JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Increased beta2-adrenoceptors in doxorubicin-induced cardiomyopathy in rat.
PUBLISHED: 01-01-2013
The toxicity of doxorubicin, leading to an irreversible heart failure, limits its use as chemotherapeutic agent. The beneficial effects of early administration of ?-blocker were reported in patients with heart failure due to doxorubicin, suggesting an important role of ?-adrenoceptors (?-ARs). This study aimed to identify a putative target (?-AR and/or its effectors) at the early phase of a chronic doxorubicin-induced cardiomyopathy (Dox-CM) in a rat model.
Authors: Thomas Bruns, Sarah Schickinger, Herbert Schneckenburger.
Published: 08-15-2014
A module for light sheet or single plane illumination microscopy (SPIM) is described which is easily adapted to an inverted wide-field microscope and optimized for 3-dimensional cell cultures, e.g., multi-cellular tumor spheroids (MCTS). The SPIM excitation module shapes and deflects the light such that the sample is illuminated by a light sheet perpendicular to the detection path of the microscope. The system is characterized by use of a rectangular capillary for holding (and in an advanced version also by a micro-capillary approach for rotating) the samples, by synchronous adjustment of the illuminating light sheet and the objective lens used for fluorescence detection as well as by adaptation of a microfluidic system for application of fluorescent dyes, pharmaceutical agents or drugs in small quantities. A protocol for working with this system is given, and some technical details are reported. Representative results include (1) measurements of the uptake of a cytostatic drug (doxorubicin) and its partial conversion to a degradation product, (2) redox measurements by use of a genetically encoded glutathione sensor upon addition of an oxidizing agent, and (3) initiation and labeling of cell necrosis upon inhibition of the mitochondrial respiratory chain. Differences and advantages of the present SPIM module in comparison with existing systems are discussed.
18 Related JoVE Articles!
Play Button
Analysis of Targeted Viral Protein Nanoparticles Delivered to HER2+ Tumors
Authors: Jae Youn Hwang, Daniel L. Farkas, Lali K. Medina-Kauwe.
Institutions: University of Southern California, Cedars-Sinai Medical Center, University of California, Los Angeles.
The HER2+ tumor-targeted nanoparticle, HerDox, exhibits tumor-preferential accumulation and tumor-growth ablation in an animal model of HER2+ cancer. HerDox is formed by non-covalent self-assembly of a tumor targeted cell penetration protein with the chemotherapy agent, doxorubicin, via a small nucleic acid linker. A combination of electrophilic, intercalation, and oligomerization interactions facilitate self-assembly into round 10-20 nm particles. HerDox exhibits stability in blood as well as in extended storage at different temperatures. Systemic delivery of HerDox in tumor-bearing mice results in tumor-cell death with no detectable adverse effects to non-tumor tissue, including the heart and liver (which undergo marked damage by untargeted doxorubicin). HER2 elevation facilitates targeting to cells expressing the human epidermal growth factor receptor, hence tumors displaying elevated HER2 levels exhibit greater accumulation of HerDox compared to cells expressing lower levels, both in vitro and in vivo. Fluorescence intensity imaging combined with in situ confocal and spectral analysis has allowed us to verify in vivo tumor targeting and tumor cell penetration of HerDox after systemic delivery. Here we detail our methods for assessing tumor targeting via multimode imaging after systemic delivery.
Biomedical Engineering, Issue 76, Cancer Biology, Medicine, Bioengineering, Molecular Biology, Cellular Biology, Biochemistry, Nanotechnology, Nanomedicine, Drug Delivery Systems, Molecular Imaging, optical imaging devices (design and techniques), HerDox, Nanoparticle, Tumor, Targeting, Self-Assembly, Doxorubicin, Human Epidermal Growth Factor, HER, HER2+, Receptor, mice, animal model, tumors, imaging
Play Button
Live Imaging of Drug Responses in the Tumor Microenvironment in Mouse Models of Breast Cancer
Authors: Elizabeth S. Nakasone, Hanne A. Askautrud, Mikala Egeblad.
Institutions: Watson School of Biological Sciences, Cold Spring Harbor Laboratory, University of Oslo and Oslo University Hospital.
The tumor microenvironment plays a pivotal role in tumor initiation, progression, metastasis, and the response to anti-cancer therapies. Three-dimensional co-culture systems are frequently used to explicate tumor-stroma interactions, including their role in drug responses. However, many of the interactions that occur in vivo in the intact microenvironment cannot be completely replicated in these in vitro settings. Thus, direct visualization of these processes in real-time has become an important tool in understanding tumor responses to therapies and identifying the interactions between cancer cells and the stroma that can influence these responses. Here we provide a method for using spinning disk confocal microscopy of live, anesthetized mice to directly observe drug distribution, cancer cell responses and changes in tumor-stroma interactions following administration of systemic therapy in breast cancer models. We describe procedures for labeling different tumor components, treatment of animals for observing therapeutic responses, and the surgical procedure for exposing tumor tissues for imaging up to 40 hours. The results obtained from this protocol are time-lapse movies, in which such processes as drug infiltration, cancer cell death and stromal cell migration can be evaluated using image analysis software.
Cancer Biology, Issue 73, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Genetics, Oncology, Pharmacology, Surgery, Tumor Microenvironment, Intravital imaging, chemotherapy, Breast cancer, time-lapse, mouse models, cancer cell death, stromal cell migration, cancer, imaging, transgenic, animal model
Play Button
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Authors: Raffaele Coppini, Cecila Ferrantini, Alessandro Aiazzi, Luca Mazzoni, Laura Sartiani, Alessandro Mugelli, Corrado Poggesi, Elisabetta Cerbai.
Institutions: University of Florence, University of Florence.
Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models. Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method. The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.
Medicine, Issue 86, cardiology, cardiac cells, electrophysiology, excitation-contraction coupling, action potential, calcium, myocardium, hypertrophic cardiomyopathy, cardiac patients, cardiac disease
Play Button
The Sciatic Nerve Cuffing Model of Neuropathic Pain in Mice
Authors: Ipek Yalcin, Salim Megat, Florent Barthas, Elisabeth Waltisperger, Mélanie Kremer, Eric Salvat, Michel Barrot.
Institutions: Centre National de la Recherche Scientifique, Université de Strasbourg, Hôpitaux Universitaires de Strasbourg.
Neuropathic pain arises as a consequence of a lesion or a disease affecting the somatosensory system. This syndrome results from maladaptive changes in injured sensory neurons and along the entire nociceptive pathway within the central nervous system. It is usually chronic and challenging to treat. In order to study neuropathic pain and its treatments, different models have been developed in rodents. These models derive from known etiologies, thus reproducing peripheral nerve injuries, central injuries, and metabolic-, infectious- or chemotherapy-related neuropathies. Murine models of peripheral nerve injury often target the sciatic nerve which is easy to access and allows nociceptive tests on the hind paw. These models rely on a compression and/or a section. Here, the detailed surgery procedure for the "cuff model" of neuropathic pain in mice is described. In this model, a cuff of PE-20 polyethylene tubing of standardized length (2 mm) is unilaterally implanted around the main branch of the sciatic nerve. It induces a long-lasting mechanical allodynia, i.e., a nociceptive response to a normally non-nociceptive stimulus that can be evaluated by using von Frey filaments. Besides the detailed surgery and testing procedures, the interest of this model for the study of neuropathic pain mechanism, for the study of neuropathic pain sensory and anxiodepressive aspects, and for the study of neuropathic pain treatments are also discussed.
Medicine, Issue 89, pain, neuropathic pain, allodynia, von Frey, mouse, model, sciatic, cuff
Play Button
Tumor Treating Field Therapy in Combination with Bevacizumab for the Treatment of Recurrent Glioblastoma
Authors: Ayman I. Omar.
Institutions: Southern Illinois University School of Medicine.
A novel device that employs TTF therapy has recently been developed and is currently in use for the treatment of recurrent glioblastoma (rGBM). It was FDA approved in April 2011 for the treatment of patients 22 years or older with rGBM. The device delivers alternating electric fields and is programmed to ensure maximal tumor cell kill1. Glioblastoma is the most common type of glioma and has an estimated incidence of approximately 10,000 new cases per year in the United States alone2. This tumor is particularly resistant to treatment and is uniformly fatal especially in the recurrent setting3-5. Prior to the approval of the TTF System, the only FDA approved treatment for rGBM was bevacizumab6. Bevacizumab is a humanized monoclonal antibody targeted against the vascular endothelial growth factor (VEGF) protein that drives tumor angiogenesis7. By blocking the VEGF pathway, bevacizumab can result in a significant radiographic response (pseudoresponse), improve progression free survival and reduce corticosteroid requirements in rGBM patients8,9. Bevacizumab however failed to prolong overall survival in a recent phase III trial26. A pivotal phase III trial (EF-11) demonstrated comparable overall survival between physicians’ choice chemotherapy and TTF Therapy but better quality of life were observed in the TTF arm10. There is currently an unmet need to develop novel approaches designed to prolong overall survival and/or improve quality of life in this unfortunate patient population. One appealing approach would be to combine the two currently approved treatment modalities namely bevacizumab and TTF Therapy. These two treatments are currently approved as monotherapy11,12, but their combination has never been evaluated in a clinical trial. We have developed an approach for combining those two treatment modalities and treated 2 rGBM patients. Here we describe a detailed methodology outlining this novel treatment protocol and present representative data from one of the treated patients.
Medicine, Issue 92, Tumor Treating Fields, TTF System, TTF Therapy, Recurrent Glioblastoma, Bevacizumab, Brain Tumor
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Intramyocardial Cell Delivery: Observations in Murine Hearts
Authors: Tommaso Poggioli, Padmini Sarathchandra, Nadia Rosenthal, Maria P. Santini.
Institutions: Imperial College London, Imperial College London, Monash University.
Previous studies showed that cell delivery promotes cardiac function amelioration by release of cytokines and factors that increase cardiac tissue revascularization and cell survival. In addition, further observations revealed that specific stem cells, such as cardiac stem cells, mesenchymal stem cells and cardiospheres have the ability to integrate within the surrounding myocardium by differentiating into cardiomyocytes, smooth muscle cells and endothelial cells. Here, we present the materials and methods to reliably deliver noncontractile cells into the left ventricular wall of immunodepleted mice. The salient steps of this microsurgical procedure involve anesthesia and analgesia injection, intratracheal intubation, incision to open the chest and expose the heart and delivery of cells by a sterile 30-gauge needle and a precision microliter syringe. Tissue processing consisting of heart harvesting, embedding, sectioning and histological staining showed that intramyocardial cell injection produced a small damage in the epicardial area, as well as in the ventricular wall. Noncontractile cells were retained into the myocardial wall of immunocompromised mice and were surrounded by a layer of fibrotic tissue, likely to protect from cardiac pressure and mechanical load.
Medicine, Issue 83, intramyocardial cell injection, heart, grafting, cell therapy, stem cells, fibrotic tissue
Play Button
Ascending Aortic Constriction in Rats for Creation of Pressure Overload Cardiac Hypertrophy Model
Authors: Ajith Kumar GS, Binil Raj, Santhosh Kumar S, Sanjay G, Chandrasekharan Cheranellore Kartha.
Institutions: Rajiv Gandhi Centre for Biotechnology, Rajiv Gandhi Centre for Biotechnology, Sree Chitra Tirunal Institute for Medical Sciences & Technology.
Ascending aortic constriction is the most common and successful surgical model for creating pressure overload induced cardiac hypertrophy and heart failure. Here, we describe a detailed surgical procedure for creating pressure overload and cardiac hypertrophy in rats by constriction of the ascending aorta using a small metallic clip. After anesthesia, the trachea is intubated by inserting a cannula through a half way incision made between two cartilage rings of trachea. Then a skin incision is made at the level of the second intercostal space on the left chest wall and muscle layers are cleared to locate the ascending portion of aorta. The ascending aorta is constricted to 50–60% of its original diameter by application of a small sized titanium clip. Following aortic constriction, the second and third ribs are approximated with prolene sutures. The tracheal cannula is removed once spontaneous breathing was re-established. The animal is allowed to recover on the heating pad by gradually lowering anesthesia. The intensity of pressure overload created by constriction of the ascending aorta is determined by recording the pressure gradient using trans-thoracic two dimensional Doppler-echocardiography. Overall this protocol is useful to study the remodeling events and contractile properties of the heart during the gradual onset and progression from compensated cardiac hypertrophy to heart failure stage.
Medicine, Issue 88, ascending aorta, cardiac hypertrophy, pressure overload, aortic constriction, thoracotomy, surgical model.
Play Button
A Sensitive Method to Quantify Senescent Cancer Cells
Authors: Julie Cahu, Brigitte Sola.
Institutions: Université de Caen Basse-Normandie.
Human cells do not indefinitely proliferate. Upon external and/or intrinsic cues, cells might die or enter a stable cell cycle arrest called senescence. Several cellular mechanisms, such as telomere shortening and abnormal expression of mitogenic oncogenes, have been shown to cause senescence. Senescence is not restricted to normal cells; cancer cells have also been reported to senesce. Chemotherapeutical drugs have been shown to induce senescence in cancer cells. However, it remains controversial whether senescence prevents or promotes tumorigenesis. As it might eventually be patient-specific, a rapid and sensitive method to assess senescence in cancer cell will soon be required. To this end, the standard β-galactosidase assay, the currently used method, presents major drawbacks: it is time consuming and not sensitive. We propose here a flow cytometry-based assay to study senescence on live cells. This assay offers the advantage of being rapid, sensitive, and can be coupled to the immunolabeling of various cellular markers.
Cancer Biology, Issue 78, Medicine, Cellular Biology, Anatomy, Physiology, Genetics, Oncology, Tumor Cells, Cultured, Early Detection of Cancer, senescence, cancer, cells, flow cytometry, C12FDG, cell culture, clinical applications
Play Button
Assessment of Cardiac Function and Myocardial Morphology Using Small Animal Look-locker Inversion Recovery (SALLI) MRI in Rats
Authors: Sarah Jeuthe, Darach O H-Ici, Ulrich Kemnitz, Thore Dietrich, Bernhard Schnackenburg, Felix Berger, Titus Kuehne, Daniel Messroghli.
Institutions: German Heart Institute Berlin, German Heart Institute Berlin, Hamburg, Germany.
Small animal magnetic resonance imaging is an important tool to study cardiac function and changes in myocardial tissue. The high heart rates of small animals (200 to 600 beats/min) have previously limited the role of CMR imaging. Small animal Look-Locker inversion recovery (SALLI) is a T1 mapping sequence for small animals to overcome this problem 1. T1 maps provide quantitative information about tissue alterations and contrast agent kinetics. It is also possible to detect diffuse myocardial processes such as interstitial fibrosis or edema 1-6. Furthermore, from a single set of image data, it is possible to examine heart function and myocardial scarring by generating cine and inversion recovery-prepared late gadolinium enhancement-type MR images 1. The presented video shows step-by-step the procedures to perform small animal CMR imaging. Here it is presented with a healthy Sprague-Dawley rat, however naturally it can be extended to different cardiac small animal models.
Medicine, Issue 77, Biomedical Engineering, Anatomy, Physiology, Cardiology, Heart Diseases, Cardiomyopathies, Heart Failure, Diagnostic Imaging, Cardiac Imaging Techniques, Magnetic Resonance Imaging, MRI, Cardiovascular Diseases, small animal imaging, T1 mapping, heart disease, cardiac function, myocardium, rat, animal model
Play Button
Implantation of the Syncardia Total Artificial Heart
Authors: Daniel G. Tang, Keyur B. Shah, Micheal L. Hess, Vigneshwar Kasirajan.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University.
With advances in technology, the use of mechanical circulatory support devices for end stage heart failure has rapidly increased. The vast majority of such patients are generally well served by left ventricular assist devices (LVADs). However, a subset of patients with late stage biventricular failure or other significant anatomic lesions are not adequately treated by isolated left ventricular mechanical support. Examples of concomitant cardiac pathology that may be better treated by resection and TAH replacement includes: post infarction ventricular septal defect, aortic root aneurysm / dissection, cardiac allograft failure, massive ventricular thrombus, refractory malignant arrhythmias (independent of filling pressures), hypertrophic / restrictive cardiomyopathy, and complex congenital heart disease. Patients often present with cardiogenic shock and multi system organ dysfunction. Excision of both ventricles and orthotopic replacement with a total artificial heart (TAH) is an effective, albeit extreme, therapy for rapid restoration of blood flow and resuscitation. Perioperative management is focused on end organ resuscitation and physical rehabilitation. In addition to the usual concerns of infection, bleeding, and thromboembolism common to all mechanically supported patients, TAH patients face unique risks with regard to renal failure and anemia. Supplementation of the abrupt decrease in brain natriuretic peptide following ventriculectomy appears to have protective renal effects. Anemia following TAH implantation can be profound and persistent. Nonetheless, the anemia is generally well tolerated and transfusion are limited to avoid HLA sensitization. Until recently, TAH patients were confined as inpatients tethered to a 500 lb pneumatic console driver. Recent introduction of a backpack sized portable driver (currently under clinical trial) has enabled patients to be discharged home and even return to work. Despite the profound presentation of these sick patients, there is a 79-87% success in bridge to transplantation.
Medicine, Issue 89, mechanical circulatory support, total artificial heart, biventricular failure, operative techniques
Play Button
Reduction in Left Ventricular Wall Stress and Improvement in Function in Failing Hearts using Algisyl-LVR
Authors: Lik Chuan Lee, Zhang Zhihong, Andrew Hinson, Julius M. Guccione.
Institutions: UCSF/VA Medical Center, LoneStar Heart, Inc..
Injection of Algisyl-LVR, a treatment under clinical development, is intended to treat patients with dilated cardiomyopathy. This treatment was recently used for the first time in patients who had symptomatic heart failure. In all patients, cardiac function of the left ventricle (LV) improved significantly, as manifested by consistent reduction of the LV volume and wall stress. Here we describe this novel treatment procedure and the methods used to quantify its effects on LV wall stress and function. Algisyl-LVR is a biopolymer gel consisting of Na+-Alginate and Ca2+-Alginate. The treatment procedure was carried out by mixing these two components and then combining them into one syringe for intramyocardial injections. This mixture was injected at 10 to 19 locations mid-way between the base and apex of the LV free wall in patients. Magnetic resonance imaging (MRI), together with mathematical modeling, was used to quantify the effects of this treatment in patients before treatment and at various time points during recovery. The epicardial and endocardial surfaces were first digitized from the MR images to reconstruct the LV geometry at end-systole and at end-diastole. Left ventricular cavity volumes were then measured from these reconstructed surfaces. Mathematical models of the LV were created from these MRI-reconstructed surfaces to calculate regional myofiber stress. Each LV model was constructed so that 1) it deforms according to a previously validated stress-strain relationship of the myocardium, and 2) the predicted LV cavity volume from these models matches the corresponding MRI-measured volume at end-diastole and end-systole. Diastolic filling was simulated by loading the LV endocardial surface with a prescribed end-diastolic pressure. Systolic contraction was simulated by concurrently loading the endocardial surface with a prescribed end-systolic pressure and adding active contraction in the myofiber direction. Regional myofiber stress at end-diastole and end-systole was computed from the deformed LV based on the stress-strain relationship.
Medicine, Issue 74, Biomedical Engineering, Anatomy, Physiology, Biophysics, Molecular Biology, Surgery, Cardiology, Cardiovascular Diseases, bioinjection, ventricular wall stress, mathematical model, heart failure, cardiac function, myocardium, left ventricle, LV, MRI, imaging, clinical techniques
Play Button
Measurement of Antibody Effects on Cellular Function of Isolated Cardiomyocytes
Authors: Lars G. Eckerle, Stephan B. Felix, Lars R. Herda.
Institutions: University Medicine Greifswald.
Dilated cardiomyopathy (DCM) is one of the main causes for heart failure in younger adults1. Although genetic disposition and exposition to toxic substances are known causes for this disease in about one third of the patients, the origin of DCM remains largely unclear. In a substantial number of these patients, autoantibodies against cardiac epitopes have been detected and are suspected to play a pivotal role in the onset and progression of the disease2,3. The importance of cardiac autoantibodies is underlined by a hemodynamic improvement observed in DCM patients after elimination of autoantibodies by immunoadsorption3-5. A variety of specific antigens have already been identified2,3 and antibodies against these targets may be detected by immunoassays. However, these assays cannot discriminate between stimulating (and therefore functionally effective) and blocking autoantibodies. There is increasing evidence that this distinction is crucial6,7. It can also be assumed that the targets for a number of cardiotropic antibodies are still unidentified and therefore cannot be detected by immunoassays. Therefore, we established a method for the detection of functionally active cardiotropic antibodies, independent of their respective antigen. The background for the method is the high homology usually observed for functional regions of cardiac proteins in between mammals8,9. This suggests that cardiac antibodies directed against human antigens will cross-react with non-human target cells, which allows testing of IgG from DCM patients on adult rat cardiomyocytes. Our method consists of 3 steps: first, IgG is isolated from patient plasma using sepharose coupled anti-IgG antibodies obtained from immunoadsorption columns (PlasmaSelect, Teterow, Germany). Second, adult cardiomyocytes are isolated by collagenase perfusion in a Langendorff perfusion apparatus using a protocol modified from previous works10,11. The obtained cardiomyocytes are attached to laminin-coated chambered coverglasses and stained with Fura-2, a calcium-selective fluorescent dye which can be easily brought into the cell to observe intracellular calcium (Ca2+) contents12. In the last step, the effect of patient IgG on the cell shortening and Ca2+ transients of field stimulated cardiomyocytes is monitored online using a commercial myocyte calcium and contractility monitoring system (IonOptix, Milton, MA, USA) connected to a standard inverse fluorescent microscope.
Immunology, Issue 73, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Physiology, Anatomy, Cardiology, cardiomyocytes, cell shortening, intracellular Ca2+, Fura-2, antibodies, dilated cardiomyopathy, DCM, IgG, cardiac proteins, Langendorff perfusion, electrode, immunoassay, assay, cell culture, animal model
Play Button
Synthesis of an In vivo MRI-detectable Apoptosis Probe
Authors: Justin Lam, Paul C. Simpson, Phillip C. Yang, Rajesh Dash.
Institutions: Stanford University Medical Center, University of California, San Francisco , San Francisco VAMC.
Cellular apoptosis is a prominent feature of many diseases, and this programmed cell death typically occurs before clinical manifestations of disease are evident. A means to detect apoptosis in its earliest, reversible stages would afford a pre-clinical 'window' during which preventive or therapeutic measures could be taken to protect the heart from permanent damage. We present herein a simple and robust method to conjugate human Annexin V (ANX), which avidly binds to cells in the earliest, reversible stages of apoptosis, to superparamagnetic iron oxide (SPIO) nanoparticles, which serve as an MRI-detectable contrast agent. The conjugation method begins with an oxidation of the SPIO nanoparticles, which oxidizes carboxyl groups on the polysaccharide shell of SPIO. Purified ANX protein is then added in the setting of a sodium borate solution to facilitate covalent interaction of ANX with SPIO in a reducing buffer. A final reduction step with sodium borohydride is performed to complete the reduction, and then the reaction is quenched. Unconjugated ANX is removed from the mix by microcentrifuge filtration. The size and purity of the ANX-SPIO product is verified by dynamic light scattering (DLS). This method does not require addition to, or modification of, the polysaccharide SPIO shell, as opposed to cross-linked iron oxide particle conjugation methods or biotin-labeled nanoparticles. As a result, this method represents a simple, robust approach that may be extended to conjugation of other proteins of interest.
Molecular Biology, Issue 65, Biomedical Engineering, conjugation, annexin, iron oxide, nanoparticle, MRI, molecular imaging
Play Button
Gene Transfer for Ischemic Heart Failure in a Preclinical Model
Authors: Kiyotake Ishikawa, Dennis Ladage, Lisa Tilemann, Kenneth Fish, Yoshiaki Kawase, Roger J. Hajjar.
Institutions: Mount Sinai School of Medicine .
Various emerging technologies are being developed for patients with heart failure. Well-established preclinical evaluations are necessary to determine their efficacy and safety. Gene therapy using viral vectors is one of the most promising approaches for treating cardiac diseases. Viral delivery of various different genes by changing the carrier gene has immeasurable therapeutic potential. In this video, the full process of an animal model of heart failure creation followed by gene transfer is presented using a swine model. First, myocardial infarction is created by occluding the proximal left anterior descending coronary artery. Heart remodeling results in chronic heart failure. Unique to our model is a fairly large scar which truly reflects patients with severe heart failure who require aggressive therapy for positive outcomes. After myocardial infarct creation and development of scar tissue, an intracoronary injection of virus is demonstrated with simultaneous nitroglycerine infusion. Our injection method provides simple and efficient gene transfer with enhanced gene expression. This combination of a myocardial infarct swine model with intracoronary virus delivery has proven to be a consistent and reproducible methodology, which helps not only to test the effect of individual gene, but also compare the efficacy of many genes as therapeutic candidates.
Medicine, Issue 51, Myocardial infarction, Gene therapy, Intracoronary injection, Viral vector, Ischemic heart failure
Play Button
Microfluidic Device for Recreating a Tumor Microenvironment in Vitro
Authors: Bhushan J. Toley, Dan E. Ganz, Colin L. Walsh, Neil S. Forbes.
Institutions: University Of Massachusetts Amherst.
We have developed a microfluidic device that mimics the delivery and systemic clearance of drugs to heterogeneous three-dimensional tumor tissues in vitro. Nutrients delivered by vasculature fail to reach all parts of tumors, giving rise to heterogeneous microenvironments consisting of viable, quiescent and necrotic cell types. Many cancer drugs fail to effectively penetrate and treat all types of cells because of this heterogeneity. Monolayers of cancer cells do not mimic this heterogeneity, making it difficult to test cancer drugs with a suitable in vitro model. Our microfluidic devices were fabricated out of PDMS using soft lithography. Multicellular tumor spheroids, formed by the hanging drop method, were inserted and constrained into rectangular chambers on the device and maintained with continuous medium perfusion on one side. The rectangular shape of chambers on the device created linear gradients within tissue. Fluorescent stains were used to quantify the variability in apoptosis within tissue. Tumors on the device were treated with the fluorescent chemotherapeutic drug doxorubicin, time-lapse microscopy was used to monitor its diffusion into tissue, and the effective diffusion coefficient was estimated. The hanging drop method allowed quick formation of uniform spheroids from several cancer cell lines. The device enabled growth of spheroids for up to 3 days. Cells in proximity of flowing medium were minimally apoptotic and those far from the channel were more apoptotic, thereby accurately mimicking regions in tumors adjacent to blood vessels. The estimated value of the doxorubicin diffusion coefficient agreed with a previously reported value in human breast cancer. Because the penetration and retention of drugs in solid tumors affects their efficacy, we believe that this device is an important tool in understanding the behavior of drugs, and developing new cancer therapeutics.
Bioengineering, Issue 57, Microfluidic Device, Tumor Microenvironment, Hanging Drop Spheroids, Apoptosis, Drug Penetration
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.