JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Determination of Serotonin and Dopamine Metabolites in Human Brain Microdialysis and Cerebrospinal Fluid Samples by UPLC-MS/MS: Discovery of Intact Glucuronide and Sulfate Conjugates.
PUBLISHED: 01-01-2013
An UPLC-MS/MS method was developed for the determination of serotonin (5-HT), dopamine (DA), their phase I metabolites 5-HIAA, DOPAC and HVA, and their sulfate and glucuronide conjugates in human brain microdialysis samples obtained from two patients with acute brain injuries, ventricular cerebrospinal fluid (CSF) samples obtained from four patients with obstructive hydrocephalus, and a lumbar CSF sample pooled mainly from patients undergoing spinal anesthesia in preparation for orthopedic surgery. The method was validated by determining the limits of detection and quantification, linearity, repeatability and specificity. The direct method enabled the analysis of the intact phase II metabolites of 5-HT and DA, without hydrolysis of the conjugates. The method also enabled the analysis of the regioisomers of the conjugates, and several intact glucuronide and sulfate conjugates were identified and quantified for the first time in the human brain microdialysis and CSF samples. We were able to show the presence of 5-HIAA sulfate, and that dopamine-3-O-sulfate predominates over dopamine-4-O-sulfate in the human brain. The quantitative results suggest that sulfonation is a more important phase II metabolism pathway than glucuronidation in the human brain.
Authors: Michael F. Salvatore, Brandon S. Pruett, Charles Dempsey, Victoria Fields.
Published: 08-10-2012
Dopamine is a vigorously studied neurotransmitter in the CNS. Indeed, its involvement in locomotor activity and reward-related behaviour has fostered five decades of inquiry into the molecular deficiencies associated with dopamine regulation. The majority of these inquiries of dopamine regulation in the brain focus upon the molecular basis for its regulation in the terminal field regions of the nigrostriatal and mesoaccumbens pathways; striatum and nucleus accumbens. Furthermore, such studies have concentrated on analysis of dopamine tissue content with normalization to only wet tissue weight. Investigation of the proteins that regulate dopamine, such as tyrosine hydroxylase (TH) protein, TH phosphorylation, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) protein often do not include analysis of dopamine tissue content in the same sample. The ability to analyze both dopamine tissue content and its regulating proteins (including post-translational modifications) not only gives inherent power to interpreting the relationship of dopamine with the protein level and function of TH, DAT, or VMAT2, but also extends sample economy. This translates into less cost, and yet produces insights into the molecular regulation of dopamine in virtually any paradigm of the investigators' choice. We focus the analyses in the midbrain. Although the SN and VTA are typically neglected in most studies of dopamine regulation, these nuclei are easily dissected with practice. A comprehensive readout of dopamine tissue content and TH, DAT, or VMAT2 can be conducted. There is burgeoning literature on the impact of dopamine function in the SN and VTA on behavior, and the impingements of exogenous substances or disease processes therein 1-5. Furthermore, compounds such as growth factors have a profound effect on dopamine and dopamine-regulating proteins, to a comparatively greater extent in the SN or VTA 6-8. Therefore, this methodology is presented for reference to laboratories that want to extend their inquiries on how specific treatments modulate behaviour and dopamine regulation. Here, a multi-step method is presented for the analyses of dopamine tissue content, the protein levels of TH, DAT, or VMAT2, and TH phosphorylation from the substantia nigra and VTA from rodent midbrain. The analysis of TH phosphorylation can yield significant insights into not only how TH activity is regulated, but also the signaling cascades affected in the somatodendritic nuclei in a given paradigm. We will illustrate the dissection technique to segregate these two nuclei and the sample processing of dissected tissue that produces a profile revealing molecular mechanisms of dopamine regulation in vivo, specific for each nuclei (Figure 1).
22 Related JoVE Articles!
Play Button
MALDI-Mass Spectrometric Imaging for the Investigation of Metabolites in Medicago truncatula Root Nodules
Authors: Erin Gemperline, Lingjun Li.
Institutions: University of Wisconsin- Madison, University of Wisconsin- Madison.
Most techniques used to study small molecules, such as pharmaceutical drugs or endogenous metabolites, employ tissue extracts which require the homogenization of the tissue of interest that could potentially cause changes in the metabolic pathways being studied1. Mass spectrometric imaging (MSI) is a powerful analytical tool that can provide spatial information of analytes within intact slices of biological tissue samples1-5. This technique has been used extensively to study various types of compounds including proteins, peptides, lipids, and small molecules such as endogenous metabolites. With matrix-assisted laser desorption/ionization (MALDI)-MSI, spatial distributions of multiple metabolites can be simultaneously detected. Herein, a method developed specifically for conducting untargeted metabolomics MSI experiments on legume roots and root nodules is presented which could reveal insights into the biological processes taking place. The method presented here shows a typical MSI workflow, from sample preparation to image acquisition, and focuses on the matrix application step, demonstrating several matrix application techniques that are useful for detecting small molecules. Once the MS images are generated, the analysis and identification of metabolites of interest is discussed and demonstrated. The standard workflow presented here can be easily modified for different tissue types, molecular species, and instrumentation.
Basic Protocol, Issue 85, Mass Spectrometric Imaging, Imaging Mass Spectrometry, MALDI, TOF/TOF, Medicago truncatula, Metabolite, Small Molecule, Sublimation, Automatic Sprayer
Play Button
Untargeted Metabolomics from Biological Sources Using Ultraperformance Liquid Chromatography-High Resolution Mass Spectrometry (UPLC-HRMS)
Authors: Nathaniel W. Snyder, Maya Khezam, Clementina A. Mesaros, Andrew Worth, Ian A. Blair.
Institutions: University of Pennsylvania .
Here we present a workflow to analyze the metabolic profiles for biological samples of interest including; cells, serum, or tissue. The sample is first separated into polar and non-polar fractions by a liquid-liquid phase extraction, and partially purified to facilitate downstream analysis. Both aqueous (polar metabolites) and organic (non-polar metabolites) phases of the initial extraction are processed to survey a broad range of metabolites. Metabolites are separated by different liquid chromatography methods based upon their partition properties. In this method, we present microflow ultra-performance (UP)LC methods, but the protocol is scalable to higher flows and lower pressures. Introduction into the mass spectrometer can be through either general or compound optimized source conditions. Detection of a broad range of ions is carried out in full scan mode in both positive and negative mode over a broad m/z range using high resolution on a recently calibrated instrument. Label-free differential analysis is carried out on bioinformatics platforms. Applications of this approach include metabolic pathway screening, biomarker discovery, and drug development.
Biochemistry, Issue 75, Chemistry, Molecular Biology, Cellular Biology, Physiology, Medicine, Pharmacology, Genetics, Genomics, Mass Spectrometry, MS, Metabolism, Metabolomics, untargeted, extraction, lipids, accurate mass, liquid chromatography, ultraperformance liquid chromatography, UPLC, high resolution mass spectrometry, HRMS, spectrometry
Play Button
Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer
Authors: Cuong H. Le, Jun Han, Christoph H. Borchers.
Institutions: University of Victoria, University of Victoria.
Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided.
Basic Protocol, Issue 81, eye, molecular imaging, chemistry technique, analytical, mass spectrometry, matrix assisted laser desorption/ionization (MALDI), tandem mass spectrometry, lipid, tissue imaging, bovine lens, dithranol, matrix, FTICR (Fourier Transform Ion Cyclotron Resonance)
Play Button
Large Scale Non-targeted Metabolomic Profiling of Serum by Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS)
Authors: Corey D. Broeckling, Adam L. Heuberger, Jessica E. Prenni.
Institutions: Colorado State University.
Non-targeted metabolite profiling by ultra performance liquid chromatography coupled with mass spectrometry (UPLC-MS) is a powerful technique to investigate metabolism. The approach offers an unbiased and in-depth analysis that can enable the development of diagnostic tests, novel therapies, and further our understanding of disease processes. The inherent chemical diversity of the metabolome creates significant analytical challenges and there is no single experimental approach that can detect all metabolites. Additionally, the biological variation in individual metabolism and the dependence of metabolism on environmental factors necessitates large sample numbers to achieve the appropriate statistical power required for meaningful biological interpretation. To address these challenges, this tutorial outlines an analytical workflow for large scale non-targeted metabolite profiling of serum by UPLC-MS. The procedure includes guidelines for sample organization and preparation, data acquisition, quality control, and metabolite identification and will enable reliable acquisition of data for large experiments and provide a starting point for laboratories new to non-targeted metabolite profiling by UPLC-MS.
Chemistry, Issue 73, Biochemistry, Genetics, Molecular Biology, Physiology, Genomics, Proteins, Proteomics, Metabolomics, Metabolite Profiling, Non-targeted metabolite profiling, mass spectrometry, Ultra Performance Liquid Chromatography, UPLC-MS, serum, spectrometry
Play Button
Profiling Voltage-gated Potassium Channel mRNA Expression in Nigral Neurons using Single-cell RT-PCR Techniques
Authors: Shengyuan Ding, Fu- Ming Zhou.
Institutions: University of Tennessee College of Medicine.
In mammalian central nervous system, different types of neurons with diverse molecular and functional characteristics are intermingled with each other, difficult to separate and also not easily identified by their morphology. Thus, it is often difficult to analyze gene expression in a specific neuron type. Here we document a procedure that combines whole-cell patch clamp recording techniques with single-cell reverse transcription polymerase chain reaction (scRT-PCR) to profile mRNA expression in different types of neurons in the substantial nigra. Electrophysiological techniques are first used to record the neurophysiological and functional properties of individual neurons. Then, the cytoplasm of single electrophysiologically characterized nigral neurons is aspirated and subjected to scRT-PCR analysis to obtain mRNA expression profiles for neurotransmitter synthesis enzymes, receptors, and ion channels. The high selectivity and sensitivity make this method particularly useful when immunohistochemistry can not be used due to a lack of suitable antibody or low expression level of the protein. This method is also applicable to neurons in other brain areas.
Neuroscience, Issue 55, action potential, mRNA, patch clamp, single cell RT-PCR, PCR, substantia nigra
Play Button
Manual Drainage of the Zebrafish Embryonic Brain Ventricles
Authors: Jessica T. Chang, Hazel Sive.
Institutions: Massachusetts Institute of Technology.
Cerebrospinal fluid (CSF) is a protein rich fluid contained within the brain ventricles. It is present during early vertebrate embryonic development and persists throughout life. Adult CSF is thought to cushion the brain, remove waste, and carry secreted molecules1,2. In the adult and older embryo, the majority of CSF is made by the choroid plexus, a series of highly vascularized secretory regions located adjacent to the brain ventricles3-5. In zebrafish, the choroid plexus is fully formed at 144 hours post fertilization (hpf)6. Prior to this, in both zebrafish and other vertebrate embryos including mouse, a significant amount of embryonic CSF (eCSF) is present . These data and studies in chick suggest that the neuroepithelium is secretory early in development and may be the major source of eCSF prior to choroid plexus development7. eCSF contains about three times more protein than adult CSF, suggesting that it may have an important role during development8,9. Studies in chick and mouse demonstrate that secreted factors in the eCSF, fluid pressure, or a combination of these, are important for neurogenesis, gene expression, cell proliferation, and cell survival in the neuroepithelium10-20. Proteomic analyses of human, rat, mouse, and chick eCSF have identified many proteins that may be necessary for CSF function. These include extracellular matrix components, apolipoproteins, osmotic pressure regulating proteins, and proteins involved in cell death and proliferation21-24. However, the complex functions of the eCSF are largely unknown. We have developed a method for removing eCSF from zebrafish brain ventricles, thus allowing for identification of eCSF components and for analysis of the eCSF requirement during development. Although more eCSF can be collected from other vertebrate systems with larger embryos, eCSF can be collected from the earliest stages of zebrafish development, and under genetic or environmental conditions that lead to abnormal brain ventricle volume or morphology. Removal and collection of eCSF allows for mass spectrometric analysis, investigation of eCSF function, and reintroduction of select factors into the ventricles to assay their function. Thus the accessibility of the early zebrafish embryo allows for detailed analysis of eCSF function during development.
Neuroscience, Issue 70, Developmental Biology, Medicine, Anatomy, Physiology, Zebrafish, Danio rerio, eCSF, neuroepithelium, brain ventricular system, brain, microsurgery, animal model
Play Button
Basophil Activation Test for Investigation of IgE-Mediated Mechanisms in Drug Hypersensitivity
Authors: Markus Steiner, Andrea Harrer, Roland Lang, Michael Schneider, Fátima Ferreira, Thomas Hawranek, Martin Himly.
Institutions: University of Salzburg, Paracelsus Medical University, Paracelsus Medical University, Bühlmann Laboratories, University of Salzburg.
Hypersensitivity reactions against non-steroidal anti-inflammatory drugs (NSAIDs) like propyphenazone (PP) and diclofenac (DF) can manifest as Type I-like allergic reactions 1. In clinical practice, diagnosis of drug hypersensitivity is mainly performed by patient history, as skin testing is not reliable and oral provocation testing bears life-threatening risks for the patient 2. Hence, evidence for an underlying IgE-mediated pathomechanism is hard to obtain. Here, we present an in vitro method based on the use of human basophils derived from drug-hypersensitive patients that mimics the allergic effector reaction in vivo. As basophils of drug-allergic patients carry IgE molecules specific for the culprit drug, they become activated upon IgE receptor crosslinking and release allergic effector molecules. The activation of basophils can be monitored by the determination of the upregulation of CD63 surface expression using flow cytometry 3. In the case of low molecular weight drugs, conjugates are designed to enable IgE receptor crosslinking on basophils. As depicted in Figure 1, two representatives of NSAIDs, PP and DF, are covalently bound to human serum albumin (HSA) via a carboxyl group reacting with the primary amino group of lysine residues. DF carries an intrinsic carboxyl group and, thus, can be used directly 4, whereas a carboxyl group-containing derivative of PP had to be organochemically synthesized prior to the study 1. The coupling degree of the low molecular weight compounds on the protein carrier molecule and their spatial distribution is important to guarantee crosslinking of two IgE receptor molecules. The here described protocol applies high performance-size exclusion chromatography (HPSEC) equipped with a sequential refractive index (RI) and ultra violet (UV) detection system for determination of the coupling degree. As the described methodology may be applied for other drugs, the basophil activation test (BAT) bears the potential to be used for the determination of IgE-mediated mechanisms in drug hypersensitivity. Here, we determine PP hypersensitivity as IgE-mediated and DF hypersensitivity as non-IgE-mediated by BAT.
Immunology, Issue 55, NSAIDs, hypersensitivity, propyphenazone, diclofenac, drug conjugates, basophil activation test
Play Button
Presynaptic Dopamine Dynamics in Striatal Brain Slices with Fast-scan Cyclic Voltammetry
Authors: Francis K. Maina, Madiha Khalid, Aaron K. Apawu, Tiffany A. Mathews.
Institutions: Wayne State University , .
Extensive research has focused on the neurotransmitter dopamine because of its importance in the mechanism of action of drugs of abuse (e.g. cocaine and amphetamine), the role it plays in psychiatric illnesses (e.g. schizophrenia and Attention Deficit Hyperactivity Disorder), and its involvement in degenerative disorders like Parkinson's and Huntington's disease. Under normal physiological conditions, dopamine is known to regulate locomotor activity, cognition, learning, emotional affect, and neuroendocrine hormone secretion. One of the largest densities of dopamine neurons is within the striatum, which can be divided in two distinct neuroanatomical regions known as the nucleus accumbens and the caudate-putamen. The objective is to illustrate a general protocol for slice fast-scan cyclic voltammetry (FSCV) within the mouse striatum. FSCV is a well-defined electrochemical technique providing the opportunity to measure dopamine release and uptake in real time in discrete brain regions. Carbon fiber microelectrodes (diameter of ~ 7 μm) are used in FSCV to detect dopamine oxidation. The analytical advantage of using FSCV to detect dopamine is its enhanced temporal resolution of 100 milliseconds and spatial resolution of less than ten microns, providing complementary information to in vivo microdialysis.
Neuroscience, Issue 59, caudate-putamen, nucleus accumbens, microelectrodes, dopamine transporter, dopamine release
Play Button
Purification of Transcripts and Metabolites from Drosophila Heads
Authors: Kurt Jensen, Jonatan Sanchez-Garcia, Caroline Williams, Swati Khare, Krishanu Mathur, Rita M. Graze, Daniel A. Hahn, Lauren M. McIntyre, Diego E. Rincon-Limas, Pedro Fernandez-Funez.
Institutions: University of Florida , University of Florida , University of Florida , University of Florida .
For the last decade, we have tried to understand the molecular and cellular mechanisms of neuronal degeneration using Drosophila as a model organism. Although fruit flies provide obvious experimental advantages, research on neurodegenerative diseases has mostly relied on traditional techniques, including genetic interaction, histology, immunofluorescence, and protein biochemistry. These techniques are effective for mechanistic, hypothesis-driven studies, which lead to a detailed understanding of the role of single genes in well-defined biological problems. However, neurodegenerative diseases are highly complex and affect multiple cellular organelles and processes over time. The advent of new technologies and the omics age provides a unique opportunity to understand the global cellular perturbations underlying complex diseases. Flexible model organisms such as Drosophila are ideal for adapting these new technologies because of their strong annotation and high tractability. One challenge with these small animals, though, is the purification of enough informational molecules (DNA, mRNA, protein, metabolites) from highly relevant tissues such as fly brains. Other challenges consist of collecting large numbers of flies for experimental replicates (critical for statistical robustness) and developing consistent procedures for the purification of high-quality biological material. Here, we describe the procedures for collecting thousands of fly heads and the extraction of transcripts and metabolites to understand how global changes in gene expression and metabolism contribute to neurodegenerative diseases. These procedures are easily scalable and can be applied to the study of proteomic and epigenomic contributions to disease.
Genetics, Issue 73, Biochemistry, Molecular Biology, Neurobiology, Neuroscience, Bioengineering, Cellular Biology, Anatomy, Neurodegenerative Diseases, Biological Assay, Drosophila, fruit fly, head separation, purification, mRNA, RNA, cDNA, DNA, transcripts, metabolites, replicates, SCA3, neurodegeneration, NMR, gene expression, animal model
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Microdialysis of Ethanol During Operant Ethanol Self-administration and Ethanol Determination by Gas Chromatography
Authors: Christina J. Schier, Regina A. Mangieri, Geoffrey A. Dilly, Rueben A. Gonzales.
Institutions: The University of Texas at Austin.
Operant self-administration methods are commonly used to study the behavioral and pharmacological effects of many drugs of abuse, including ethanol. However, ethanol is typically self-administered orally, rather than intravenously like many other drugs of abuse. The pharmacokinetics of orally administered drugs are more complex than intravenously administered drugs. Because understanding the relationship between the pharmacological and behavioral effects of ethanol requires knowledge of the time course of ethanol reaching the brain during and after drinking, we use in vivo microdialysis and gas chromatography with flame ionization detection to monitor brain dialysate ethanol concentrations over time. Combined microdialysis-behavioral experiments involve the use of several techniques. In this article, stereotaxic surgery, behavioral training and microdialysis, which can be adapted to test a multitude of self-administration and neurochemical centered hypotheses, are included only to illustrate how they relate to the subsequent phases of sample collection and dialysate ethanol analysis. Dialysate ethanol concentration analysis via gas chromatography with flame-ionization detection, which is specific to ethanol studies, is described in detail. Data produced by these methods reveal the pattern of ethanol reaching the brain during the self-administration procedure, and when paired with neurochemical analysis of the same dialysate samples, allows conclusions to be made regarding the pharmacological and behavioral effects of ethanol.
Neuroscience, Issue 67, Microdialysis, operant ethanol self-administration, gas chromatography, appetitive, consummatory, sterotaxic surgery
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
Play Button
Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson's Disease
Authors: Vivian P. Chou, Novie Ko, Theodore R. Holman, Amy B. Manning-Boğ.
Institutions: SRI International, University of California-Santa Cruz.
Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer's disease, but its effects in Parkinson's disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.
Medicine, Issue 83, MPTP, dopamine, Iba1, TH, GFAP, lipoxygenase, transgenic, gene-environment interactions, mouse, Parkinson's disease, neurodegeneration, neuroinflammation
Play Button
A Strategy for Sensitive, Large Scale Quantitative Metabolomics
Authors: Xiaojing Liu, Zheng Ser, Ahmad A. Cluntun, Samantha J. Mentch, Jason W. Locasale.
Institutions: Cornell University, Cornell University.
Metabolite profiling has been a valuable asset in the study of metabolism in health and disease. However, current platforms have different limiting factors, such as labor intensive sample preparations, low detection limits, slow scan speeds, intensive method optimization for each metabolite, and the inability to measure both positively and negatively charged ions in single experiments. Therefore, a novel metabolomics protocol could advance metabolomics studies. Amide-based hydrophilic chromatography enables polar metabolite analysis without any chemical derivatization. High resolution MS using the Q-Exactive (QE-MS) has improved ion optics, increased scan speeds (256 msec at resolution 70,000), and has the capability of carrying out positive/negative switching. Using a cold methanol extraction strategy, and coupling an amide column with QE-MS enables robust detection of 168 targeted polar metabolites and thousands of additional features simultaneously.  Data processing is carried out with commercially available software in a highly efficient way, and unknown features extracted from the mass spectra can be queried in databases.
Chemistry, Issue 87, high-resolution mass spectrometry, metabolomics, positive/negative switching, low mass calibration, Orbitrap
Play Button
Multi-step Preparation Technique to Recover Multiple Metabolite Compound Classes for In-depth and Informative Metabolomic Analysis
Authors: Charmion Cruickshank-Quinn, Kevin D. Quinn, Roger Powell, Yanhui Yang, Michael Armstrong, Spencer Mahaffey, Richard Reisdorph, Nichole Reisdorph.
Institutions: National Jewish Health, University of Colorado Denver.
Metabolomics is an emerging field which enables profiling of samples from living organisms in order to obtain insight into biological processes. A vital aspect of metabolomics is sample preparation whereby inconsistent techniques generate unreliable results. This technique encompasses protein precipitation, liquid-liquid extraction, and solid-phase extraction as a means of fractionating metabolites into four distinct classes. Improved enrichment of low abundance molecules with a resulting increase in sensitivity is obtained, and ultimately results in more confident identification of molecules. This technique has been applied to plasma, bronchoalveolar lavage fluid, and cerebrospinal fluid samples with volumes as low as 50 µl.  Samples can be used for multiple downstream applications; for example, the pellet resulting from protein precipitation can be stored for later analysis. The supernatant from that step undergoes liquid-liquid extraction using water and strong organic solvent to separate the hydrophilic and hydrophobic compounds. Once fractionated, the hydrophilic layer can be processed for later analysis or discarded if not needed. The hydrophobic fraction is further treated with a series of solvents during three solid-phase extraction steps to separate it into fatty acids, neutral lipids, and phospholipids. This allows the technician the flexibility to choose which class of compounds is preferred for analysis. It also aids in more reliable metabolite identification since some knowledge of chemical class exists.
Bioengineering, Issue 89, plasma, chemistry techniques, analytical, solid phase extraction, mass spectrometry, metabolomics, fluids and secretions, profiling, small molecules, lipids, liquid chromatography, liquid-liquid extraction, cerebrospinal fluid, bronchoalveolar lavage fluid
Play Button
Metabolomic Analysis of Rat Brain by High Resolution Nuclear Magnetic Resonance Spectroscopy of Tissue Extracts
Authors: Norbert W. Lutz, Evelyne Béraud, Patrick J. Cozzone.
Institutions: Aix-Marseille Université, Aix-Marseille Université.
Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism. While the genome and the proteome define the tasks cells can perform, the metabolome is part of the actual phenotype. Among the methods currently used in metabolomics, spectroscopic techniques are of special interest because they allow one to simultaneously analyze a large number of metabolites without prior selection for specific biochemical pathways, thus enabling a broad unbiased approach. Here, an optimized experimental protocol for metabolomic analysis by high-resolution NMR spectroscopy is presented, which is the method of choice for efficient quantification of tissue metabolites. Important strengths of this method are (i) the use of crude extracts, without the need to purify the sample and/or separate metabolites; (ii) the intrinsically quantitative nature of NMR, permitting quantitation of all metabolites represented by an NMR spectrum with one reference compound only; and (iii) the nondestructive nature of NMR enabling repeated use of the same sample for multiple measurements. The dynamic range of metabolite concentrations that can be covered is considerable due to the linear response of NMR signals, although metabolites occurring at extremely low concentrations may be difficult to detect. For the least abundant compounds, the highly sensitive mass spectrometry method may be advantageous although this technique requires more intricate sample preparation and quantification procedures than NMR spectroscopy. We present here an NMR protocol adjusted to rat brain analysis; however, the same protocol can be applied to other tissues with minor modifications.
Neuroscience, Issue 91, metabolomics, brain tissue, rodents, neurochemistry, tissue extracts, NMR spectroscopy, quantitative metabolite analysis, cerebral metabolism, metabolic profile
Play Button
Creating Dynamic Images of Short-lived Dopamine Fluctuations with lp-ntPET: Dopamine Movies of Cigarette Smoking
Authors: Evan D. Morris, Su Jin Kim, Jenna M. Sullivan, Shuo Wang, Marc D. Normandin, Cristian C. Constantinescu, Kelly P. Cosgrove.
Institutions: Yale University, Yale University, Yale University, Yale University, Massachusetts General Hospital, University of California, Irvine.
We describe experimental and statistical steps for creating dopamine movies of the brain from dynamic PET data. The movies represent minute-to-minute fluctuations of dopamine induced by smoking a cigarette. The smoker is imaged during a natural smoking experience while other possible confounding effects (such as head motion, expectation, novelty, or aversion to smoking repeatedly) are minimized. We present the details of our unique analysis. Conventional methods for PET analysis estimate time-invariant kinetic model parameters which cannot capture short-term fluctuations in neurotransmitter release. Our analysis - yielding a dopamine movie - is based on our work with kinetic models and other decomposition techniques that allow for time-varying parameters 1-7. This aspect of the analysis - temporal-variation - is key to our work. Because our model is also linear in parameters, it is practical, computationally, to apply at the voxel level. The analysis technique is comprised of five main steps: pre-processing, modeling, statistical comparison, masking and visualization. Preprocessing is applied to the PET data with a unique 'HYPR' spatial filter 8 that reduces spatial noise but preserves critical temporal information. Modeling identifies the time-varying function that best describes the dopamine effect on 11C-raclopride uptake. The statistical step compares the fit of our (lp-ntPET) model 7 to a conventional model 9. Masking restricts treatment to those voxels best described by the new model. Visualization maps the dopamine function at each voxel to a color scale and produces a dopamine movie. Interim results and sample dopamine movies of cigarette smoking are presented.
Behavior, Issue 78, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Medicine, Anatomy, Physiology, Image Processing, Computer-Assisted, Receptors, Dopamine, Dopamine, Functional Neuroimaging, Binding, Competitive, mathematical modeling (systems analysis), Neurotransmission, transient, dopamine release, PET, modeling, linear, time-invariant, smoking, F-test, ventral-striatum, clinical techniques
Play Button
A Technique for Serial Collection of Cerebrospinal Fluid from the Cisterna Magna in Mouse
Authors: Li Liu, Karen Duff.
Institutions: Columbia University.
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is pathologically characterized by extracellular deposition of β-amyloid peptide (Aβ) and intraneuronal accumulation of hyperphosphorylated tau protein. Because cerebrospinal fluid (CSF) is in direct contact with the extracellular space of the brain, it provides a reflection of the biochemical changes in the brain in response to pathological processes. CSF from AD patients shows a decrease in the 42 amino-acid form of Aβ (Aβ42), and increases in total tau and hyperphosphorylated tau, though the mechanisms responsible for these changes are still not fully understood. Transgenic (Tg) mouse models of AD provide an excellent opportunity to investigate how and why Aβ or tau levels in CSF change as the disease progresses. Here, we demonstrate a refined cisterna magna puncture technique for CSF sampling from the mouse. This extremely gentle sampling technique allows serial CSF samples to be obtained from the same mouse at 2-3 month intervals which greatly minimizes the confounding effect of between-mouse variability in Aβ or tau levels, making it possible to detect subtle alterations over time. In combination with Aβ and tau ELISA, this technique will be useful for studies designed to investigate the relationship between the levels of CSF Aβ42 and tau, and their metabolism in the brain in AD mouse models. Studies in Tg mice could provide important validation as to the potential of CSF Aβ or tau levels to be used as biological markers for monitoring disease progression, and to monitor the effect of therapeutic interventions. As the mice can be sacrificed and the brains can be examined for biochemical or histological changes, the mechanisms underlying the CSF changes can be better assessed. These data are likely to be informative for interpretation of human AD CSF changes.
Neuroscience, Issue 21, Cerebrospinal fluid, Alzheimer's disease, Transgenic mouse, β-amyloid, tau
Play Button
Propagation of Human Embryonic Stem (ES) Cells
Authors: Laurence Daheron.
Institutions: MGH - Massachusetts General Hospital.
Cellular Biology, Issue 1, ES, embryonic stem cells, tissue culture
Play Button
An Assay for Permeability of the Zebrafish Embryonic Neuroepithelium
Authors: Jessica T. Chang, Hazel Sive.
Institutions: Massachusetts Institute of Technology, Whitehead Institute of Biomedical Research.
The brain ventricular system is conserved among vertebrates and is composed of a series of interconnected cavities called brain ventricles, which form during the earliest stages of brain development and are maintained throughout the animal's life. The brain ventricular system is found in vertebrates, and the ventricles develop after neural tube formation, when the central lumen fills with cerebrospinal fluid (CSF) 1,2. CSF is a protein rich fluid that is essential for normal brain development and function3-6. In zebrafish, brain ventricle inflation begins at approximately 18 hr post fertilization (hpf), after the neural tube is closed. Multiple processes are associated with brain ventricle formation, including formation of a neuroepithelium, tight junction formation that regulates permeability and CSF production. We showed that the Na,K-ATPase is required for brain ventricle inflation, impacting all these processes 7,8, while claudin 5a is necessary for tight junction formation 9. Additionally, we showed that "relaxation" of the embryonic neuroepithelium, via inhibition of myosin, is associated with brain ventricle inflation. To investigate the regulation of permeability during zebrafish brain ventricle inflation, we developed a ventricular dye retention assay. This method uses brain ventricle injection in a living zebrafish embryo, a technique previously developed in our lab10, to fluorescently label the cerebrospinal fluid. Embryos are then imaged over time as the fluorescent dye moves through the brain ventricles and neuroepithelium. The distance the dye front moves away from the basal (non-luminal) side of the neuroepithelium over time is quantified and is a measure of neuroepithelial permeability (Figure 1). We observe that dyes 70 kDa and smaller will move through the neuroepithelium and can be detected outside the embryonic zebrafish brain at 24 hpf (Figure 2). This dye retention assay can be used to analyze neuroepithelial permeability in a variety of different genetic backgrounds, at different times during development, and after environmental perturbations. It may also be useful in examining pathological accumulation of CSF. Overall, this technique allows investigators to analyze the role and regulation of permeability during development and disease.
Neuroscience, Issue 68, Zebrafish, neuroepithelium, brain ventricle, permeability
Play Button
Survivable Stereotaxic Surgery in Rodents
Authors: Brenda M. Geiger, Lauren E. Frank, Angela D. Caldera-Siu, Emmanuel N. Pothos.
Institutions: Tufts University.
The ability to measure extracellular basal levels of neurotransmitters in the brain of awake animals allows for the determination of effects of different systemic challenges (pharmacological or physiological) to the CNS. For example, one can directly measure how the animal's midbrain dopamine projections respond to dopamine-releasing drugs like d-amphetamine or natural stimuli like food. In this video, we show you how to implant guide cannulas targeting specific sites in the rat brain, how to insert and implant a microdialysis probe and how to use high performance liquid chromatography coupled with electrochemical detection (HPLC-EC) to measure extracellular levels of oxidizable neurotransmitters and metabolites. Local precise introduction of drugs through the microdialysis probe allows for refined work on site specificity in a compound s mechanism of action. This technique has excellent anatomical and chemical resolution but only modest time resolution as microdialysis samples are usually processed every 20-30 minutes to ensure detectable neurotransmitter levels. Complementary ex vivo tools (i.e., slice and cell culture electrophysiology) can assist with monitoring real-time neurotransmission.
Neuroscience, Issue 20, microdialysis, nucleus accumbens, catecholamines, dopamine, rats. mice, brain
Play Button
Ole Isacson: Development of New Therapies for Parkinson's Disease
Authors: Ole Isacson.
Institutions: Harvard Medical School.
Medicine, Issue 3, Parkinson' disease, Neuroscience, dopamine, neuron, L-DOPA, stem cell, transplantation
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.