JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Structure-function relationship of substituted bromomethylcoumarins in nucleoside specificity of RNA alkylation.
PLoS ONE
PUBLISHED: 01-01-2013
Selective alkylation of RNA nucleotides is an important field of RNA biochemistry, e.g. in applications of fluorescent labeling or in structural probing experiments, yet detailed structure-function studies of labeling agents are rare. Here, bromomethylcoumarins as reactive compounds for fluorescent labeling of RNA are developed as an attractive scaffold on which electronic properties can be modulated by varying the substituents. Six different 4-bromomethyl-coumarins of various substitution patterns were tested for nucleotide specificity of RNA alkylation using tRNA from Escherichia coli as substrate. Using semi-quantitative LC-MS/MS analysis, reactions at mildly acidic and slightly alkaline pH were compared. For all tested compounds, coumarin conjugates with 4-thiouridine, pseudouridine, guanosine, and uridine were identified, with the latter largely dominating. This data set shows that selectivity of ribonucleotide alkylation depends on the substitution pattern of the reactive dye, and even more strongly on the modulation of the reaction conditions. The latter should be therefore carefully optimized when striving to achieve selectivity. Interestingly, the highest selectivity for labeling of a modified nucleoside, namely of 4-thiouridine, was achieved with a compound whose selectivity was somewhat less dependent on reaction conditions than the other compounds. In summary, bromomethylcoumarin derivatives are a highly interesting class of compounds, since their selectivity for 4-thiouridine can be efficiently tuned by variation of substitution pattern and reaction conditions.
ABSTRACT
Biochemical experimentation generally requires accurate knowledge, at an early stage, of the nucleic acid, protein, and other biomolecular components in potentially heterogeneous specimens. Nucleic acids can be detected via several established approaches, including analytical methods that are spectrophotometric (e.g., A260), fluorometric (e.g., binding of fluorescent dyes), or colorimetric (nucleoside-specific chromogenic chemical reactions).1 Though it cannot readily distinguish RNA from DNA, the A260/A280 ratio is commonly employed, as it offers a simple and rapid2 assessment of the relative content of nucleic acid, which absorbs predominantly near 260 nm and protein, which absorbs primarily near 280 nm. Ratios < 0.8 are taken as indicative of 'pure' protein specimens, while pure nucleic acid (NA) is characterized by ratios > 1.53. However, there are scenarios in which the protein/NA content cannot be as clearly or reliably inferred from simple uv-vis spectrophotometric measurements. For instance, (i) samples may contain one or more proteins which are relatively devoid of the aromatic amino acids responsible for absorption at ≈280 nm (Trp, Tyr, Phe), as is the case with some small RNA-binding proteins, and (ii) samples can exhibit intermediate A260/A280 ratios (~0.8 < ~1.5), where the protein/NA content is far less clear and may even reflect some high-affinity association between the protein and NA components. For such scenarios, we describe herein a suite of colorimetric assays to rapidly distinguish RNA, DNA, and reducing sugars in a potentially mixed sample of biomolecules. The methods rely on the differential sensitivity of pentoses and other carbohydrates to Benedict's, Bial's (orcinol), and Dische's (diphenylamine) reagents; the streamlined protocols can be completed in a matter of minutes, without any additional steps of having to isolate the components. The assays can be performed in parallel to differentiate between RNA and DNA, as well as indicate the presence of free reducing sugars such as glucose, fructose, and ribose (Figure 1).
20 Related JoVE Articles!
Play Button
Isolation of Translating Ribosomes Containing Peptidyl-tRNAs for Functional and Structural Analyses
Authors: Nitin Shirole, Sreeram Balasubramanian, Charles Yanofsky, Luis Cruz-Vera.
Institutions: University of Alabama Huntsville, Stanford University .
Recently, structural and biochemical studies have detailed many of the molecular events that occur in the ribosome during inhibition of protein synthesis by antibiotics and during nascent polypeptide synthesis. Some of these antibiotics, and regulatory nascent polypeptides mostly in the form of peptidyl-tRNAs, inhibit either peptide bond formation or translation termination1-7. These inhibitory events can stop the movement of the ribosome, a phenomenon termed "translational arrest". Translation arrest induced by either an antibiotic or a nascent polypeptide has been shown to regulate the expression of genes involved in diverse cellular functions such as cell growth, antibiotic resistance, protein translocation and cell metabolism8-13. Knowledge of how antibiotics and regulatory nascent polypeptides alter ribosome function is essential if we are to understand the complete role of the ribosome in translation, in every organism. Here, we describe a simple methodology that can be used to purify, exclusively, for analysis, those ribosomes translating a specific mRNA and containing a specific peptidyl-tRNA14. This procedure is based on selective isolation of translating ribosomes bound to a biotin-labeled mRNA. These translational complexes are separated from other ribosomes in the same mixture, using streptavidin paramagnetic beads (SMB) and a magnetic field (MF). Biotin-labeled mRNAs are synthesized by run-off transcription assays using as templates PCR-generated DNA fragments that contain T7 transcriptional promoters. T7 RNA polymerase incorporates biotin-16-UMP from biotin-UTP; under our conditions approximately ten biotin-16-UMP molecules are incorporated in a 600 nt mRNA with a 25% UMP content. These biotin-labeled mRNAs are then isolated, and used in in vitro translation assays performed with release factor 2 (RF2)-depleted cell-free extracts obtained from Escherichia coli strains containing wild type or mutant ribosomes. Ribosomes translating the biotin-labeled mRNA sequences are stalled at the stop codon region, due to the absence of the RF2 protein, which normally accomplishes translation termination. Stalled ribosomes containing the newly synthesized peptidyl-tRNA are isolated and removed from the translation reactions using SMB and an MF. These beads only bind biotin-containing messages. The isolated, translational complexes, can be used to analyze the structural and functional features of wild type or mutant ribosomal components, or peptidyl-tRNA sequences, as well as determining ribosome interaction with antibiotics or other molecular factors 1,14-16. To examine the function of these isolated ribosome complexes, peptidyl-transferase assays can be performed in the presence of the antibiotic puromycin1. To study structural changes in translational complexes, well established procedures can be used, such as i) crosslinking to specific amino acids14 and/or ii) alkylation protection assays1,14,17.
Molecular Biology, Issue 48, Ribosome stalling, ribosome isolation, peptidyl-tRNA, in vitro translation, RNA chemical modification, puromycin, antibiotics.
2498
Play Button
Protease- and Acid-catalyzed Labeling Workflows Employing 18O-enriched Water
Authors: Diana Klingler, Markus Hardt.
Institutions: Boston Biomedical Research Institute.
Stable isotopes are essential tools in biological mass spectrometry. Historically, 18O-stable isotopes have been extensively used to study the catalytic mechanisms of proteolytic enzymes1-3. With the advent of mass spectrometry-based proteomics, the enzymatically-catalyzed incorporation of 18O-atoms from stable isotopically enriched water has become a popular method to quantitatively compare protein expression levels (reviewed by Fenselau and Yao4, Miyagi and Rao5 and Ye et al.6). 18O-labeling constitutes a simple and low-cost alternative to chemical (e.g. iTRAQ, ICAT) and metabolic (e.g. SILAC) labeling techniques7. Depending on the protease utilized, 18O-labeling can result in the incorporation of up to two 18O-atoms in the C-terminal carboxyl group of the cleavage product3. The labeling reaction can be subdivided into two independent processes, the peptide bond cleavage and the carboxyl oxygen exchange reaction8. In our PALeO (protease-assisted labeling employing 18O-enriched water) adaptation of enzymatic 18O-labeling, we utilized 50% 18O-enriched water to yield distinctive isotope signatures. In combination with high-resolution matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS/MS), the characteristic isotope envelopes can be used to identify cleavage products with a high level of specificity. We previously have used the PALeO-methodology to detect and characterize endogenous proteases9 and monitor proteolytic reactions10-11. Since PALeO encodes the very essence of the proteolytic cleavage reaction, the experimental setup is simple and biochemical enrichment steps of cleavage products can be circumvented. The PALeO-method can easily be extended to (i) time course experiments that monitor the dynamics of proteolytic cleavage reactions and (ii) the analysis of proteolysis in complex biological samples that represent physiological conditions. PALeO-TimeCourse experiments help identifying rate-limiting processing steps and reaction intermediates in complex proteolytic pathway reactions. Furthermore, the PALeO-reaction allows us to identify proteolytic enzymes such as the serine protease trypsin that is capable to rebind its cleavage products and catalyze the incorporation of a second 18O-atom. Such "double-labeling" enzymes can be used for postdigestion 18O-labeling, in which peptides are exclusively labeled by the carboxyl oxygen exchange reaction. Our third strategy extends labeling employing 18O-enriched water beyond enzymes and uses acidic pH conditions to introduce 18O-stable isotope signatures into peptides.
Biochemistry, Issue 72, Molecular Biology, Proteins, Proteomics, Chemistry, Physics, MALDI-TOF mass spectrometry, proteomics, proteolysis, quantification, stable isotope labeling, labeling, catalyst, peptides, 18-O enriched water
3891
Play Button
Microwave-assisted Intramolecular Dehydrogenative Diels-Alder Reactions for the Synthesis of Functionalized Naphthalenes/Solvatochromic Dyes
Authors: Laura S. Kocsis, Erica Benedetti, Kay M. Brummond.
Institutions: University of Pittsburgh.
Functionalized naphthalenes have applications in a variety of research fields ranging from the synthesis of natural or biologically active molecules to the preparation of new organic dyes. Although numerous strategies have been reported to access naphthalene scaffolds, many procedures still present limitations in terms of incorporating functionality, which in turn narrows the range of available substrates. The development of versatile methods for direct access to substituted naphthalenes is therefore highly desirable. The Diels-Alder (DA) cycloaddition reaction is a powerful and attractive method for the formation of saturated and unsaturated ring systems from readily available starting materials. A new microwave-assisted intramolecular dehydrogenative DA reaction of styrenyl derivatives described herein generates a variety of functionalized cyclopenta[b]naphthalenes that could not be prepared using existing synthetic methods. When compared to conventional heating, microwave irradiation accelerates reaction rates, enhances yields, and limits the formation of undesired byproducts. The utility of this protocol is further demonstrated by the conversion of a DA cycloadduct into a novel solvatochromic fluorescent dye via a Buchwald-Hartwig palladium-catalyzed cross-coupling reaction. Fluorescence spectroscopy, as an informative and sensitive analytical technique, plays a key role in research fields including environmental science, medicine, pharmacology, and cellular biology. Access to a variety of new organic fluorophores provided by the microwave-assisted dehydrogenative DA reaction allows for further advancement in these fields.
Chemistry, Issue 74, Chemical Engineering, Physical Chemistry, Microwave-assisted synthesis, dehydrogenative Diels-Alder reactions, naphthalenes, fluorescent dyes, solvatochromism, catalyst
50511
Play Button
Analysis of the Solvent Accessibility of Cysteine Residues on Maize rayado fino virus Virus-like Particles Produced in Nicotiana benthamiana Plants and Cross-linking of Peptides to VLPs
Authors: Angela Natilla, Rosemarie W. Hammond.
Institutions: Agricultural Research Service, United States Department of Agriculture, Agricultural Research Service, United States Department of Agriculture.
Mimicking and exploiting virus properties and physicochemical and physical characteristics holds promise to provide solutions to some of the world's most pressing challenges. The sheer range and types of viruses coupled with their intriguing properties potentially give endless opportunities for applications in virus-based technologies. Viruses have the ability to self- assemble into particles with discrete shape and size, specificity of symmetry, polyvalence, and stable properties under a wide range of temperature and pH conditions. Not surprisingly, with such a remarkable range of properties, viruses are proposed for use in biomaterials 9, vaccines 14, 15, electronic materials, chemical tools, and molecular electronic containers4, 5, 10, 11, 16, 18, 12. In order to utilize viruses in nanotechnology, they must be modified from their natural forms to impart new functions. This challenging process can be performed through several mechanisms including genetic modification of the viral genome and chemically attaching foreign or desired molecules to the virus particle reactive groups 8. The ability to modify a virus primarily depends upon the physiochemical and physical properties of the virus. In addition, the genetic or physiochemical modifications need to be performed without adversely affecting the virus native structure and virus function. Maize rayado fino virus (MRFV) coat proteins self-assemble in Escherichia coli producing stable and empty VLPs that are stabilized by protein-protein interactions and that can be used in virus-based technologies applications 8. VLPs produced in tobacco plants were examined as a scaffold on which a variety of peptides can be covalently displayed 13. Here, we describe the steps to 1) determine which of the solvent-accessible cysteines in a virus capsid are available for modification, and 2) bioconjugate peptides to the modified capsids. By using native or mutationally-inserted amino acid residues and standard coupling technologies, a wide variety of materials have been displayed on the surface of plant viruses such as, Brome mosaic virus 3, Carnation mottle virus 12, Cowpea chlorotic mottle virus 6, Tobacco mosaic virus 17, Turnip yellow mosaic virus 1, and MRFV 13.
Virology, Issue 72, Plant Biology, Infection, Molecular Biology, Biochemistry, Proteins, Chemicals and Drugs, Analytical, Diagnostic and Therapeutic Techniques and Equipment, Technology, Industry, Agriculture, Chemistry and materials, Virus-like particles (VLPs), VLP, sulfhydryl-reactive chemistries, labeling, cross-linking, multivalent display, Maize rayado fino virus, mosaic virus, virus, nanoparticle, drug delivery, peptides, Nicotiana benthamiana, plant model
50084
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
50476
Play Button
The ChroP Approach Combines ChIP and Mass Spectrometry to Dissect Locus-specific Proteomic Landscapes of Chromatin
Authors: Monica Soldi, Tiziana Bonaldi.
Institutions: European Institute of Oncology.
Chromatin is a highly dynamic nucleoprotein complex made of DNA and proteins that controls various DNA-dependent processes. Chromatin structure and function at specific regions is regulated by the local enrichment of histone post-translational modifications (hPTMs) and variants, chromatin-binding proteins, including transcription factors, and DNA methylation. The proteomic characterization of chromatin composition at distinct functional regions has been so far hampered by the lack of efficient protocols to enrich such domains at the appropriate purity and amount for the subsequent in-depth analysis by Mass Spectrometry (MS). We describe here a newly designed chromatin proteomics strategy, named ChroP (Chromatin Proteomics), whereby a preparative chromatin immunoprecipitation is used to isolate distinct chromatin regions whose features, in terms of hPTMs, variants and co-associated non-histonic proteins, are analyzed by MS. We illustrate here the setting up of ChroP for the enrichment and analysis of transcriptionally silent heterochromatic regions, marked by the presence of tri-methylation of lysine 9 on histone H3. The results achieved demonstrate the potential of ChroP in thoroughly characterizing the heterochromatin proteome and prove it as a powerful analytical strategy for understanding how the distinct protein determinants of chromatin interact and synergize to establish locus-specific structural and functional configurations.
Biochemistry, Issue 86, chromatin, histone post-translational modifications (hPTMs), epigenetics, mass spectrometry, proteomics, SILAC, chromatin immunoprecipitation , histone variants, chromatome, hPTMs cross-talks
51220
Play Button
Flat Mount Preparation for Observation and Analysis of Zebrafish Embryo Specimens Stained by Whole Mount In situ Hybridization
Authors: Christina N. Cheng, Yue Li, Amanda N. Marra, Valerie Verdun, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.
Developmental Biology, Issue 89, animals, vertebrates, fishes, zebrafish, growth and development, morphogenesis, embryonic and fetal development, organogenesis, natural science disciplines, embryo, whole mount in situ hybridization, flat mount, deyolking, imaging
51604
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
2910
Play Button
Synthesis of Antiviral Tetrahydrocarbazole Derivatives by Photochemical and Acid-catalyzed C-H Functionalization via Intermediate Peroxides (CHIPS)
Authors: Naeem Gulzar, Martin Klussmann.
Institutions: Max-Planck-Institut fuer Kohlenforschung.
The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown.
Chemistry, Issue 88, Catalysis, Photocatalysis, C-H functionalization, Oxygen, Peroxides, Indoles, Pharmaceuticals
51504
Play Button
Genome-wide Analysis of Aminoacylation (Charging) Levels of tRNA Using Microarrays
Authors: John Zaborske, Tao Pan.
Institutions: University of Chicago.
tRNA aminoacylation, or charging, levels can rapidly change within a cell in response to the environment[1]. Changes in tRNA charging levels in both prokaryotic and eukaryotic cells lead to translational regulation which is a major cellular mechanism of stress response. Familiar examples are the stringent response in E. coli and the Gcn2 stress response pathway in yeast ([2-6]). Recent work in E. coli and S. cerevisiae have shown that tRNA charging patterns are highly dynamic and depends on the type of stress experienced by cells [1, 6, 7]. The highly dynamic, variable nature of tRNA charging makes it essential to determine changes in tRNA charging levels at the genomic scale, in order to fully elucidate cellular response to environmental variations. In this review we present a method for simultaneously measuring the relative charging levels of all tRNAs in S. cerevisiae . While the protocol presented here is for yeast, this protocol has been successfully applied for determining relative charging levels in a wide variety of organisms including E. coli and human cell cultures[7, 8].
Cellular Biology, Issue 40, tRNA, aminoacylation, charging, microarray, S. cerevisiae
2007
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Profiling of Methyltransferases and Other S-adenosyl-L-homocysteine-binding Proteins by Capture Compound Mass Spectrometry (CCMS)
Authors: Thomas Lenz, Peter Poot, Olivia Gräbner, Mirko Glinski, Elmar Weinhold, Mathias Dreger, Hubert Köster.
Institutions: caprotec bioanalytics GmbH, RWTH Aachen University.
There is a variety of approaches to reduce the complexity of the proteome on the basis of functional small molecule-protein interactions such as affinity chromatography 1 or Activity Based Protein Profiling 2. Trifunctional Capture Compounds (CCs, Figure 1A) 3 are the basis for a generic approach, in which the initial equilibrium-driven interaction between a small molecule probe (the selectivity function, here S-adenosyl-L-homocysteine, SAH, Figure 1A) and target proteins is irreversibly fixed upon photo-crosslinking between an independent photo-activable reactivity function (here a phenylazide) of the CC and the surface of the target proteins. The sorting function (here biotin) serves to isolate the CC - protein conjugates from complex biological mixtures with the help of a solid phase (here streptavidin magnetic beads). Two configurations of the experiments are possible: "off-bead" 4 or the presently described "on-bead" configuration (Figure 1B). The selectivity function may be virtually any small molecule of interest (substrates, inhibitors, drug molecules). S-Adenosyl-L-methionine (SAM, Figure 1A) is probably, second to ATP, the most widely used cofactor in nature 5, 6. It is used as the major methyl group donor in all living organisms with the chemical reaction being catalyzed by SAM-dependent methyltransferases (MTases), which methylate DNA 7, RNA 8, proteins 9, or small molecules 10. Given the crucial role of methylation reactions in diverse physiological scenarios (gene regulation, epigenetics, metabolism), the profiling of MTases can be expected to become of similar importance in functional proteomics as the profiling of kinases. Analytical tools for their profiling, however, have not been available. We recently introduced a CC with SAH as selectivity group to fill this technological gap (Figure 1A). SAH, the product of SAM after methyl transfer, is a known general MTase product inhibitor 11. For this reason and because the natural cofactor SAM is used by further enzymes transferring other parts of the cofactor or initiating radical reactions as well as because of its chemical instability 12, SAH is an ideal selectivity function for a CC to target MTases. Here, we report the utility of the SAH-CC and CCMS by profiling MTases and other SAH-binding proteins from the strain DH5α of Escherichia coli (E. coli), one of the best-characterized prokaryotes, which has served as the preferred model organism in countless biochemical, biological, and biotechnological studies. Photo-activated crosslinking enhances yield and sensitivity of the experiment, and the specificity can be readily tested for in competition experiments using an excess of free SAH.
Biochemistry, Issue 46, Capture Compound, photo-crosslink, small molecule-protein interaction, methyltransferase, S-adenosyl-l-homocysteine, SAH, S-adenosyl-l-methionine, SAM, functional proteomics, LC-MS/MS
2264
Play Button
Methods to Identify the NMR Resonances of the 13C-Dimethyl N-terminal Amine on Reductively Methylated Proteins
Authors: Kevin J. Roberson, Pamlea N. Brady, Michelle M. Sweeney, Megan A. Macnaughtan.
Institutions: Louisiana State University.
Nuclear magnetic resonance (NMR) spectroscopy is a proven technique for protein structure and dynamic studies. To study proteins with NMR, stable magnetic isotopes are typically incorporated metabolically to improve the sensitivity and allow for sequential resonance assignment. Reductive 13C-methylation is an alternative labeling method for proteins that are not amenable to bacterial host over-expression, the most common method of isotope incorporation. Reductive 13C-methylation is a chemical reaction performed under mild conditions that modifies a protein's primary amino groups (lysine ε-amino groups and the N-terminal α-amino group) to 13C-dimethylamino groups. The structure and function of most proteins are not altered by the modification, making it a viable alternative to metabolic labeling. Because reductive 13C-methylation adds sparse, isotopic labels, traditional methods of assigning the NMR signals are not applicable. An alternative assignment method using mass spectrometry (MS) to aid in the assignment of protein 13C-dimethylamine NMR signals has been developed. The method relies on partial and different amounts of 13C-labeling at each primary amino group. One limitation of the method arises when the protein's N-terminal residue is a lysine because the α- and ε-dimethylamino groups of Lys1 cannot be individually measured with MS. To circumvent this limitation, two methods are described to identify the NMR resonance of the 13C-dimethylamines associated with both the N-terminal α-amine and the side chain ε-amine. The NMR signals of the N-terminal α-dimethylamine and the side chain ε-dimethylamine of hen egg white lysozyme, Lys1, are identified in 1H-13C heteronuclear single-quantum coherence spectra.
Chemistry, Issue 82, Boranes, Formaldehyde, Dimethylamines, Tandem Mass Spectrometry, nuclear magnetic resonance, MALDI-TOF, Reductive methylation, lysozyme, dimethyllysine, mass spectrometry, NMR
50875
Play Button
Metabolic Labeling of Newly Transcribed RNA for High Resolution Gene Expression Profiling of RNA Synthesis, Processing and Decay in Cell Culture
Authors: Bernd Rädle, Andrzej J. Rutkowski, Zsolt Ruzsics, Caroline C. Friedel, Ulrich H. Koszinowski, Lars Dölken.
Institutions: Max von Pettenkofer Institute, University of Cambridge, Ludwig-Maximilians-University Munich.
The development of whole-transcriptome microarrays and next-generation sequencing has revolutionized our understanding of the complexity of cellular gene expression. Along with a better understanding of the involved molecular mechanisms, precise measurements of the underlying kinetics have become increasingly important. Here, these powerful methodologies face major limitations due to intrinsic properties of the template samples they study, i.e. total cellular RNA. In many cases changes in total cellular RNA occur either too slowly or too quickly to represent the underlying molecular events and their kinetics with sufficient resolution. In addition, the contribution of alterations in RNA synthesis, processing, and decay are not readily differentiated. We recently developed high-resolution gene expression profiling to overcome these limitations. Our approach is based on metabolic labeling of newly transcribed RNA with 4-thiouridine (thus also referred to as 4sU-tagging) followed by rigorous purification of newly transcribed RNA using thiol-specific biotinylation and streptavidin-coated magnetic beads. It is applicable to a broad range of organisms including vertebrates, Drosophila, and yeast. We successfully applied 4sU-tagging to study real-time kinetics of transcription factor activities, provide precise measurements of RNA half-lives, and obtain novel insights into the kinetics of RNA processing. Finally, computational modeling can be employed to generate an integrated, comprehensive analysis of the underlying molecular mechanisms.
Genetics, Issue 78, Cellular Biology, Molecular Biology, Microbiology, Biochemistry, Eukaryota, Investigative Techniques, Biological Phenomena, Gene expression profiling, RNA synthesis, RNA processing, RNA decay, 4-thiouridine, 4sU-tagging, microarray analysis, RNA-seq, RNA, DNA, PCR, sequencing
50195
Play Button
Sequence-specific Labeling of Nucleic Acids and Proteins with Methyltransferases and Cofactor Analogues
Authors: Gisela Maria Hanz, Britta Jung, Anna Giesbertz, Matyas Juhasz, Elmar Weinhold.
Institutions: RWTH Aachen University.
S-Adenosyl-l-methionine (AdoMet or SAM)-dependent methyltransferases (MTase) catalyze the transfer of the activated methyl group from AdoMet to specific positions in DNA, RNA, proteins and small biomolecules. This natural methylation reaction can be expanded to a wide variety of alkylation reactions using synthetic cofactor analogues. Replacement of the reactive sulfonium center of AdoMet with an aziridine ring leads to cofactors which can be coupled with DNA by various DNA MTases. These aziridine cofactors can be equipped with reporter groups at different positions of the adenine moiety and used for Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). As a typical example we give a protocol for biotinylation of pBR322 plasmid DNA at the 5’-ATCGAT-3’ sequence with the DNA MTase M.BseCI and the aziridine cofactor 6BAz in one step. Extension of the activated methyl group with unsaturated alkyl groups results in another class of AdoMet analogues which are used for methyltransferase-directed Transfer of Activated Groups (mTAG). Since the extended side chains are activated by the sulfonium center and the unsaturated bond, these cofactors are called double-activated AdoMet analogues. These analogues not only function as cofactors for DNA MTases, like the aziridine cofactors, but also for RNA, protein and small molecule MTases. They are typically used for enzymatic modification of MTase substrates with unique functional groups which are labeled with reporter groups in a second chemical step. This is exemplified in a protocol for fluorescence labeling of histone H3 protein. A small propargyl group is transferred from the cofactor analogue SeAdoYn to the protein by the histone H3 lysine 4 (H3K4) MTase Set7/9 followed by click labeling of the alkynylated histone H3 with TAMRA azide. MTase-mediated labeling with cofactor analogues is an enabling technology for many exciting applications including identification and functional study of MTase substrates as well as DNA genotyping and methylation detection.
Biochemistry, Issue 93, S-adenosyl-l-methionine, AdoMet, SAM, aziridine cofactor, double activated cofactor, methyltransferase, DNA methylation, protein methylation, biotin labeling, fluorescence labeling, SMILing, mTAG
52014
Play Button
Nucleoside Triphosphates - From Synthesis to Biochemical Characterization
Authors: Marcel Hollenstein, Christine Catherine Smith, Michael Räz.
Institutions: University of Bern.
The traditional strategy for the introduction of chemical functionalities is the use of solid-phase synthesis by appending suitably modified phosphoramidite precursors to the nascent chain. However, the conditions used during the synthesis and the restriction to rather short sequences hamper the applicability of this methodology. On the other hand, modified nucleoside triphosphates are activated building blocks that have been employed for the mild introduction of numerous functional groups into nucleic acids, a strategy that paves the way for the use of modified nucleic acids in a wide-ranging palette of practical applications such as functional tagging and generation of ribozymes and DNAzymes. One of the major challenges resides in the intricacy of the methodology leading to the isolation and characterization of these nucleoside analogues. In this video article, we present a detailed protocol for the synthesis of these modified analogues using phosphorous(III)-based reagents. In addition, the procedure for their biochemical characterization is divulged, with a special emphasis on primer extension reactions and TdT tailing polymerization. This detailed protocol will be of use for the crafting of modified dNTPs and their further use in chemical biology.
Chemistry, Issue 86, Nucleic acid analogues, Bioorganic Chemistry, PCR, primer extension reactions, organic synthesis, PAGE, HPLC, nucleoside triphosphates
51385
Play Button
RNA Secondary Structure Prediction Using High-throughput SHAPE
Authors: Sabrina Lusvarghi, Joanna Sztuba-Solinska, Katarzyna J. Purzycka, Jason W. Rausch, Stuart F.J. Le Grice.
Institutions: Frederick National Laboratory for Cancer Research.
Understanding the function of RNA involved in biological processes requires a thorough knowledge of RNA structure. Toward this end, the methodology dubbed "high-throughput selective 2' hydroxyl acylation analyzed by primer extension", or SHAPE, allows prediction of RNA secondary structure with single nucleotide resolution. This approach utilizes chemical probing agents that preferentially acylate single stranded or flexible regions of RNA in aqueous solution. Sites of chemical modification are detected by reverse transcription of the modified RNA, and the products of this reaction are fractionated by automated capillary electrophoresis (CE). Since reverse transcriptase pauses at those RNA nucleotides modified by the SHAPE reagents, the resulting cDNA library indirectly maps those ribonucleotides that are single stranded in the context of the folded RNA. Using ShapeFinder software, the electropherograms produced by automated CE are processed and converted into nucleotide reactivity tables that are themselves converted into pseudo-energy constraints used in the RNAStructure (v5.3) prediction algorithm. The two-dimensional RNA structures obtained by combining SHAPE probing with in silico RNA secondary structure prediction have been found to be far more accurate than structures obtained using either method alone.
Genetics, Issue 75, Molecular Biology, Biochemistry, Virology, Cancer Biology, Medicine, Genomics, Nucleic Acid Probes, RNA Probes, RNA, High-throughput SHAPE, Capillary electrophoresis, RNA structure, RNA probing, RNA folding, secondary structure, DNA, nucleic acids, electropherogram, synthesis, transcription, high throughput, sequencing
50243
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at Anna.Karlgren@ebc.uu.se and Jens F. Sundström at Jens.Sundstrom@vbsg.slu.se
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
1205
Play Button
In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions
Authors: Grant E. Johnson, K. Don Dasitha Gunaratne, Julia Laskin.
Institutions: Pacific Northwest National Laboratory.
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.
Chemistry, Issue 88, soft landing, mass selected ions, electrospray, secondary ion mass spectrometry, infrared spectroscopy, organometallic, catalysis
51344
Play Button
Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency
Authors: Stéphanie Beaucourt, Antonio V. Bordería, Lark L. Coffey, Nina F. Gnädig, Marta Sanz-Ramos, Yasnee Beeharry, Marco Vignuzzi.
Institutions: Institut Pasteur .
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.
Immunology, Issue 52, Polymerase fidelity, RNA virus, mutation frequency, mutagen, RNA polymerase, viral evolution
2953
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.