JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Accelerated coronary angiogenesis by vegfr1-knockout endocardial cells.
PUBLISHED: 01-01-2013
During mouse heart development, ventricular endocardial cells give rise to the coronary arteries by angiogenesis. Myocardially-derived vascular endothelial growth factor-a (Vegfa) regulates embryonic coronary angiogenesis through vascular endothelial growth factor-receptor 2 (Vegfr2) expressed in the endocardium. In this study, we investigated the role of endocardially-produced soluble Vegfr1 (sVegfr1) in the coronary angiogenesis. We deleted sVegfr1 in the endocardium of the developing mouse heart and found that this deletion resulted in a precocious formation of coronary plexuses. Using an ex vivo coronary angiogenesis assay, we showed that the Vegfr1-null ventricular endocardial cells underwent excessive angiogenesis and generated extensive endothelial tubular networks. We also revealed by qPCR analysis that expression of genes involved in the Vegf-Notch pathway was augmented in the Vegfr1-null hearts. We further showed that inhibition of Notch signaling blocked the formation of coronary plexuses by the ventricular endocardial cells. These results establish that Vegfr1 produced in the endocardium negatively regulates embryonic coronary angiogenesis, possibly by limiting the Vegf-Notch signaling.
Authors: Laura A. Dyer, Cam Patterson.
Published: 05-24-2013
Developmental studies in the mouse are hampered by the inaccessibility of the embryo during gestation. Thus, protocols to isolate and culture individual organs of interest are essential to provide a method of both visualizing changes in development and allowing novel treatment strategies. To promote the long-term culture of the embryonic heart at late stages of gestation, we developed a protocol in which the excised heart is cultured in a semi-solid, dilute Matrigel. This substrate provides enough support to maintain the three-dimensional structure but is flexible enough to allow continued contraction. In brief, hearts are excised from the embryo and placed in a mixture of cold Matrigel diluted 1:1 with growth medium. After the diluted Matrigel solidifies, growth medium is added to the culture dish. Hearts excised as late as embryonic day 16.5 were viable for four days post-dissection. Analysis of the coronary plexus shows that this method does not disrupt coronary vascular development. Thus, we present a novel method for long-term culture of embryonic hearts.
23 Related JoVE Articles!
Play Button
A Research Method For Detecting Transient Myocardial Ischemia In Patients With Suspected Acute Coronary Syndrome Using Continuous ST-segment Analysis
Authors: Michele M. Pelter, Teri M. Kozik, Denise L. Loranger, Mary G. Carey.
Institutions: University of Nevada, Reno, St. Joseph's Medical Center, University of Rochester Medical Center .
Each year, an estimated 785,000 Americans will have a new coronary attack, or acute coronary syndrome (ACS). The pathophysiology of ACS involves rupture of an atherosclerotic plaque; hence, treatment is aimed at plaque stabilization in order to prevent cellular death. However, there is considerable debate among clinicians, about which treatment pathway is best: early invasive using percutaneous coronary intervention (PCI/stent) when indicated or a conservative approach (i.e., medication only with PCI/stent if recurrent symptoms occur). There are three types of ACS: ST elevation myocardial infarction (STEMI), non-ST elevation MI (NSTEMI), and unstable angina (UA). Among the three types, NSTEMI/UA is nearly four times as common as STEMI. Treatment decisions for NSTEMI/UA are based largely on symptoms and resting or exercise electrocardiograms (ECG). However, because of the dynamic and unpredictable nature of the atherosclerotic plaque, these methods often under detect myocardial ischemia because symptoms are unreliable, and/or continuous ECG monitoring was not utilized. Continuous 12-lead ECG monitoring, which is both inexpensive and non-invasive, can identify transient episodes of myocardial ischemia, a precursor to MI, even when asymptomatic. However, continuous 12-lead ECG monitoring is not usual hospital practice; rather, only two leads are typically monitored. Information obtained with 12-lead ECG monitoring might provide useful information for deciding the best ACS treatment. Purpose. Therefore, using 12-lead ECG monitoring, the COMPARE Study (electroCardiographic evaluatiOn of ischeMia comParing invAsive to phaRmacological trEatment) was designed to assess the frequency and clinical consequences of transient myocardial ischemia, in patients with NSTEMI/UA treated with either early invasive PCI/stent or those managed conservatively (medications or PCI/stent following recurrent symptoms). The purpose of this manuscript is to describe the methodology used in the COMPARE Study. Method. Permission to proceed with this study was obtained from the Institutional Review Board of the hospital and the university. Research nurses identify hospitalized patients from the emergency department and telemetry unit with suspected ACS. Once consented, a 12-lead ECG Holter monitor is applied, and remains in place during the patient's entire hospital stay. Patients are also maintained on the routine bedside ECG monitoring system per hospital protocol. Off-line ECG analysis is done using sophisticated software and careful human oversight.
Medicine, Issue 70, Anatomy, Physiology, Cardiology, Myocardial Ischemia, Cardiovascular Diseases, Health Occupations, Health Care, transient myocardial ischemia, Acute Coronary Syndrome, electrocardiogram, ST-segment monitoring, Holter monitoring, research methodology
Play Button
Assessment of Vascular Regeneration in the CNS Using the Mouse Retina
Authors: Khalil Miloudi, Agnieszka Dejda, François Binet, Eric Lapalme, Agustin Cerani, Przemyslaw Sapieha.
Institutions: McGill University, University of Montréal, University of Montréal.
The rodent retina is perhaps the most accessible mammalian system in which to investigate neurovascular interplay within the central nervous system (CNS). It is increasingly being recognized that several neurodegenerative diseases such as Alzheimer’s, multiple sclerosis, and amyotrophic lateral sclerosis present elements of vascular compromise. In addition, the most prominent causes of blindness in pediatric and working age populations (retinopathy of prematurity and diabetic retinopathy, respectively) are characterized by vascular degeneration and failure of physiological vascular regrowth. The aim of this technical paper is to provide a detailed protocol to study CNS vascular regeneration in the retina. The method can be employed to elucidate molecular mechanisms that lead to failure of vascular growth after ischemic injury. In addition, potential therapeutic modalities to accelerate and restore healthy vascular plexuses can be explored. Findings obtained using the described approach may provide therapeutic avenues for ischemic retinopathies such as that of diabetes or prematurity and possibly benefit other vascular disorders of the CNS.
Neuroscience, Issue 88, vascular regeneration, angiogenesis, vessels, retina, neurons, oxygen-induced retinopathy, neovascularization, CNS
Play Button
Magnetic Resonance Derived Myocardial Strain Assessment Using Feature Tracking
Authors: Kan N. Hor, Rolf Baumann, Gianni Pedrizzetti, Gianni Tonti, William M. Gottliebson, Michael Taylor, D. Woodrow Benson, Wojciech Mazur.
Institutions: Cincinnati Children Hospital Medical Center (CCHMC), Imaging Systems GmbH, Advanced Medical Imaging Development SRL, The Christ Hospital.
Purpose: An accurate and practical method to measure parameters like strain in myocardial tissue is of great clinical value, since it has been shown, that strain is a more sensitive and earlier marker for contractile dysfunction than the frequently used parameter EF. Current technologies for CMR are time consuming and difficult to implement in clinical practice. Feature tracking is a technology that can lead to more automization and robustness of quantitative analysis of medical images with less time consumption than comparable methods. Methods: An automatic or manual input in a single phase serves as an initialization from which the system starts to track the displacement of individual patterns representing anatomical structures over time. The specialty of this method is that the images do not need to be manipulated in any way beforehand like e.g. tagging of CMR images. Results: The method is very well suited for tracking muscular tissue and with this allowing quantitative elaboration of myocardium and also blood flow. Conclusions: This new method offers a robust and time saving procedure to quantify myocardial tissue and blood with displacement, velocity and deformation parameters on regular sequences of CMR imaging. It therefore can be implemented in clinical practice.
Medicine, Issue 48, feature tracking, strain, displacement, CMR
Play Button
Reduction in Left Ventricular Wall Stress and Improvement in Function in Failing Hearts using Algisyl-LVR
Authors: Lik Chuan Lee, Zhang Zhihong, Andrew Hinson, Julius M. Guccione.
Institutions: UCSF/VA Medical Center, LoneStar Heart, Inc..
Injection of Algisyl-LVR, a treatment under clinical development, is intended to treat patients with dilated cardiomyopathy. This treatment was recently used for the first time in patients who had symptomatic heart failure. In all patients, cardiac function of the left ventricle (LV) improved significantly, as manifested by consistent reduction of the LV volume and wall stress. Here we describe this novel treatment procedure and the methods used to quantify its effects on LV wall stress and function. Algisyl-LVR is a biopolymer gel consisting of Na+-Alginate and Ca2+-Alginate. The treatment procedure was carried out by mixing these two components and then combining them into one syringe for intramyocardial injections. This mixture was injected at 10 to 19 locations mid-way between the base and apex of the LV free wall in patients. Magnetic resonance imaging (MRI), together with mathematical modeling, was used to quantify the effects of this treatment in patients before treatment and at various time points during recovery. The epicardial and endocardial surfaces were first digitized from the MR images to reconstruct the LV geometry at end-systole and at end-diastole. Left ventricular cavity volumes were then measured from these reconstructed surfaces. Mathematical models of the LV were created from these MRI-reconstructed surfaces to calculate regional myofiber stress. Each LV model was constructed so that 1) it deforms according to a previously validated stress-strain relationship of the myocardium, and 2) the predicted LV cavity volume from these models matches the corresponding MRI-measured volume at end-diastole and end-systole. Diastolic filling was simulated by loading the LV endocardial surface with a prescribed end-diastolic pressure. Systolic contraction was simulated by concurrently loading the endocardial surface with a prescribed end-systolic pressure and adding active contraction in the myofiber direction. Regional myofiber stress at end-diastole and end-systole was computed from the deformed LV based on the stress-strain relationship.
Medicine, Issue 74, Biomedical Engineering, Anatomy, Physiology, Biophysics, Molecular Biology, Surgery, Cardiology, Cardiovascular Diseases, bioinjection, ventricular wall stress, mathematical model, heart failure, cardiac function, myocardium, left ventricle, LV, MRI, imaging, clinical techniques
Play Button
Endothelial Cell Tube Formation Assay for the In Vitro Study of Angiogenesis
Authors: Katie L. DeCicco-Skinner, Gervaise H. Henry, Christophe Cataisson, Tracy Tabib, J. Curtis Gwilliam, Nicholas J. Watson, Erica M. Bullwinkle, Lauren Falkenburg, Rebecca C. O'Neill, Adam Morin, Jonathan S. Wiest.
Institutions: American University, National Cancer Institute, NIH.
Angiogenesis is a vital process for normal tissue development and wound healing, but is also associated with a variety of pathological conditions. Using this protocol, angiogenesis may be measured in vitro in a fast, quantifiable manner. Primary or immortalized endothelial cells are mixed with conditioned media and plated on basement membrane matrix. The endothelial cells form capillary like structures in response to angiogenic signals found in conditioned media. The tube formation occurs quickly with endothelial cells beginning to align themselves within 1 hr and lumen-containing tubules beginning to appear within 2 hr. Tubes can be visualized using a phase contrast inverted microscope, or the cells can be treated with calcein AM prior to the assay and tubes visualized through fluorescence or confocal microscopy. The number of branch sites/nodes, loops/meshes, or number or length of tubes formed can be easily quantified as a measure of in vitro angiogenesis. In summary, this assay can be used to identify genes and pathways that are involved in the promotion or inhibition of angiogenesis in a rapid, reproducible, and quantitative manner.
Cancer Biology, Issue 91, Angiogenesis, tube formation, fibroblast, endothelial cell, matrix, 3B-11, basement membrane extract, tubulogenesis
Play Button
A Mouse Model of the Cornea Pocket Assay for Angiogenesis Study
Authors: Zhongshu Tang, Fan Zhang, Yang Li, Pachiappan Arjunan, Anil Kumar, Chunsik Lee, Xuri Li.
Institutions: National Eye Institute.
A normal cornea is clear of vascular tissues. However, blood vessels can be induced to grow and survive in the cornea when potent angiogenic factors are administered 1. This uniqueness has made the cornea pocket assay one of the most used models for angiogenesis studies. The cornea composes multiple layers of cells. It is therefore possible to embed a pellet containing the angiogenic factor of interest in the cornea to investigate its angiogenic effect 2,3. Here, we provide a step by step demonstration of how to (I) produce the angiogenic factor-containing pellet (II) embed the pellet into the cornea (III) analyze the angiogenesis induced by the angiogenic factor of interest. Since the basic fibroblast growth factor (bFGF) is known as one of the most potent angiogenic factors 4, it is used here to induce angiogenesis in the cornea.
Medicine, Issue 54, mouse cornea pocket assay, angiogenesis
Play Button
Isolation of Embryonic Ventricular Endothelial Cells
Authors: Laura A. Dyer, Cam Patterson.
Institutions: University of North Carolina at Chapel Hill .
Cell culture has greatly enhanced our ability to assess individual populations of cells under myriad culture conditions. While immortalized cell lines offer significant advantages for their ease of use, these cell lines are unavailable for all potential cell types. By isolating primary cells from a specific region of interest, particularly from a transgenic mouse, more nuanced studies can be performed. The basic technique involves dissecting the organ or partial organ of interest (e.g. the heart or a specific region of the heart) and dissociating the organ to single cells. These cells are then incubated with magnetic beads conjugated to an antibody that recognizes the cell type of interest. The cells of interest can then be isolated with the use of a magnet, with a short trypsin incubation dissociating the cells from the beads. These isolated cells can then be cultured and analyzed as desired. This technique was originally designed for adult mouse organs but can be easily scaled down for use with embryonic organs, as demonstrated herein. Because our interest is in the developing coronary vasculature, we wanted to study this population of cells during specific embryonic stages. Thus, the original protocol had to be modified to be compatible with the small size of the embryonic ventricles and the low potential yield of endothelial cells at these developmental stages. Utilizing this scaled-down approach, we have assessed coronary plexus remodeling in transgenic embryonic ventricular endothelial cells.
Cellular Biology, Issue 77, Molecular Biology, Biomedical Engineering, Bioengineering, Medicine, Cardiology, Cells, Cultured, Embryo, Mammalian, Endothelium, Vascular, Heart, primary cells, cell isolation, endothelial cells, cell, cell culture
Play Button
A Matrigel-Based Tube Formation Assay to Assess the Vasculogenic Activity of Tumor Cells
Authors: Ralph A. Francescone III, Michael Faibish, Rong Shao.
Institutions: University of Massachusetts, University of Massachusetts, University of Massachusetts.
Over the past several decades, a tube formation assay using growth factor-reduced Matrigel has been typically employed to demonstrate the angiogenic activity of vascular endothelial cells in vitro1-5. However, recently growing evidence has shown that this assay is not limited to test vascular behavior for endothelial cells. Instead, it also has been used to test the ability of a number of tumor cells to develop a vascular phenotype6-8. This capability was consistent with their vasculogenic behavior identified in xenotransplanted animals, a process known as vasculogenic mimicry (VM)9. There is a multitude of evidence demonstrating that tumor cell-mediated VM plays a vital role in the tumor development, independent of endothelial cell angiogenesis6, 10-13. For example, tumor cells were found to participate in the blood perfused, vascular channel formation in tissue samples from melanoma and glioblastoma patients8, 10, 11. Here, we described this tubular network assay as a useful tool in evaluation of vasculogenic activity of tumor cells. We found that some tumor cell lines such as melanoma B16F1 cells, glioblastoma U87 cells, and breast cancer MDA-MB-435 cells are able to form vascular tubules; but some do not such as colon cancer HCT116 cells. Furthermore, this vascular phenotype is dependent on cell numbers plated on the Matrigel. Therefore, this assay may serve as powerful utility to screen the vascular potential of a variety of cell types including vascular cells, tumor cells as well as other cells.
Cancer Biology, Issue 55, tumor, vascular, endothelial, tube formation, Matrigel, in vitro
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
High-Resolution Endocardial and Epicardial Optical Mapping in a Sheep Model of Stretch-Induced Atrial Fibrillation
Authors: David Filgueiras-Rama, Raphael Pedro Martins, Steven R. Ennis, Sergey Mironov, Jiang Jiang, Masatoshi Yamazaki, Jérôme Kalifa, Josè Jalife, Omer Berenfeld.
Institutions: University of Michigan .
Atrial fibrillation (AF) is a complex cardiac arrhythmia with high morbidity and mortality.1,2 It is the most common sustained cardiac rhythm disturbance seen in clinical practice and its prevalence is expected to increase in the coming years.3 Increased intra-atrial pressure and dilatation have been long recognized to lead to AF,1,4 which highlights the relevance of using animal models and stretch to study AF dynamics. Understanding the mechanisms underlying AF requires visualization of the cardiac electrical waves with high spatial and temporal resolution. While high-temporal resolution can be achieved by conventional electrical mapping traditionally used in human electrophysiological studies, the small number of intra-atrial electrodes that can be used simultaneously limits the spatial resolution and precludes any detailed tracking of the electrical waves during the arrhythmia. The introduction of optical mapping in the early 90's enabled wide-field characterization of fibrillatory activity together with sub-millimeter spatial resolution in animal models5,6 and led to the identification of rapidly spinning electrical wave patterns (rotors) as the sources of the fibrillatory activity that may occur in the ventricles or the atria.7-9 Using combined time- and frequency-domain analyses of optical mapping it is possible to demonstrate discrete sites of high frequency periodic activity during AF, along with frequency gradients between left and right atrium. The region with fastest rotors activates at the highest frequency and drives the overall arrhythmia.10,11 The waves emanating from such rotor interact with either functional or anatomic obstacles in their path, resulting in the phenomenon of fibrillatory conduction.12 Mapping the endocardial surface of the posterior left atrium (PLA) allows the tracking of AF wave dynamics in the region with the highest rotor frequency. Importantly, the PLA is the region where intracavitary catheter-based ablative procedures are most successful terminating AF in patients,13 which underscores the relevance of studying AF dynamics from the interior of the left atrium. Here we describe a sheep model of acute stretch-induced AF, which resembles some of the characteristics of human paroxysmal AF. Epicardial mapping on the left atrium is complemented with endocardial mapping of the PLA using a dual-channel rigid borescope c-mounted to a CCD camera, which represents the most direct approach to visualize the patterns of activation in the most relevant region for AF maintenance.
Medicine, Issue 53, atrial fibrillation, endocardial mapping, patterns of activation, posterior left atrium
Play Button
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Authors: Raffaele Coppini, Cecila Ferrantini, Alessandro Aiazzi, Luca Mazzoni, Laura Sartiani, Alessandro Mugelli, Corrado Poggesi, Elisabetta Cerbai.
Institutions: University of Florence, University of Florence.
Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models. Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method. The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.
Medicine, Issue 86, cardiology, cardiac cells, electrophysiology, excitation-contraction coupling, action potential, calcium, myocardium, hypertrophic cardiomyopathy, cardiac patients, cardiac disease
Play Button
The Corneal Micropocket Assay: A Model of Angiogenesis in the Mouse Eye
Authors: Amy E. Birsner, Ofra Benny, Robert J. D'Amato.
Institutions: Boston Children's Hospital, The Hebrew University of Jerusalem, Harvard Medical School.
The mouse corneal micropocket assay is a robust and quantitative in vivo assay for evaluating angiogenesis. By using standardized slow-release pellets containing specific growth factors that trigger blood vessel growth throughout the naturally avascular cornea, angiogenesis can be measured and quantified. In this assay the angiogenic response is generated over the course of several days, depending on the type and dose of growth factor used. The induction of neovascularization is commonly triggered by either basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF). By combining these growth factors with sucralfate and hydron (poly-HEMA (poly(2-hydroxyethyl methacrylate))) and casting the mixture into pellets, they can be surgically implanted in the mouse eye. These uniform pellets slowly-release the growth factors over five or six days (bFGF or VEGF respectively) enabling sufficient angiogenic response required for vessel area quantification using a slit lamp. This assay can be used for different applications, including the evaluation of angiogenic modulator drugs or treatments as well as comparison between different genetic backgrounds affecting angiogenesis. A skilled investigator after practicing this assay can implant a pellet in less than 5 min per eye.
Neuroscience, Issue 90, Angiogensis, neovasculatization, in vivo assay, model, fibroblast growth factor, vascular endothelial growth factor
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
Play Button
Permanent Ligation of the Left Anterior Descending Coronary Artery in Mice: A Model of Post-myocardial Infarction Remodelling and Heart Failure
Authors: Ilayaraja Muthuramu, Marleen Lox, Frank Jacobs, Bart De Geest.
Institutions: Catholic University of Leuven.
Heart failure is a syndrome in which the heart fails to pump blood at a rate commensurate with cellular oxygen requirements at rest or during stress. It is characterized by fluid retention, shortness of breath, and fatigue, in particular on exertion. Heart failure is a growing public health problem, the leading cause of hospitalization, and a major cause of mortality. Ischemic heart disease is the main cause of heart failure. Ventricular remodelling refers to changes in structure, size, and shape of the left ventricle. This architectural remodelling of the left ventricle is induced by injury (e.g., myocardial infarction), by pressure overload (e.g., systemic arterial hypertension or aortic stenosis), or by volume overload. Since ventricular remodelling affects wall stress, it has a profound impact on cardiac function and on the development of heart failure. A model of permanent ligation of the left anterior descending coronary artery in mice is used to investigate ventricular remodelling and cardiac function post-myocardial infarction. This model is fundamentally different in terms of objectives and pathophysiological relevance compared to the model of transient ligation of the left anterior descending coronary artery. In this latter model of ischemia/reperfusion injury, the initial extent of the infarct may be modulated by factors that affect myocardial salvage following reperfusion. In contrast, the infarct area at 24 hr after permanent ligation of the left anterior descending coronary artery is fixed. Cardiac function in this model will be affected by 1) the process of infarct expansion, infarct healing, and scar formation; and 2) the concomitant development of left ventricular dilatation, cardiac hypertrophy, and ventricular remodelling. Besides the model of permanent ligation of the left anterior descending coronary artery, the technique of invasive hemodynamic measurements in mice is presented in detail.
Medicine, Issue 94, Myocardial infarction, cardiac remodelling, infarct expansion, heart failure, cardiac function, invasive hemodynamic measurements
Play Button
Intramyocardial Cell Delivery: Observations in Murine Hearts
Authors: Tommaso Poggioli, Padmini Sarathchandra, Nadia Rosenthal, Maria P. Santini.
Institutions: Imperial College London, Imperial College London, Monash University.
Previous studies showed that cell delivery promotes cardiac function amelioration by release of cytokines and factors that increase cardiac tissue revascularization and cell survival. In addition, further observations revealed that specific stem cells, such as cardiac stem cells, mesenchymal stem cells and cardiospheres have the ability to integrate within the surrounding myocardium by differentiating into cardiomyocytes, smooth muscle cells and endothelial cells. Here, we present the materials and methods to reliably deliver noncontractile cells into the left ventricular wall of immunodepleted mice. The salient steps of this microsurgical procedure involve anesthesia and analgesia injection, intratracheal intubation, incision to open the chest and expose the heart and delivery of cells by a sterile 30-gauge needle and a precision microliter syringe. Tissue processing consisting of heart harvesting, embedding, sectioning and histological staining showed that intramyocardial cell injection produced a small damage in the epicardial area, as well as in the ventricular wall. Noncontractile cells were retained into the myocardial wall of immunocompromised mice and were surrounded by a layer of fibrotic tissue, likely to protect from cardiac pressure and mechanical load.
Medicine, Issue 83, intramyocardial cell injection, heart, grafting, cell therapy, stem cells, fibrotic tissue
Play Button
Retrograde Perfusion and Filling of Mouse Coronary Vasculature as Preparation for Micro Computed Tomography Imaging
Authors: Jill J. Weyers, Dara D. Carlson, Charles E. Murry, Stephen M. Schwartz, William M. Mahoney, Jr..
Institutions: University of Washington, University of Washington.
Visualization of the vasculature is becoming increasingly important for understanding many different disease states. While several techniques exist for imaging vasculature, few are able to visualize the vascular network as a whole while extending to a resolution that includes the smaller vessels1,2. Additionally, many vascular casting techniques destroy the surrounding tissue, preventing further analysis of the sample3-5. One method which circumvents these issues is micro-Computed Tomography (μCT). μCT imaging can scan at resolutions <10 microns, is capable of producing 3D reconstructions of the vascular network, and leaves the tissue intact for subsequent analysis (e.g., histology and morphometry)6-11. However, imaging vessels by ex vivo μCT methods requires that the vessels be filled with a radiopaque compound. As such, the accurate representation of vasculature produced by μCT imaging is contingent upon reliable and complete filling of the vessels. In this protocol, we describe a technique for filling mouse coronary vessels in preparation for μCT imaging. Two predominate techniques exist for filling the coronary vasculature: in vivo via cannulation and retrograde perfusion of the aorta (or a branch off the aortic arch) 12-14, or ex vivo via a Langendorff perfusion system 15-17. Here we describe an in vivo aortic cannulation method which has been specifically designed to ensure filling of all vessels. We use a low viscosity radiopaque compound called Microfil which can perfuse through the smallest vessels to fill all the capillaries, as well as both the arterial and venous sides of the vascular network. Vessels are perfused with buffer using a pressurized perfusion system, and then filled with Microfil. To ensure that Microfil fills the small higher resistance vessels, we ligate the large branches emanating from the aorta, which diverts the Microfil into the coronaries. Once filling is complete, to prevent the elastic nature of cardiac tissue from squeezing Microfil out of some vessels, we ligate accessible major vascular exit points immediately after filling. Therefore, our technique is optimized for complete filling and maximum retention of the filling agent, enabling visualization of the complete coronary vascular network – arteries, capillaries, and veins alike.
Medicine, Issue 60, Vascular biology, heart, coronary vessels, mouse, micro Computed Tomography (μCT) imaging, Microfil
Play Button
Modified Technique for Coronary Artery Ligation in Mice
Authors: Yangzhen Shao, Björn Redfors, Elmir Omerovic.
Institutions: Sahlgrenska Academy, University of Gothenburg.
Myocardial infarction (MI) is one of the most important causes of mortality in humans1-3. In order to improve morbidity and mortality in patients with MI we need better knowledge about pathophysiology of myocardial ischemia. This knowledge may be valuable to define new therapeutic targets for innovative cardiovascular therapies4. Experimental MI model in mice is an increasingly popular small-animal model in preclinical research in which MI is induced by means of permanent or temporary ligation of left coronary artery (LCA)5. In this video, we describe the step-by-step method of how to induce experimental MI in mice. The animal is first anesthetized with 2% isoflurane. The unconscious mouse is then intubated and connected to a ventilator for artificial ventilation. The left chest is shaved and 1.5 cm incision along mid-axillary line is made in the skin. The left pectoralis major muscle is bluntly dissociated until the ribs are exposed. The muscle layers are pulled aside and fixed with an eyelid-retractor. After these preparations, left thoracotomy is performed between the third and fourth ribs in order to visualize the anterior surface of the heart and left lung. The proximal segment of LCA artery is then ligated with a 7-0 ethilon suture which typically induces an infarct size ~40% of left ventricle. At the end, the chest is closed and the animals receive postoperative analgesia (Temgesic, 0.3 mg/50 ml, ip). The animals are kept in a warm cage until spontaneous recovery.
Medicine, Issue 73, Anatomy, Physiology, Biomedical Engineering, Surgery, Cardiology, Hematology, myocardial infarction, coronary artery, ligation, ischemia, ECG, electrocardiology, mice, animal model
Play Button
Isolation of Human Umbilical Vein Endothelial Cells (HUVEC)
Authors: Jaeger Davis, Steve P. Crampton, Christopher C.W. Hughes.
Institutions: University of California, Irvine (UCI).
Angiogenesis is a complex multi-step process, where in response to angiogenic stimuli, new vessels are created from the existing vasculature. These steps include: degradation of the basement membrane, proliferation and migration (sprouting) of endothelial cells (EC) into the extracellular matrix, alignment of EC into cords, lumen formation, anastomosis, and formation of a new basement membrane. Many in vitro assays have been developed to study this process, but most only mimic certain stages of angiogenesis, and morphologically the vessels often do not resemble vessels in vivo. Here we demonstrate an optimized in vitro angiogenesis assay that utilizes human umbilical vein EC and fibroblasts. This model recapitulates all of the key early stages of angiogenesis, and importantly the vessels display patent intercellular lumens surrounded by polarized EC. Vessels can be easily observed by phase-contrast and time-lapse microscopy, and recovered in pure form for downstream applications.
Cellular Biology, Issue 3, angiogenesis, endothelial, HUVEC, umbilical
Play Button
Optimized Fibrin Gel Bead Assay for the Study of Angiogenesis
Authors: Martin N. Nakatsu, Jaeger Davis, Christopher C.W. Hughes.
Institutions: University of California, Irvine (UCI).
Angiogenesis is a complex multi-step process, where, in response to angiogenic stimuli, new vessels are created from the existing vasculature. These steps include: degradation of the basement membrane, proliferation and migration (sprouting) of endothelial cells (EC) into the extracellular matrix, alignment of EC into cords, branching, lumen formation, anastomosis, and formation of a new basement membrane. Many in vitro assays have been developed to study this process, but most only mimic certain stages of angiogenesis, and morphologically the vessels within the assays often do not resemble vessels in vivo. Based on earlier work by Nehls and Drenckhahn, we have optimized an in vitro angiogenesis assay that utilizes human umbilical vein EC and fibroblasts. This model recapitulates all of the key early stages of angiogenesis and, importantly, the vessels display patent intercellular lumens surrounded by polarized EC. EC are coated onto cytodex microcarriers and embedded into a fibrin gel. Fibroblasts are layered on top of the gel where they provide necessary soluble factors that promote EC sprouting from the surface of the beads. After several days, numerous vessels are present that can easily be observed under phase-contrast and time-lapse microscopy. This video demonstrates the key steps in setting up these cultures.
Cellular Biology, Issue 3, angiogenesis, fibrin, endothelial, in vitro, fibroblasts
Play Button
Aortic Ring Assay
Authors: Keren Bellacen, Eli C. Lewis.
Institutions: Ben-Gurion University.
Angiogenesis, the sprouting of blood vessels from preexisting vasculature is associated with both natural and pathological processes. Various angiogenesis assays involve the study of individual endothelial cells in culture conditions (1). The aortic ring assay is an angiogenesis model that is based on organ culture. In this assay, angiogenic vessels grow from a segment of the aorta (modified from (2)). Briefly, mouse thoracic aorta is excised, the fat layer and adventitia are removed, and rings approximately 1 mm in length are prepared. Individual rings are then embedded in a small solid dome of basement matrix extract (BME), cast inside individual wells of a 48-well plate. Angiogenic factors and inhibitors of angiogenesis can be directly added to the rings, and a mixed co-culture of aortic rings and other cell types can be employed for the study of paracrine angiogenic effects. Sprouting is observed by inspection under a stereomicroscope over a period of 6-12 days. Due to the large variation caused by the irregularities in the aortic segments, experimentation in 6-plicates is strongly advised. Neovessel outgrowth is monitored throughout the experiment and imaged using phase microscopy, and supernatants are collected for measurement of relevant angiogenic and anti-angiogenic factors, cell death markers and nitrite.
Medicine, Issue 33, aortic rings, angiogenesis, blood vessels, aorta, mouse, vessel outgrowth
Play Button
Christopher Hughes: An in vitro model for the Study of Angiogenesis (Interview)
Authors: Christopher C.W. Hughes.
Institutions: University of California, Irvine (UCI).
Christopher C.W. Hughes describes the utility of his culture system for studying angiogenesis in vitro. He explains the importance of fibroblasts that secrete a critical, yet unidentified, soluble factor that allow endothelial cells to form vessels in culture that branch, form proper lumens, and undergo anastamosis.
Cellular Biology, Issue 3, angiogenesis, fibrin, endothelial, HUVEC, umbilical, Translational Research
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.