g.,6-8), but to a lesser extent in mice9. The increased use of genetically engineered mice and diet-induced obese mouse models has heightened demands for behavioral measures of food reward in mice. In the present article we detail the materials and procedures used to train mice to respond (lever-press) for a high-fat and high-sugar food pellets on a PR schedule of reinforcement. We show that breakpoint response thresholds increase following acute food deprivation and decrease with peripheral administration of the anorectic hormone leptin and thereby validate the use of this food-operant paradigm in mice.
Neuroscience, Issue 63, behavioral neuroscience, operant conditioning, food, reward, obesity, leptin, mouse
3754
Play Button
Preparation of Parasagittal Slices for the Investigation of Dorsal-ventral Organization of the Rodent Medial Entorhinal Cortex
Authors: Hugh Pastoll, Melanie White, Matthew Nolan.
Institutions: University of Edinburgh , University of Edinburgh .
Computation in the brain relies on neurons responding appropriately to their synaptic inputs. Neurons differ in their complement and distribution of membrane ion channels that determine how they respond to synaptic inputs. However, the relationship between these cellular properties and neuronal function in behaving animals is not well understood. One approach to this problem is to investigate topographically organized neural circuits in which the position of individual neurons maps onto information they encode or computations they carry out1. Experiments using this approach suggest principles for tuning of synaptic responses underlying information encoding in sensory and cognitive circuits2,3. The topographical organization of spatial representations along the dorsal-ventral axis of the medial entorhinal cortex (MEC) provides an opportunity to establish relationships between cellular mechanisms and computations important for spatial cognition. Neurons in layer II of the rodent MEC encode location using grid-like firing fields4-6. For neurons found at dorsal positions in the MEC the distance between the individual firing fields that form a grid is on the order of 30 cm, whereas for neurons at progressively more ventral positions this distance increases to greater than 1 m. Several studies have revealed cellular properties of neurons in layer II of the MEC that, like the spacing between grid firing fields, also differ according to their dorsal-ventral position, suggesting that these cellular properties are important for spatial computation2,7-10. Here we describe procedures for preparation and electrophysiological recording from brain slices that maintain the dorsal-ventral extent of the MEC enabling investigation of the topographical organization of biophysical and anatomical properties of MEC neurons. The dorsal-ventral position of identified neurons relative to anatomical landmarks is difficult to establish accurately with protocols that use horizontal slices of MEC7,8,11,12, as it is difficult to establish reference points for the exact dorsal-ventral location of the slice. The procedures we describe enable accurate and consistent measurement of location of recorded cells along the dorsal-ventral axis of the MEC as well as visualization of molecular gradients2,10. The procedures have been developed for use with adult mice (> 28 days) and have been successfully employed with mice up to 1.5 years old. With adjustments they could be used with younger mice or other rodent species. A standardized system of preparation and measurement will aid systematic investigation of the cellular and microcircuit properties of this area.
Neuroscience, Issue 61, Parasagittal slice, Medial Entorhinal Cortex, Stellate cell, Grid cell, Synaptic integration, Topographic map
3802
Play Button
Comprehensive Profiling of Dopamine Regulation in Substantia Nigra and Ventral Tegmental Area
Authors: Michael F. Salvatore, Brandon S. Pruett, Charles Dempsey, Victoria Fields.
Institutions: Louisiana State University Health Sciences Center.
Dopamine is a vigorously studied neurotransmitter in the CNS. Indeed, its involvement in locomotor activity and reward-related behaviour has fostered five decades of inquiry into the molecular deficiencies associated with dopamine regulation. The majority of these inquiries of dopamine regulation in the brain focus upon the molecular basis for its regulation in the terminal field regions of the nigrostriatal and mesoaccumbens pathways; striatum and nucleus accumbens. Furthermore, such studies have concentrated on analysis of dopamine tissue content with normalization to only wet tissue weight. Investigation of the proteins that regulate dopamine, such as tyrosine hydroxylase (TH) protein, TH phosphorylation, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) protein often do not include analysis of dopamine tissue content in the same sample. The ability to analyze both dopamine tissue content and its regulating proteins (including post-translational modifications) not only gives inherent power to interpreting the relationship of dopamine with the protein level and function of TH, DAT, or VMAT2, but also extends sample economy. This translates into less cost, and yet produces insights into the molecular regulation of dopamine in virtually any paradigm of the investigators' choice. We focus the analyses in the midbrain. Although the SN and VTA are typically neglected in most studies of dopamine regulation, these nuclei are easily dissected with practice. A comprehensive readout of dopamine tissue content and TH, DAT, or VMAT2 can be conducted. There is burgeoning literature on the impact of dopamine function in the SN and VTA on behavior, and the impingements of exogenous substances or disease processes therein 1-5. Furthermore, compounds such as growth factors have a profound effect on dopamine and dopamine-regulating proteins, to a comparatively greater extent in the SN or VTA 6-8. Therefore, this methodology is presented for reference to laboratories that want to extend their inquiries on how specific treatments modulate behaviour and dopamine regulation. Here, a multi-step method is presented for the analyses of dopamine tissue content, the protein levels of TH, DAT, or VMAT2, and TH phosphorylation from the substantia nigra and VTA from rodent midbrain. The analysis of TH phosphorylation can yield significant insights into not only how TH activity is regulated, but also the signaling cascades affected in the somatodendritic nuclei in a given paradigm. We will illustrate the dissection technique to segregate these two nuclei and the sample processing of dissected tissue that produces a profile revealing molecular mechanisms of dopamine regulation in vivo, specific for each nuclei (Figure 1).
Neuroscience, Issue 66, Medicine, Physiology, midbrain, substantia nigra, ventral tegmental area, tyrosine hydroxylase, phosphorylation, nigrostriatal, mesoaccumbens, dopamine transporter
4171
Play Button
Appetitive Associative Olfactory Learning in Drosophila Larvae
Authors: Anthi A. Apostolopoulou, Annekathrin Widmann, Astrid Rohwedder, Johanna E. Pfitzenmaier, Andreas S. Thum.
Institutions: University of Konstanz, University of Fribourg.
In the following we describe the methodological details of appetitive associative olfactory learning in Drosophila larvae. The setup, in combination with genetic interference, provides a handle to analyze the neuronal and molecular fundamentals of specifically associative learning in a simple larval brain. Organisms can use past experience to adjust present behavior. Such acquisition of behavioral potential can be defined as learning, and the physical bases of these potentials as memory traces1-4. Neuroscientists try to understand how these processes are organized in terms of molecular and neuronal changes in the brain by using a variety of methods in model organisms ranging from insects to vertebrates5,6. For such endeavors it is helpful to use model systems that are simple and experimentally accessible. The Drosophila larva has turned out to satisfy these demands based on the availability of robust behavioral assays, the existence of a variety of transgenic techniques and the elementary organization of the nervous system comprising only about 10,000 neurons (albeit with some concessions: cognitive limitations, few behavioral options, and richness of experience questionable)7-10. Drosophila larvae can form associations between odors and appetitive gustatory reinforcement like sugar11-14. In a standard assay, established in the lab of B. Gerber, animals receive a two-odor reciprocal training: A first group of larvae is exposed to an odor A together with a gustatory reinforcer (sugar reward) and is subsequently exposed to an odor B without reinforcement 9. Meanwhile a second group of larvae receives reciprocal training while experiencing odor A without reinforcement and subsequently being exposed to odor B with reinforcement (sugar reward). In the following both groups are tested for their preference between the two odors. Relatively higher preferences for the rewarded odor reflect associative learning - presented as a performance index (PI). The conclusion regarding the associative nature of the performance index is compelling, because apart from the contingency between odors and tastants, other parameters, such as odor and reward exposure, passage of time and handling do not differ between the two groups9.
Neuroscience, Issue 72, Developmental Biology, Neurobiology, Biochemistry, Molecular Biology, Physiology, Behavior, Drosophila, fruit fly, larvae, instar, olfaction, olfactory system, odor, 1-octanol, OCT, learning, reward, sugar, feeding, animal model
4334
Play Button
Use of the Operant Orofacial Pain Assessment Device (OPAD) to Measure Changes in Nociceptive Behavior
Authors: Ethan M. Anderson, Richard Mills, Todd A. Nolan, Alan C. Jenkins, Golam Mustafa, Chris Lloyd, Robert M. Caudle, John K. Neubert.
Institutions: University of Florida College of Dentistry, University of Florida College of Medicine , Stoelting Co., University of Florida .
We present an operant system for the detection of pain in awake, conscious rodents. The Orofacial Pain Assessment Device (OPAD) assesses pain behaviors in a more clinically relevant way by not relying on reflex-based measures of nociception. Food fasted, hairless (or shaved) rodents are placed into a Plexiglas chamber which has two Peltier-based thermodes that can be programmed to any temperature between 7 °C and 60 °C. The rodent is trained to make contact with these in order to access a reward bottle. During a session, a number of behavioral pain outcomes are automatically recorded and saved. These measures include the number of reward bottle activations (licks) and facial contact stimuli (face contacts), but custom measures like the lick/face ratio (total number of licks per session/total number of contacts) can also be created. The stimulus temperature can be set to a single temperature or multiple temperatures within a session. The OPAD is a high-throughput, easy to use operant assay which will lead to better translation of pain research in the future as it includes cortical input instead of relying on spinal reflex-based nociceptive assays.
Behavior, Issue 76, Neuroscience, Neurobiology, Anatomy, Physiology, Medicine, Biomedical Engineering, Surgery, Neurologic Manifestations, Pain, Chronic Pain, Nociceptive Pain, Acute Pain, Pain Perception, Operant, mouse, rat, analgesia, nociception, thermal, hyperalgesia, animal model
50336
Play Button
Creating Dynamic Images of Short-lived Dopamine Fluctuations with lp-ntPET: Dopamine Movies of Cigarette Smoking
Authors: Evan D. Morris, Su Jin Kim, Jenna M. Sullivan, Shuo Wang, Marc D. Normandin, Cristian C. Constantinescu, Kelly P. Cosgrove.
Institutions: Yale University, Yale University, Yale University, Yale University, Massachusetts General Hospital, University of California, Irvine.
We describe experimental and statistical steps for creating dopamine movies of the brain from dynamic PET data. The movies represent minute-to-minute fluctuations of dopamine induced by smoking a cigarette. The smoker is imaged during a natural smoking experience while other possible confounding effects (such as head motion, expectation, novelty, or aversion to smoking repeatedly) are minimized. We present the details of our unique analysis. Conventional methods for PET analysis estimate time-invariant kinetic model parameters which cannot capture short-term fluctuations in neurotransmitter release. Our analysis - yielding a dopamine movie - is based on our work with kinetic models and other decomposition techniques that allow for time-varying parameters 1-7. This aspect of the analysis - temporal-variation - is key to our work. Because our model is also linear in parameters, it is practical, computationally, to apply at the voxel level. The analysis technique is comprised of five main steps: pre-processing, modeling, statistical comparison, masking and visualization. Preprocessing is applied to the PET data with a unique 'HYPR' spatial filter 8 that reduces spatial noise but preserves critical temporal information. Modeling identifies the time-varying function that best describes the dopamine effect on 11C-raclopride uptake. The statistical step compares the fit of our (lp-ntPET) model 7 to a conventional model 9. Masking restricts treatment to those voxels best described by the new model. Visualization maps the dopamine function at each voxel to a color scale and produces a dopamine movie. Interim results and sample dopamine movies of cigarette smoking are presented.
Behavior, Issue 78, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Medicine, Anatomy, Physiology, Image Processing, Computer-Assisted, Receptors, Dopamine, Dopamine, Functional Neuroimaging, Binding, Competitive, mathematical modeling (systems analysis), Neurotransmission, transient, dopamine release, PET, modeling, linear, time-invariant, smoking, F-test, ventral-striatum, clinical techniques
50358
Play Button
Inhibitory Synapse Formation in a Co-culture Model Incorporating GABAergic Medium Spiny Neurons and HEK293 Cells Stably Expressing GABAA Receptors
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Institutions: University College London.
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
Neuroscience, Issue 93, Developmental neuroscience, synaptogenesis, synaptic inhibition, co-culture, stable cell lines, GABAergic, medium spiny neurons, HEK 293 cell line
52115
Play Button
A Fully Automated and Highly Versatile System for Testing Multi-cognitive Functions and Recording Neuronal Activities in Rodents
Authors: Weimin Zheng, Edgar A. Ycu.
Institutions: The Neurosciences Institute, San Diego, CA.
We have developed a fully automated system for operant behavior testing and neuronal activity recording by which multiple cognitive brain functions can be investigated in a single task sequence. The unique feature of this system is a custom-made, acoustically transparent chamber that eliminates many of the issues associated with auditory cue control in most commercially available chambers. The ease with which operant devices can be added or replaced makes this system quite versatile, allowing for the implementation of a variety of auditory, visual, and olfactory behavioral tasks. Automation of the system allows fine temporal (10 ms) control and precise time-stamping of each event in a predesigned behavioral sequence. When combined with a multi-channel electrophysiology recording system, multiple cognitive brain functions, such as motivation, attention, decision-making, patience, and rewards, can be examined sequentially or independently.
Neuroscience, Issue 63, auditory behavioral task, acoustic chamber, cognition test, multi-channel recording, electrophysiology, attention, motivation, decision, patience, rat, two-alternative choice pitch discrimination task, behavior
3685
Play Button
T-maze Forced Alternation and Left-right Discrimination Tasks for Assessing Working and Reference Memory in Mice
Authors: Hirotaka Shoji, Hideo Hagihara, Keizo Takao, Satoko Hattori, Tsuyoshi Miyakawa.
Institutions: Fujita Health University, Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology (CREST), National Institutes of Natural Sciences.
Forced alternation and left-right discrimination tasks using the T-maze have been widely used to assess working and reference memory, respectively, in rodents. In our laboratory, we evaluated the two types of memory in more than 30 strains of genetically engineered mice using the automated version of this apparatus. Here, we present the modified T-maze apparatus operated by a computer with a video-tracking system and our protocols in a movie format. The T-maze apparatus consists of runways partitioned off by sliding doors that can automatically open downward, each with a start box, a T-shaped alley, two boxes with automatic pellet dispensers at one side of the box, and two L-shaped alleys. Each L-shaped alley is connected to the start box so that mice can return to the start box, which excludes the effects of experimenter handling on mouse behavior. This apparatus also has an advantage that in vivo microdialysis, in vivo electrophysiology, and optogenetics techniques can be performed during T-maze performance because the doors are designed to go down into the floor. In this movie article, we describe T-maze tasks using the automated apparatus and the T-maze performance of α-CaMKII+/- mice, which are reported to show working memory deficits in the eight-arm radial maze task. Our data indicated that α-CaMKII+/- mice showed a working memory deficit, but no impairment of reference memory, and are consistent with previous findings using the eight-arm radial maze task, which supports the validity of our protocol. In addition, our data indicate that mutants tended to exhibit reversal learning deficits, suggesting that α-CaMKII deficiency causes reduced behavioral flexibility. Thus, the T-maze test using the modified automatic apparatus is useful for assessing working and reference memory and behavioral flexibility in mice.
Neuroscience, Issue 60, T-maze, learning, memory, behavioral flexibility, behavior, mouse
3300
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.