JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Pan-HSV-2 IgG antibody in vaccinated mice and guinea pigs correlates with protection against herpes simplex virus 2.
PUBLISHED: 01-01-2013
We lack a correlate of immunity to herpes simplex virus 2 (HSV-2) that may be used to differentiate whether a HSV-2 vaccine elicits robust or anemic protection against genital herpes. This gap in knowledge is often attributed to a failure to measure the correct component of the adaptive immune response to HSV-2. However, efforts to identify a correlate of immunity have focused on subunit vaccines that contain less than 3% of HSV-2s 40,000-amino-acid proteome. We were interested to determine if a correlate of immunity might be more readily identified if 1. animals were immunized with a polyvalent immunogen such as a live virus and/or 2. the magnitude of the vaccine-induced immune response was gauged in terms of the IgG antibody response to all of HSV-2s antigens (pan-HSV-2 IgG). Pre-challenge pan-HSV-2 IgG levels and protection against HSV-2 were compared in mice and/or guinea pigs immunized with a gD-2 subunit vaccine, wild-type HSV-2, or one of several attenuated HSV-2 ICP0 (-) viruses (0?254, 0?810, 0?RING, or 0?NLS). These six HSV-2 immunogens elicited a wide range of pan-HSV-2 IgG levels spanning an ?500-fold range. For 5 of the 6 immunogens tested, pre-challenge levels of pan-HSV-2 IgG quantitatively correlated with reductions in HSV-2 challenge virus shedding and increased survival frequency following HSV-2 challenge. Collectively, the results suggest that pan-HSV-2 IgG levels may provide a simple and useful screening tool for evaluating the potential of a HSV-2 vaccine candidate to elicit protection against HSV-2 genital herpes.
Authors: Breanne Cuddington, Meghan Verschoor, Karen Mossman.
Published: 11-24-2014
Oncolytic viruses are a novel anticancer therapy with the ability to target tumor cells, while leaving healthy cells intact. For this strategy to be successful, recent studies have shown that involvement of the host immune system is essential. Therefore, oncolytic virotherapy should be evaluated within the context of an immunocompetent model. Furthermore, the study of antitumor therapies in tolerized animal models may better recapitulate results seen in clinical trials. Cotton rats, commonly used to study respiratory viruses, are an attractive model to study oncolytic virotherapy as syngeneic models of mammary carcinoma and osteosarcoma are well established. However, there is a lack of published information on the proper handling procedure for these highly excitable rodents. The handling and capture approach outlined minimizes animal stress to facilitate experimentation. This technique hinges upon the ability of the researcher to keep calm during handling and perform procedures in a timely fashion. Finally, we describe how to prepare cotton rat mammary tumor cells for consistent subcutaneous tumor formation, and how to perform intratumoral and intraperitoneal injections. These methods can be applied to a wide range of studies furthering the development of the cotton rat as a relevant pre-clinical model to study antitumor therapy.
11 Related JoVE Articles!
Play Button
High-throughput Titration of Luciferase-expressing Recombinant Viruses
Authors: Vanessa Garcia, Ramya Krishnan, Colin Davis, Cory Batenchuk, Fabrice Le Boeuf, Hesham Abdelbary, Jean-Simon Diallo.
Institutions: Ottawa Hospital Research Institute, University of Ottawa, University of Ottawa.
Standard plaque assays to determine infectious viral titers can be time consuming, are not amenable to a high volume of samples, and cannot be done with viruses that do not form plaques. As an alternative to plaque assays, we have developed a high-throughput titration method that allows for the simultaneous titration of a high volume of samples in a single day. This approach involves infection of the samples with a Firefly luciferase tagged virus, transfer of the infected samples onto an appropriate permissive cell line, subsequent addition of luciferin, reading of plates in order to obtain luminescence readings, and finally the conversion from luminescence to viral titers. The assessment of cytotoxicity using a metabolic viability dye can be easily incorporated in the workflow in parallel and provide valuable information in the context of a drug screen. This technique provides a reliable, high-throughput method to determine viral titers as an alternative to a standard plaque assay.
Virology, Issue 91, titration, virus, plaque assay, high-throughput, transgene, luciferase, automated, cytotoxicity assay, Vesicular Stomatitis Virus, Herpes Simplex virus, Vaccinia virus, Adeno-Associated virus
Play Button
Ex Vivo Organotypic Corneal Model of Acute Epithelial Herpes Simplex Virus Type I Infection
Authors: Oleg Alekseev, Anh H. Tran, Jane Azizkhan-Clifford.
Institutions: Drexel University College of Medicine.
Herpes keratitis is one of the most severe pathologies associated with the herpes simplex virus-type 1 (HSV-1). Herpes keratitis is currently the leading cause of both cornea-derived and infection-associated blindness in the developed world. Typical presentation of herpes keratitis includes infection of the corneal epithelium and sometimes the deeper corneal stroma and endothelium, leading to such permanent corneal pathologies as scarring, thinning, and opacity 1. Corneal HSV-1 infection is traditionally studied in two types of experimental models. The in vitro model, in which cultured monolayers of corneal epithelial cells are infected in a Petri dish, offers simplicity, high level of replicability, fast experiments, and relatively low costs. On the other hand, the in vivo model, in which animals such as rabbits or mice are inoculated directly in the cornea, offers a highly sophisticated physiological system, but has higher costs, longer experiments, necessary animal care, and a greater degree of variability. In this video article, we provide a detailed demonstration of a new ex vivo model of corneal epithelial HSV-1 infection, which combines the strengths of both the in vitro and the in vivo models. The ex vivo model utilizes intact corneas organotypically maintained in culture and infected with HSV-1. The use of the ex vivo model allows for highly physiologically-based conclusions, yet it is rather inexpensive and requires time commitment comparable to that of the in vitro model.
Neuroscience, Issue 69, Virology, herpes, cornea, HSV, ex vivo, explant, corneal epithelium, organotypic, keratitis, eye, vision, ophthalmology
Play Button
A Primary Neuron Culture System for the Study of Herpes Simplex Virus Latency and Reactivation
Authors: Mariko Kobayashi, Ju-Youn Kim, Vladimir Camarena, Pamela C. Roehm, Moses V. Chao, Angus C. Wilson, Ian Mohr.
Institutions: New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine, New York University School of Medicine.
Herpes simplex virus type-1 (HSV-1) establishes a life-long latent infection in peripheral neurons. This latent reservoir is the source of recurrent reactivation events that ensure transmission and contribute to clinical disease. Current antivirals do not impact the latent reservoir and there are no vaccines. While the molecular details of lytic replication are well-characterized, mechanisms controlling latency in neurons remain elusive. Our present understanding of latency is derived from in vivo studies using small animal models, which have been indispensable for defining viral gene requirements and the role of immune responses. However, it is impossible to distinguish specific effects on the virus-neuron relationship from more general consequences of infection mediated by immune or non-neuronal support cells in live animals. In addition, animal experimentation is costly, time-consuming, and limited in terms of available options for manipulating host processes. To overcome these limitations, a neuron-only system is desperately needed that reproduces the in vivo characteristics of latency and reactivation but offers the benefits of tissue culture in terms of homogeneity and accessibility. Here we present an in vitro model utilizing cultured primary sympathetic neurons from rat superior cervical ganglia (SCG) (Figure 1) to study HSV-1 latency and reactivation that fits most if not all of the desired criteria. After eliminating non-neuronal cells, near-homogeneous TrkA+ neuron cultures are infected with HSV-1 in the presence of acyclovir (ACV) to suppress lytic replication. Following ACV removal, non-productive HSV-1 infections that faithfully exhibit accepted hallmarks of latency are efficiently established. Notably, lytic mRNAs, proteins, and infectious virus become undetectable, even in the absence of selection, but latency-associated transcript (LAT) expression persists in neuronal nuclei. Viral genomes are maintained at an average copy number of 25 per neuron and can be induced to productively replicate by interfering with PI3-Kinase / Akt signaling or the simple withdrawal of nerve growth factor1. A recombinant HSV-1 encoding EGFP fused to the viral lytic protein Us11 provides a functional, real-time marker for replication resulting from reactivation that is readily quantified. In addition to chemical treatments, genetic methodologies such as RNA-interference or gene delivery via lentiviral vectors can be successfully applied to the system permitting mechanistic studies that are very difficult, if not impossible, in animals. In summary, the SCG-based HSV-1 latency / reactivation system provides a powerful, necessary tool to unravel the molecular mechanisms controlling HSV1 latency and reactivation in neurons, a long standing puzzle in virology whose solution may offer fresh insights into developing new therapies that target the latent herpesvirus reservoir.
Immunology, Issue 62, neuron cell culture, Herpes Simplex Virus (HSV), molecular biology, virology
Play Button
Culturing and Applications of Rotating Wall Vessel Bioreactor Derived 3D Epithelial Cell Models
Authors: Andrea L. Radtke, Melissa M. Herbst-Kralovetz.
Institutions: University of Arizona College of Medicine - Phoenix.
Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues 1-6. The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties. The progression from a monolayer of epithelial cells to a fully differentiated 3-D aggregate varies based on cell type1, 7-13. Periodic sampling from the bioreactor allows for monitoring of epithelial aggregate formation, cellular differentiation markers and viability (Figure 1D). Once cellular differentiation and aggregate formation is established, the cells are harvested from the bioreactor, and similar assays performed on 2-D cells can be applied to the 3-D aggregates with a few considerations (Figure 1E-G). In this work, we describe detailed steps of how to culture 3-D epithelial cell aggregates in the RWV bioreactor system and a variety of potential assays and analyses that can be executed with the 3-D aggregates. These analyses include, but are not limited to, structural/morphological analysis (confocal, scanning and transmission electron microscopy), cytokine/chemokine secretion and cell signaling (cytometric bead array and Western blot analysis), gene expression analysis (real-time PCR), toxicological/drug analysis and host-pathogen interactions. The utilization of these assays set the foundation for more in-depth and expansive studies such as metabolomics, transcriptomics, proteomics and other array-based applications. Our goal is to present a non-conventional means of culturing human epithelial cells to produce organotypic 3-D models that recapitulate the human in vivo tissue, in a facile and robust system to be used by researchers with diverse scientific interests.
Cellular Biology, Issue 62, Rotating wall vessel bioreactor, female reproductive tract, human epithelial cells, three-dimensional in vitro cell culture, organotypic mucosal models, vaginal epithelial cells, microbicide, herpes simplex virus, toxicology, host-pathogen interactions, hormone receptors
Play Button
Recurrent Herpetic Stromal Keratitis in Mice, a Model for Studying Human HSK
Authors: Jessica Morris, Patrick M. Stuart, Megan Rogge, Chloe Potter, Nipun Gupta, Xiao-Tang Yin.
Institutions: Saint Louis University.
Herpetic eye disease, termed herpetic stromal keratitis (HSK), is a potentially blinding infection of the cornea that results in over 300,000 clinical visits each year for treatment. Between 1 and 2 percent of those patients with clinical disease will experience loss of vision of the infected cornea. The vast majority of these cases are the result of reactivation of a latent infection by herpes simplex type I virus and not due to acute disease. Interestingly, the acute infection is the model most often used to study this disease. However, it was felt that a recurrent model of HSK would be more reflective of what occurs during clinical disease. The recurrent animal models for HSK have employed both rabbits and mice. The advantage of rabbits is that they experience reactivation from latency absent any known stimulus. That said, it is difficult to explore the role that many immunological factors play in recurrent HSK because the rabbit model does not have the immunological and genetic resources that the mouse has. We chose to use the mouse model for recurrent HSK because it has the advantage of there being many resources available and also we know when reactivation will occur because reactivation is induced by exposure to UV-B light. Thus far, this model has allowed those laboratories using it to define several immunological factors that are important to this disease. It has also allowed us to test both therapeutic and vaccine efficacy.
Infection, Issue 70, Immunology, Virology, Medicine, Infectious Diseases, Ophthalmology, Herpes, herpetic stromal keratitis, HSK, keratitis, pathogenesis, clinical evaluation, virus, eye, mouse, animal model
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
Live Cell Imaging of Alphaherpes Virus Anterograde Transport and Spread
Authors: Matthew P. Taylor, Radomir Kratchmarov, Lynn W. Enquist.
Institutions: Montana State University, Princeton University.
Advances in live cell fluorescence microscopy techniques, as well as the construction of recombinant viral strains that express fluorescent fusion proteins have enabled real-time visualization of transport and spread of alphaherpes virus infection of neurons. The utility of novel fluorescent fusion proteins to viral membrane, tegument, and capsids, in conjunction with live cell imaging, identified viral particle assemblies undergoing transport within axons. Similar tools have been successfully employed for analyses of cell-cell spread of viral particles to quantify the number and diversity of virions transmitted between cells. Importantly, the techniques of live cell imaging of anterograde transport and spread produce a wealth of information including particle transport velocities, distributions of particles, and temporal analyses of protein localization. Alongside classical viral genetic techniques, these methodologies have provided critical insights into important mechanistic questions. In this article we describe in detail the imaging methods that were developed to answer basic questions of alphaherpes virus transport and spread.
Virology, Issue 78, Infection, Immunology, Medicine, Molecular Biology, Cellular Biology, Microbiology, Genetics, Microscopy, Fluorescence, Neurobiology, Herpes virus, fluorescent protein, epifluorescent microscopy, neuronal culture, axon, virion, video microscopy, virus, live cell, imaging
Play Button
Stereotaxic Microinjection of Viral Vectors Expressing Cre Recombinase to Study the Role of Target Genes in Cocaine Conditioned Place Preference
Authors: Kathryn C. Schierberl, Anjali M. Rajadhyaksha.
Institutions: Weill Cornell Graduate School of Biomedical Sciences, Weill Cornell Medical College .
Microinjecting recombinant adenoassociated viral (rAAV) vectors expressing Cre recombinase into distinct mouse brain regions to selectively knockout genes of interest allows for enhanced temporally- and regionally-specific control of gene deletion, compared to existing methods. While conditional deletion can also be achieved by mating mice that express Cre recombinase under the control of specific gene promoters with mice carrying a floxed gene, stereotaxic microinjection allows for targeting of discrete brain areas at experimenter-determined time points of interest. In the context of cocaine conditioned place preference, and other cocaine behavioral paradigms such as self-administration or psychomotor sensitization that can involve withdrawal, extinction and/or reinstatement phases, this technique is particularly useful in exploring the unique contribution of target genes to these distinct phases of behavioral models of cocaine-induced plasticity. Specifically, this technique allows for selective ablation of target genes during discrete phases of a behavior to test their contribution to the behavior across time. Ultimately, this understanding allows for more targeted therapeutics that are best able to address the most potent risk factors that present themselves during each phase of addictive behavior.
Behavior, Issue 77, Neuroscience, Neurobiology, Anatomy, Physiology, Biomedical Engineering, Medicine, Molecular Biology, Pharmacology, Animals, Genetically Modified, Behavior, Animal, Drug-Seeking Behavior, Psychophysiology, Behavior and Behavior Mechanisms, viral vectors, stereotaxic surgery, microinjection, conditioned place preference, mouse, behavior, neuroscience, extinction, cocaine-induced reinstatement, animal model
Play Button
Isolation of Lymphocytes from Mouse Genital Tract Mucosa
Authors: Janina Jiang, Kathleen A. Kelly.
Institutions: University of California, Los Angeles , California NanoSystems.
Mucosal surfaces, including in the gastrointestinal, urogenital, and respiratory tracts, provide portals of entry for pathogens, such as viruses and bacteria 1. Mucosae are also inductive sites in the host to generate immunity against pathogens, such as the Peyers patches in the intestinal tract and the nasal-associated lymphoreticular tissue in the respiratory tract. This unique feature brings mucosal immunity as a crucial player of the host defense system. Many studies have been focused on gastrointestinal and respiratory mucosal sites. However, there has been little investigation of reproductive mucosal sites. The genital tract mucosa is the primary infection site for sexually transmitted diseases (STD), including bacterial and viral infections. STDs are one of the most critical health challenges facing the world today. Centers for Disease Control and Prevention estimates that there are 19 million new infectious every year in the United States. STDs cost the U.S. health care system $17 billion every year 2, and cost individuals even more in immediate and life-long health consequences. In order to confront this challenge, a greater understanding of reproductive mucosal immunity is needed and isolating lymphocytes is an essential component of these studies. Here, we present a method to reproducibly isolate lymphocytes from murine female genital tracts for immunological studies that can be modified for adaption to other species. The method described below is based on one mouse. 
Immunology, Issue 67, Mucosal immunity, sexually transmitted diseases, genital tract lymphocytes, lymphocyte isolation, flow cytometry, FACS
Play Button
Preparation of Viral DNA from Nucleocapsids
Authors: Moriah L. Szpara, Yolanda R. Tafuri, L. W. Enquist.
Institutions: Princeton University.
Viruses are obligate cellular parasites, and thus the study of their DNA requires isolating viral material away from host cell contaminants and DNA. Several downstream applications require large quantities of pure viral DNA, which is provided by this protocol. These applications include viral genome sequencing, where the removal of host DNA is crucial to optimize data output for viral sequences, and the production of new viral recombinant strains, where co-transfection of purified plasmid and linear viral DNA facilitates recombination.1,2,3 This procedure utilizes a combination of extractions and density-based centrifugation to isolate purified linear herpesvirus nucleocapsid DNA from infected cells.4,5 The initial purification steps aim to isolate purified viral capsids, which contain and protect the viral DNA during the extractions and centrifugation steps that remove cellular proteins and DNA. Lysis of nucleocapsids then releases viral DNA, and two final phenol-chloroform steps remove remaining proteins. The final DNA captured from solution is highly concentrated and pure, with an average OD260/280 of 1.90. Depending on the quantity of infected cells used, yields of viral DNA range from 150-800 μg or more. The purity of this DNA makes it stable during long-term storage at 4C. This DNA is thus ideally suited for high-throughput sequencing, high fidelity PCR reactions, and transfections. Prior to beginning the protocol, it is important to know the average number of cells per dish (e.g. an average of 8 x 106 PK-15 cells in a confluent 15 cm dish), and the titer of the viral stock to be used (e.g. 1 x 108 plaque-forming units per ml). These are necessary to calculate the appropriate multiplicity of infection (MOI) for the protocol.6 For instance, to infect one 15 cm dish of PK-15 cells with the above viral stock, at an MOI of 5, you would use 400 μl of viral stock and dilute it with 3.6 ml of medium (total inoculation volume of 4 ml for one 15 cm plate). Multiple viral DNA preparations can be prepared at the same time. The number of simultaneous preparations is limited only by the number of tubes held by the ultracentrifuge rotor (one per virus; see step 3.9 below). Here we describe the procedure as though being done for one virus.
Immunology, Issue 54, viral nucleocapsid DNA, herpes simplex virus (HSV), pseudorabies (PRV), sequencing
Play Button
Ex Vivo Infection of Live Tissue with Oncolytic Viruses
Authors: Jean-Simon Diallo, Dominic Roy, Hesham Abdelbary, Naomi De Silva, John C. Bell.
Institutions: Ottawa Hospital Research Institute (OHRI).
Oncolytic Viruses (OVs) are novel therapeutics that selectively replicate in and kill tumor cells1. Several clinical trials evaluating the effectiveness of a variety of oncolytic platforms including HSV, Reovirus, and Vaccinia OVs as treatment for cancer are currently underway2-5. One key characteristic of oncolytic viruses is that they can be genetically modified to express reporter transgenes which makes it possible to visualize the infection of tissues by microscopy or bio-luminescence imaging6,7. This offers a unique advantage since it is possible to infect tissues from patients ex vivo prior to therapy in order to ascertain the likelihood of successful oncolytic virotherapy8. To this end, it is critical to appropriately sample tissue to compensate for tissue heterogeneity and assess tissue viability, particularly prior to infection9. It is also important to follow viral replication using reporter transgenes if expressed by the oncolytic platform as well as by direct titration of tissues following homogenization in order to discriminate between abortive and productive infection. The object of this protocol is to address these issues and herein describes 1. The sampling and preparation of tumor tissue for cell culture 2. The assessment of tissue viability using the metabolic dye alamar blue 3. Ex vivo infection of cultured tissues with vaccinia virus expressing either GFP or firefly luciferase 4. Detection of transgene expression by fluorescence microscopy or using an In Vivo Imaging System (IVIS) 5. Quantification of virus by plaque assay. This comprehensive method presents several advantages including ease of tissue processing, compensation for tissue heterogeneity, control of tissue viability, and discrimination between abortive infection and bone fide viral replication.
Medicine, Issue 52, Cancer, Oncolytic Virus, Tissue culture, Tissue processing, Virus quantification
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.