JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Maximal aerobic and anaerobic power generation in large crocodiles versus mammals: implications for dinosaur gigantothermy.
PUBLISHED: 01-01-2013
Inertial homeothermy, the maintenance of a relatively constant body temperature that occurs simply because of large size, is often applied to large dinosaurs. Moreover, biophysical modelling and actual measurements show that large crocodiles can behaviourally achieve body temperatures above 30°C. Therefore it is possible that some dinosaurs could achieve high and stable body temperatures without the high energy cost of typical endotherms. However it is not known whether an ectothermic dinosaur could produce the equivalent amount of muscular power as an endothermic one. To address this question, this study analyses maximal power output from measured aerobic and anaerobic metabolism in burst exercising estuarine crocodiles, Crocodylusporosus, weighing up to 200 kg. These results are compared with similar data from endothermic mammals. A 1 kg crocodile at 30°C produces about 16 watts from aerobic and anaerobic energy sources during the first 10% of exhaustive activity, which is 57% of that expected for a similarly sized mammal. A 200 kg crocodile produces about 400 watts, or only 14% of that for a mammal. Phosphocreatine is a minor energy source, used only in the first seconds of exercise and of similar concentrations in reptiles and mammals. Ectothermic crocodiles lack not only the absolute power for exercise, but also the endurance, that are evident in endothermic mammals. Despite the ability to achieve high and fairly constant body temperatures, therefore, large, ectothermic, crocodile-like dinosaurs would have been competitively inferior to endothermic, mammal-like dinosaurs with high aerobic power. Endothermy in dinosaurs is likely to explain their dominance over mammals in terrestrial ecosystems throughout the Mesozoic.
Authors: Guilherme G. Artioli, Rômulo C. Bertuzzi, Hamilton Roschel, Sandro H. Mendes, Antonio H. Lancha Jr., Emerson Franchini.
Published: 03-20-2012
One of the most important aspects of the metabolic demand is the relative contribution of the energy systems to the total energy required for a given physical activity. Although some sports are relatively easy to be reproduced in a laboratory (e.g., running and cycling), a number of sports are much more difficult to be reproduced and studied in controlled situations. This method presents how to assess the differential contribution of the energy systems in sports that are difficult to mimic in controlled laboratory conditions. The concepts shown here can be adapted to virtually any sport. The following physiologic variables will be needed: rest oxygen consumption, exercise oxygen consumption, post-exercise oxygen consumption, rest plasma lactate concentration and post-exercise plasma peak lactate. To calculate the contribution of the aerobic metabolism, you will need the oxygen consumption at rest and during the exercise. By using the trapezoidal method, calculate the area under the curve of oxygen consumption during exercise, subtracting the area corresponding to the rest oxygen consumption. To calculate the contribution of the alactic anaerobic metabolism, the post-exercise oxygen consumption curve has to be adjusted to a mono or a bi-exponential model (chosen by the one that best fits). Then, use the terms of the fitted equation to calculate anaerobic alactic metabolism, as follows: ATP-CP metabolism = A1 (mL . s-1) x t1 (s). Finally, to calculate the contribution of the lactic anaerobic system, multiply peak plasma lactate by 3 and by the athlete’s body mass (the result in mL is then converted to L and into kJ). The method can be used for both continuous and intermittent exercise. This is a very interesting approach as it can be adapted to exercises and sports that are difficult to be mimicked in controlled environments. Also, this is the only available method capable of distinguishing the contribution of three different energy systems. Thus, the method allows the study of sports with great similarity to real situations, providing desirable ecological validity to the study.
25 Related JoVE Articles!
Play Button
Evaluation of Integrated Anaerobic Digestion and Hydrothermal Carbonization for Bioenergy Production
Authors: M. Toufiq Reza, Maja Werner, Marcel Pohl, Jan Mumme.
Institutions: Leibniz Institute for Agricultural Engineering.
Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only.
Environmental Sciences, Issue 88, Biomethane, Hydrothermal Carbonization (HTC), Calorific Value, Lignocellulosic Biomass, UASS, Anaerobic Digestion
Play Button
Using Continuous Data Tracking Technology to Study Exercise Adherence in Pulmonary Rehabilitation
Authors: Amanda K. Rizk, Rima Wardini, Emilie Chan-Thim, Barbara Trutschnigg, Amélie Forget, Véronique Pepin.
Institutions: Concordia University, Concordia University, Hôpital du Sacré-Coeur de Montréal.
Pulmonary rehabilitation (PR) is an important component in the management of respiratory diseases. The effectiveness of PR is dependent upon adherence to exercise training recommendations. The study of exercise adherence is thus a key step towards the optimization of PR programs. To date, mostly indirect measures, such as rates of participation, completion, and attendance, have been used to determine adherence to PR. The purpose of the present protocol is to describe how continuous data tracking technology can be used to measure adherence to a prescribed aerobic training intensity on a second-by-second basis. In our investigations, adherence has been defined as the percent time spent within a specified target heart rate range. As such, using a combination of hardware and software, heart rate is measured, tracked, and recorded during cycling second-by-second for each participant, for each exercise session. Using statistical software, the data is subsequently extracted and analyzed. The same protocol can be applied to determine adherence to other measures of exercise intensity, such as time spent at a specified wattage, level, or speed on the cycle ergometer. Furthermore, the hardware and software is also available to measure adherence to other modes of training, such as the treadmill, elliptical, stepper, and arm ergometer. The present protocol, therefore, has a vast applicability to directly measure adherence to aerobic exercise.
Medicine, Issue 81, Data tracking, exercise, rehabilitation, adherence, patient compliance, health behavior, user-computer interface.
Play Button
Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications
Authors: Qichao Hu, Antonio Caputo, Donald R. Sadoway.
Institutions: Massachusetts Institute of Technology, Massachusetts Institute of Technology.
Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.
Materials Science, Issue 78, Physics, Chemistry, Chemical Engineering, Chemistry and Materials, Engineering, Lithium Batteries, Polymer Electrolytes, Polyethylene oxide, Graft Copolymer, LiFePO4, synthesis, polymers
Play Button
Vascular Occlusion Training for Inclusion Body Myositis: A Novel Therapeutic Approach
Authors: Bruno Gualano, Carlos Ugrinowitsch, Manoel Neves Jr., Fernanda R. Lima, Ana Lúcia S. Pinto, Gilberto Laurentino, Valmor A.A. Tricoli, Antonio H. Lancha Jr., Hamilton Roschel.
Institutions: University of São Paulo, University of São Paulo.
Inclusion body myositis (IBM) is a rare idiopathic inflammatory myopathy. It is known to produces remarkable muscle weakness and to greatly compromise function and quality of life. Moreover, clinical practice suggests that, unlike other inflammatory myopathies, the majority of IBM patients are not responsive to treatment with immunosuppressive or immunomodulatory drugs to counteract disease progression1. Additionally, conventional resistance training programs have been proven ineffective in restoring muscle function and muscle mass in these patients2,3. Nevertheless, we have recently observed that restricting muscle blood flow using tourniquet cuffs in association with moderate intensity resistance training in an IBM patient produced a significant gain in muscle mass and function, along with substantial benefits in quality of life4. Thus, a new non-pharmacological approach for IBM patients has been proposed. Herein, we describe the details of a proposed protocol for vascular occlusion associated with a resistance training program for this population.
Medicine, Issue 40, exercise training, therapeutical, myositis, vascular occlusion
Play Button
Use of Artificial Sputum Medium to Test Antibiotic Efficacy Against Pseudomonas aeruginosa in Conditions More Relevant to the Cystic Fibrosis Lung
Authors: Sebastian Kirchner, Joanne L Fothergill, Elli A. Wright, Chloe E. James, Eilidh Mowat, Craig Winstanley.
Institutions: University of Liverpool , University of Liverpool .
There is growing concern about the relevance of in vitro antimicrobial susceptibility tests when applied to isolates of P. aeruginosa from cystic fibrosis (CF) patients. Existing methods rely on single or a few isolates grown aerobically and planktonically. Predetermined cut-offs are used to define whether the bacteria are sensitive or resistant to any given antibiotic1. However, during chronic lung infections in CF, P. aeruginosa populations exist in biofilms and there is evidence that the environment is largely microaerophilic2. The stark difference in conditions between bacteria in the lung and those during diagnostic testing has called into question the reliability and even relevance of these tests3. Artificial sputum medium (ASM) is a culture medium containing the components of CF patient sputum, including amino acids, mucin and free DNA. P. aeruginosa growth in ASM mimics growth during CF infections, with the formation of self-aggregating biofilm structures and population divergence4,5,6. The aim of this study was to develop a microtitre-plate assay to study antimicrobial susceptibility of P. aeruginosa based on growth in ASM, which is applicable to both microaerophilic and aerobic conditions. An ASM assay was developed in a microtitre plate format. P. aeruginosa biofilms were allowed to develop for 3 days prior to incubation with antimicrobial agents at different concentrations for 24 hours. After biofilm disruption, cell viability was measured by staining with resazurin. This assay was used to ascertain the sessile cell minimum inhibitory concentration (SMIC) of tobramycin for 15 different P. aeruginosa isolates under aerobic and microaerophilic conditions and SMIC values were compared to those obtained with standard broth growth. Whilst there was some evidence for increased MIC values for isolates grown in ASM when compared to their planktonic counterparts, the biggest differences were found with bacteria tested in microaerophilic conditions, which showed a much increased resistance up to a >128 fold, towards tobramycin in the ASM system when compared to assays carried out in aerobic conditions. The lack of association between current susceptibility testing methods and clinical outcome has questioned the validity of current methods3. Several in vitro models have been used previously to study P. aeruginosa biofilms7, 8. However, these methods rely on surface attached biofilms, whereas the ASM biofilms resemble those observed in the CF lung9 . In addition, reduced oxygen concentration in the mucus has been shown to alter the behavior of P. aeruginosa2 and affect antibiotic susceptibility10. Therefore using ASM under microaerophilic conditions may provide a more realistic environment in which to study antimicrobial susceptibility.
Immunology, Issue 64, Microbiology, Pseudomonas aeruginosa, antimicrobial susceptibility, artificial sputum media, lung infection, cystic fibrosis, diagnostics, plankton
Play Button
Culturing and Maintaining Clostridium difficile in an Anaerobic Environment
Authors: Adrianne N. Edwards, Jose M. Suárez, Shonna M. McBride.
Institutions: Emory University School of Medicine.
Clostridium difficile is a Gram-positive, anaerobic, sporogenic bacterium that is primarily responsible for antibiotic associated diarrhea (AAD) and is a significant nosocomial pathogen. C. difficile is notoriously difficult to isolate and cultivate and is extremely sensitive to even low levels of oxygen in the environment. Here, methods for isolating C. difficile from fecal samples and subsequently culturing C. difficile for preparation of glycerol stocks for long-term storage are presented. Techniques for preparing and enumerating spore stocks in the laboratory for a variety of downstream applications including microscopy and animal studies are also described. These techniques necessitate an anaerobic chamber, which maintains a consistent anaerobic environment to ensure proper conditions for optimal C. difficile growth. We provide protocols for transferring materials in and out of the chamber without causing significant oxygen contamination along with suggestions for regular maintenance required to sustain the appropriate anaerobic environment for efficient and consistent C. difficile cultivation.
Immunology, Issue 79, Genetics, Bacteria, Anaerobic, Gram-Positive Endospore-Forming Rods, Spores, Bacterial, Gram-Positive Bacterial Infections, Clostridium Infections, Bacteriology, Clostridium difficile, Gram-positive, anaerobic chamber, spore, culturing, maintenance, cell culture
Play Button
Continuously-stirred Anaerobic Digester to Convert Organic Wastes into Biogas: System Setup and Basic Operation
Authors: Joseph G. Usack, Catherine M. Spirito, Largus T. Angenent.
Institutions: Cornell University.
Anaerobic digestion (AD) is a bioprocess that is commonly used to convert complex organic wastes into a useful biogas with methane as the energy carrier 1-3. Increasingly, AD is being used in industrial, agricultural, and municipal waste(water) treatment applications 4,5. The use of AD technology allows plant operators to reduce waste disposal costs and offset energy utility expenses. In addition to treating organic wastes, energy crops are being converted into the energy carrier methane 6,7. As the application of AD technology broadens for the treatment of new substrates and co-substrate mixtures 8, so does the demand for a reliable testing methodology at the pilot- and laboratory-scale. Anaerobic digestion systems have a variety of configurations, including the continuously stirred tank reactor (CSTR), plug flow (PF), and anaerobic sequencing batch reactor (ASBR) configurations 9. The CSTR is frequently used in research due to its simplicity in design and operation, but also for its advantages in experimentation. Compared to other configurations, the CSTR provides greater uniformity of system parameters, such as temperature, mixing, chemical concentration, and substrate concentration. Ultimately, when designing a full-scale reactor, the optimum reactor configuration will depend on the character of a given substrate among many other nontechnical considerations. However, all configurations share fundamental design features and operating parameters that render the CSTR appropriate for most preliminary assessments. If researchers and engineers use an influent stream with relatively high concentrations of solids, then lab-scale bioreactor configurations cannot be fed continuously due to plugging problems of lab-scale pumps with solids or settling of solids in tubing. For that scenario with continuous mixing requirements, lab-scale bioreactors are fed periodically and we refer to such configurations as continuously stirred anaerobic digesters (CSADs). This article presents a general methodology for constructing, inoculating, operating, and monitoring a CSAD system for the purpose of testing the suitability of a given organic substrate for long-term anaerobic digestion. The construction section of this article will cover building the lab-scale reactor system. The inoculation section will explain how to create an anaerobic environment suitable for seeding with an active methanogenic inoculum. The operating section will cover operation, maintenance, and troubleshooting. The monitoring section will introduce testing protocols using standard analyses. The use of these measures is necessary for reliable experimental assessments of substrate suitability for AD. This protocol should provide greater protection against a common mistake made in AD studies, which is to conclude that reactor failure was caused by the substrate in use, when really it was improper user operation 10.
Bioengineering, Issue 65, Environmental Engineering, Chemistry, Anaerobic Digestion, Bioenergy, Biogas, Methane, Organic Waste, Methanogenesis, Energy Crops
Play Button
Methods for Facilitating Microbial Growth on Pulp Mill Waste Streams and Characterization of the Biodegradation Potential of Cultured Microbes
Authors: Stephanie L. Mathews, Ali S. Ayoub, Joel Pawlak, Amy M. Grunden.
Institutions: North Carolina State University, North Carolina State University.
The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor.
Environmental Sciences, Issue 82, biodegradation (bacterial degradation), pulp mill waste, black liquor, kraft process, lignocellulose extraction, microorganisms, fermentation products, GC-MS
Play Button
Enteric Bacterial Invasion Of Intestinal Epithelial Cells In Vitro Is Dramatically Enhanced Using a Vertical Diffusion Chamber Model
Authors: Neveda Naz, Dominic C. Mills, Brendan W. Wren, Nick Dorrell.
Institutions: London School of Hygiene & Tropical Medicine.
The interactions of bacterial pathogens with host cells have been investigated extensively using in vitro cell culture methods. However as such cell culture assays are performed under aerobic conditions, these in vitro models may not accurately represent the in vivo environment in which the host-pathogen interactions take place. We have developed an in vitro model of infection that permits the coculture of bacteria and host cells under different medium and gas conditions. The Vertical Diffusion Chamber (VDC) model mimics the conditions in the human intestine where bacteria will be under conditions of very low oxygen whilst tissue will be supplied with oxygen from the blood stream. Placing polarized intestinal epithelial cell (IEC) monolayers grown in Snapwell inserts into a VDC creates separate apical and basolateral compartments. The basolateral compartment is filled with cell culture medium, sealed and perfused with oxygen whilst the apical compartment is filled with broth, kept open and incubated under microaerobic conditions. Both Caco-2 and T84 IECs can be maintained in the VDC under these conditions without any apparent detrimental effects on cell survival or monolayer integrity. Coculturing experiments performed with different C. jejuni wild-type strains and different IEC lines in the VDC model with microaerobic conditions in the apical compartment reproducibly result in an increase in the number of interacting (almost 10-fold) and intracellular (almost 100-fold) bacteria compared to aerobic culture conditions1. The environment created in the VDC model more closely mimics the environment encountered by C. jejuni in the human intestine and highlights the importance of performing in vitro infection assays under conditions that more closely mimic the in vivo reality. We propose that use of the VDC model will allow new interpretations of the interactions between bacterial pathogens and host cells.
Infection, Issue 80, Gram-Negative Bacteria, Bacterial Infections, Gastrointestinal Diseases, Campylobacter jejuni, bacterial invasion, intestinal epithelial cells, models of infection
Play Button
A New Approach for the Comparative Analysis of Multiprotein Complexes Based on 15N Metabolic Labeling and Quantitative Mass Spectrometry
Authors: Kerstin Trompelt, Janina Steinbeck, Mia Terashima, Michael Hippler.
Institutions: University of Münster, Carnegie Institution for Science.
The introduced protocol provides a tool for the analysis of multiprotein complexes in the thylakoid membrane, by revealing insights into complex composition under different conditions. In this protocol the approach is demonstrated by comparing the composition of the protein complex responsible for cyclic electron flow (CEF) in Chlamydomonas reinhardtii, isolated from genetically different strains. The procedure comprises the isolation of thylakoid membranes, followed by their separation into multiprotein complexes by sucrose density gradient centrifugation, SDS-PAGE, immunodetection and comparative, quantitative mass spectrometry (MS) based on differential metabolic labeling (14N/15N) of the analyzed strains. Detergent solubilized thylakoid membranes are loaded on sucrose density gradients at equal chlorophyll concentration. After ultracentrifugation, the gradients are separated into fractions, which are analyzed by mass-spectrometry based on equal volume. This approach allows the investigation of the composition within the gradient fractions and moreover to analyze the migration behavior of different proteins, especially focusing on ANR1, CAS, and PGRL1. Furthermore, this method is demonstrated by confirming the results with immunoblotting and additionally by supporting the findings from previous studies (the identification and PSI-dependent migration of proteins that were previously described to be part of the CEF-supercomplex such as PGRL1, FNR, and cyt f). Notably, this approach is applicable to address a broad range of questions for which this protocol can be adopted and e.g. used for comparative analyses of multiprotein complex composition isolated from distinct environmental conditions.
Microbiology, Issue 85, Sucrose density gradients, Chlamydomonas, multiprotein complexes, 15N metabolic labeling, thylakoids
Play Button
EPR Monitored Redox Titration of the Cofactors of Saccharomyces cerevisiae Nar1
Authors: Peter-Leon Hagedoorn, Laura van der Weel, Wilfred R. Hagen.
Institutions: Delft University of Technology.
Electron Paramagnetic Resonance (EPR) monitored redox titrations are a powerful method to determine the midpoint potential of cofactors in proteins and to identify and quantify the cofactors in their detectable redox state. The technique is complementary to direct electrochemistry (voltammetry) approaches, as it does not offer information on electron transfer rates, but does establish the identity and redox state of the cofactors in the protein under study. The technique is widely applicable to any protein containing an electron paramagnetic resonance (EPR) detectable cofactor. A typical titration requires 2 ml protein with a cofactor concentration in the range of 1-100 µM. The protein is titrated with a chemical reductant (sodium dithionite) or oxidant (potassium ferricyanide) in order to poise the sample at a certain potential. A platinum wire and a Ag/AgCl reference electrode are connected to a voltmeter to measure the potential of the protein solution. A set of 13 different redox mediators is used to equilibrate between the redox cofactors of the protein and the electrodes. Samples are drawn at different potentials and the Electron Paramagnetic Resonance spectra, characteristic for the different redox cofactors in the protein, are measured. The plot of the signal intensity versus the sample potential is analyzed using the Nernst equation in order to determine the midpoint potential of the cofactor.
Biochemistry, Issue 93, Redox titration, electron paramagnetic resonance, Nar1, cofactor, iron-sulfur cluster, mononuclear iron, midpoint potential
Play Button
Finger-stick Blood Sampling Methodology for the Determination of Exercise-induced Lymphocyte Apoptosis
Authors: James Navalta, Brian McFarlin, Richard Simpson, Elizabeth Fedor, Holly Kell, Scott Lyons, Scott Arnett, Mark Schafer.
Institutions: Western Kentucky University, University of Houston.
Exercise is a physiological stimulus capable of inducing apoptosis in immune cells. To date, various limitations have been identified with the measurement of this phenomenon, particularly relating to the amount of time required to isolate and treat a blood sample prior to the assessment of cell death. Because of this, it is difficult to determine whether reported increases in immune cell apoptosis can be contributed to the actual effect of exercise on the system, or are a reflection of the time and processing necessary to eventually obtain this measurement. In this article we demonstrate a rapid and minimally invasive procedure for the analysis of exercise-induced lymphocyte apoptosis. Unlike other techniques, whole blood is added to an antibody panel immediately upon obtaining a sample. Following the incubation period, red blood cells are lysed and samples are ready to be analyzed. The use of a finger-stick sampling procedure reduces the volume of blood required, and minimizes the discomfort to subjects.
Immunology, Issue 48, Leukocyte phenotyping, programmed cell death, muscular activity, technique development
Play Button
Endurance Training Protocol and Longitudinal Performance Assays for Drosophila melanogaster
Authors: Martin J. Tinkerhess, Sara Ginzberg, Nicole Piazza, Robert J. Wessells.
Institutions: University of Michigan Medical School.
One of the most pressing problems facing modern medical researchers is the surging levels of obesity, with the consequent increase in associated disorders such as diabetes and cardiovascular disease 1-3. An important topic of research into these associated health problems involves the role of endurance exercise as a beneficial intervention. Exercise training is an inexpensive, non-invasive intervention with several beneficial results, including reduction in excess body fat 4, increased insulin sensitivity in skeletal muscle 5, increased anti-inflammatory and antioxidative responses 6, and improved contractile capacity in cardiomyocytes 7. Low intensity exercise is known to increase mitochondrial activity and biogenesis in humans 8 and mice, with the transcriptional coactivator PGC1-α as an important intermediate 9,10. Despite the importance of exercise as a tool for combating several important age-related diseases, extensive longitudinal genetic studies have been impeded by the lack of an endurance training protocol for a short-lived genetic model species. The variety of genetic tools available for use with Drosophila, together with its short lifespan and inexpensive maintenance, make it an appealing model for further study of these genetic mechanisms. With this in mind we have developed a novel apparatus, known as the Power Tower, for large scale exercise-training in Drosophila melanogaster 11. The Power Tower utilizes the flies' instinctive negative geotaxis behavior to repetitively induce rapid climbing. Each time the machine lifts, then drops, the platform of flies, the flies are induced to climb. Flies continue to respond as long as the machine is in operation or until they become too fatigued to respond. Thus, the researcher can use this machine to provide simultaneous training to large numbers of age-matched and genetically identical flies. Additionally, we describe associated assays useful to track longitudinal progress of fly cohorts during training.
Physiology, Issue 61, Drosophila, endurance, exercise, training
Play Button
The Use of Thermal Infra-Red Imaging to Detect Delayed Onset Muscle Soreness
Authors: Hani H. Al-Nakhli, Jerrold S. Petrofsky, Michael S. Laymon, Lee S. Berk.
Institutions: Loma Linda University, Azusa Pacific University.
Delayed onset muscle soreness (DOMS), also known as exercise induced muscle damage (EIMD), is commonly experienced in individuals who have been physically inactive for prolonged periods of time, and begin with an unexpected bout of exercise1-4, but can also occur in athletes who exercise beyond their normal limits of training5. The symptoms associated with this painful phenomenon can range from slight muscle tenderness, to severe debilitating pain1,3,5. The intensity of these symptoms and the related discomfort increases within the first 24 hours following the termination of the exercise, and peaks between 24 to 72 hours post exercise1,3. For this reason, DOMS is one of the most common recurrent forms of sports injury that can affect an individual’s performance, and become intimidating for many1,4. For the last 3 decades, the DOMS phenomenon has gained a considerable amount of interest amongst researchers and specialists in exercise physiology, sports, and rehabilitation fields6. There has been a variety of published studies investigating this painful occurrence in regards to its underlying mechanisms, treatment interventions, and preventive strategies1-5,7-12. However, it is evident from the literature that DOMS is not an easy pathology to quantify, as there is a wide amount of variability between the measurement tools and methods used to quantify this condition6. It is obvious that no agreement has been made on one best evaluation measure for DOMS, which makes it difficult to verify whether a specific intervention really helps in decreasing the symptoms associated with this type of soreness or not. Thus, DOMS can be seen as somewhat ambiguous, because many studies depend on measuring soreness using a visual analog scale (VAS)10,13-15, which is a subjective rather than an objective measure. Even though needle biopsies of the muscle, and blood levels of myofibre proteins might be considered a gold standard to some6, large variations in some of these blood proteins have been documented 6,16, in addition to the high risks sometimes associated with invasive techniques. Therefore, in the current investigation, we tested a thermal infra-red (IR) imaging technique of the skin above the exercised muscle to detect the associated muscle soreness. Infra-red thermography has been used, and found to be successful in detecting different types of diseases and infections since the 1950’s17. But surprisingly, near to nothing has been done on DOMS and changes in skin temperature. The main purpose of this investigation was to examine changes in DOMS using this safe and non-invasive technique.
Medicine, Issue 59, DOMS, Imaging, Thermal, Infra-Red, Muscle, Soreness, Thermography
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry
Authors: Mirella Vivoli, Halina R. Novak, Jennifer A. Littlechild, Nicholas J. Harmer.
Institutions: University of Exeter.
A wide range of methods are currently available for determining the dissociation constant between a protein and interacting small molecules. However, most of these require access to specialist equipment, and often require a degree of expertise to effectively establish reliable experiments and analyze data. Differential scanning fluorimetry (DSF) is being increasingly used as a robust method for initial screening of proteins for interacting small molecules, either for identifying physiological partners or for hit discovery. This technique has the advantage that it requires only a PCR machine suitable for quantitative PCR, and so suitable instrumentation is available in most institutions; an excellent range of protocols are already available; and there are strong precedents in the literature for multiple uses of the method. Past work has proposed several means of calculating dissociation constants from DSF data, but these are mathematically demanding. Here, we demonstrate a method for estimating dissociation constants from a moderate amount of DSF experimental data. These data can typically be collected and analyzed within a single day. We demonstrate how different models can be used to fit data collected from simple binding events, and where cooperative binding or independent binding sites are present. Finally, we present an example of data analysis in a case where standard models do not apply. These methods are illustrated with data collected on commercially available control proteins, and two proteins from our research program. Overall, our method provides a straightforward way for researchers to rapidly gain further insight into protein-ligand interactions using DSF.
Biophysics, Issue 91, differential scanning fluorimetry, dissociation constant, protein-ligand interactions, StepOne, cooperativity, WcbI.
Play Button
Polymerase Chain Reaction: Basic Protocol Plus Troubleshooting and Optimization Strategies
Authors: Todd C. Lorenz.
Institutions: University of California, Los Angeles .
In the biological sciences there have been technological advances that catapult the discipline into golden ages of discovery. For example, the field of microbiology was transformed with the advent of Anton van Leeuwenhoek's microscope, which allowed scientists to visualize prokaryotes for the first time. The development of the polymerase chain reaction (PCR) is one of those innovations that changed the course of molecular science with its impact spanning countless subdisciplines in biology. The theoretical process was outlined by Keppe and coworkers in 1971; however, it was another 14 years until the complete PCR procedure was described and experimentally applied by Kary Mullis while at Cetus Corporation in 1985. Automation and refinement of this technique progressed with the introduction of a thermal stable DNA polymerase from the bacterium Thermus aquaticus, consequently the name Taq DNA polymerase. PCR is a powerful amplification technique that can generate an ample supply of a specific segment of DNA (i.e., an amplicon) from only a small amount of starting material (i.e., DNA template or target sequence). While straightforward and generally trouble-free, there are pitfalls that complicate the reaction producing spurious results. When PCR fails it can lead to many non-specific DNA products of varying sizes that appear as a ladder or smear of bands on agarose gels. Sometimes no products form at all. Another potential problem occurs when mutations are unintentionally introduced in the amplicons, resulting in a heterogeneous population of PCR products. PCR failures can become frustrating unless patience and careful troubleshooting are employed to sort out and solve the problem(s). This protocol outlines the basic principles of PCR, provides a methodology that will result in amplification of most target sequences, and presents strategies for optimizing a reaction. By following this PCR guide, students should be able to: ● Set up reactions and thermal cycling conditions for a conventional PCR experiment ● Understand the function of various reaction components and their overall effect on a PCR experiment ● Design and optimize a PCR experiment for any DNA template ● Troubleshoot failed PCR experiments
Basic Protocols, Issue 63, PCR, optimization, primer design, melting temperature, Tm, troubleshooting, additives, enhancers, template DNA quantification, thermal cycler, molecular biology, genetics
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Biochemical and High Throughput Microscopic Assessment of Fat Mass in Caenorhabditis Elegans
Authors: Elizabeth C. Pino, Christopher M. Webster, Christopher E. Carr, Alexander A. Soukas.
Institutions: Massachusetts General Hospital and Harvard Medical School, Massachusetts Institute of Technology.
The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research.
Genetics, Issue 73, Biochemistry, Cellular Biology, Molecular Biology, Developmental Biology, Physiology, Anatomy, Caenorhabditis elegans, Obesity, Energy Metabolism, Lipid Metabolism, C. elegans, fluorescent lipid staining, lipids, Nile red, fat, high throughput screening, obesity, gas chromatography, mass spectrometry, GC/MS, animal model
Play Button
Swimming Performance Assessment in Fishes
Authors: Keith B. Tierney.
Institutions: University of Alberta.
Swimming performance tests of fish have been integral to studies of muscle energetics, swimming mechanics, gas exchange, cardiac physiology, disease, pollution, hypoxia and temperature. This paper describes a flexible protocol to assess fish swimming performance using equipment in which water velocity can be controlled. The protocol involves one to several stepped increases in flow speed that are intended to cause fish to fatigue. Step speeds and their duration can be set to capture swimming abilities of different physiological and ecological relevance. Most frequently step size is set to determine critical swimming velocity (Ucrit), which is intended to capture maximum sustained swimming ability. Traditionally this test has consisted of approximately ten steps each of 20 min duration. However, steps of shorter duration (e.g. 1 min) are increasingly being utilized to capture acceleration ability or burst swimming performance. Regardless of step size, swimming tests can be repeated over time to gauge individual variation and recovery ability. Endpoints related to swimming such as measures of metabolic rate, fin use, ventilation rate, and of behavior, such as the distance between schooling fish, are often included before, during and after swimming tests. Given the diversity of fish species, the number of unexplored research questions, and the importance of many species to global ecology and economic health, studies of fish swimming performance will remain popular and invaluable for the foreseeable future.
Physiology, Issue 51, fish, swimming, Ucrit, burst, sustained, prolonged, schooling performance
Play Button
Measurement of Metabolic Rate in Drosophila using Respirometry
Authors: Andriy S. Yatsenko, April K. Marrone, Mariya M. Kucherenko, Halyna R. Shcherbata.
Institutions: Max Planck Institute for Biophysical Chemistry.
Metabolic disorders are a frequent problem affecting human health. Therefore, understanding the mechanisms that regulate metabolism is a crucial scientific task. Many disease causing genes in humans have a fly homologue, making Drosophila a good model to study signaling pathways involved in the development of different disorders. Additionally, the tractability of Drosophila simplifies genetic screens to aid in identifying novel therapeutic targets that may regulate metabolism. In order to perform such a screen a simple and fast method to identify changes in the metabolic state of flies is necessary. In general, carbon dioxide production is a good indicator of substrate oxidation and energy expenditure providing information about metabolic state. In this protocol we introduce a simple method to measure CO2 output from flies. This technique can potentially aid in the identification of genetic perturbations affecting metabolic rate.
Physiology, Issue 88, Insects, Diptera, Metabolism, Drosophila, energy homeostasis, respiration, carbon dioxide (CO2), oxygen (O2)
Play Button
Sampling Human Indigenous Saliva Peptidome Using a Lollipop-Like Ultrafiltration Probe: Simplify and Enhance Peptide Detection for Clinical Mass Spectrometry
Authors: Wenhong Zhu, Richard L. Gallo, Chun-Ming Huang.
Institutions: Sanford-Burnham Medical Research Institute, University of California, San Diego , VA San Diego Healthcare Center, University of California, San Diego .
Although human saliva proteome and peptidome have been revealed 1-2 they were majorly identified from tryptic digests of saliva proteins. Identification of indigenous peptidome of human saliva without prior digestion with exogenous enzymes becomes imperative, since native peptides in human saliva provide potential values for diagnosing disease, predicting disease progression, and monitoring therapeutic efficacy. Appropriate sampling is a critical step for enhancement of identification of human indigenous saliva peptidome. Traditional methods of sampling human saliva involving centrifugation to remove debris 3-4 may be too time-consuming to be applicable for clinical use. Furthermore, debris removal by centrifugation may be unable to clean most of the infected pathogens and remove the high abundance proteins that often hinder the identification of low abundance peptidome. Conventional proteomic approaches that primarily utilize two-dimensional gel electrophoresis (2-DE) gels in conjugation with in-gel digestion are capable of identifying many saliva proteins 5-6. However, this approach is generally not sufficiently sensitive to detect low abundance peptides/proteins. Liquid chromatography-Mass spectrometry (LC-MS) based proteomics is an alternative that can identify proteins without prior 2-DE separation. Although this approach provides higher sensitivity, it generally needs prior sample pre-fractionation 7 and pre-digestion with trypsin, which makes it difficult for clinical use. To circumvent the hindrance in mass spectrometry due to sample preparation, we have developed a technique called capillary ultrafiltration (CUF) probes 8-11. Data from our laboratory demonstrated that the CUF probes are capable of capturing proteins in vivo from various microenvironments in animals in a dynamic and minimally invasive manner 8-11. No centrifugation is needed since a negative pressure is created by simply syringe withdrawing during sample collection. The CUF probes combined with LC-MS have successfully identified tryptic-digested proteins 8-11. In this study, we upgraded the ultrafiltration sampling technique by creating a lollipop-like ultrafiltration (LLUF) probe that can easily fit in the human oral cavity. The direct analysis by LC-MS without trypsin digestion showed that human saliva indigenously contains many peptide fragments derived from various proteins. Sampling saliva with LLUF probes avoided centrifugation but effectively removed many larger and high abundance proteins. Our mass spectrometric results illustrated that many low abundance peptides became detectable after filtering out larger proteins with LLUF probes. Detection of low abundance saliva peptides was independent of multiple-step sample separation with chromatography. For clinical application, the LLUF probes incorporated with LC-MS could potentially be used in the future to monitor disease progression from saliva.
Medicine, Issue 66, Molecular Biology, Genetics, Sampling, Saliva, Peptidome, Ultrafiltration, Mass spectrometry
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.