JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Outcomes and impact of HIV prevention, ART and TB programs in Swaziland--early evidence from public health triangulation.
PUBLISHED: 01-01-2013
Swazilands severe HIV epidemic inspired an early national response since the late 1980s, and regular reporting of program outcomes since the onset of a national antiretroviral treatment (ART) program in 2004. We assessed effectiveness outcomes and mortality trends in relation to ART, HIV testing and counseling (HTC), tuberculosis (TB) and prevention of mother to child transmission (PMTCT).
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Published: 07-24-2013
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
21 Related JoVE Articles!
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
Play Button
Collection, Isolation, and Flow Cytometric Analysis of Human Endocervical Samples
Authors: Jennifer A. Juno, Genevieve Boily-Larouche, Julie Lajoie, Keith R. Fowke.
Institutions: University of Manitoba, University of Manitoba.
Despite the public health importance of mucosal pathogens (including HIV), relatively little is known about mucosal immunity, particularly at the female genital tract (FGT). Because heterosexual transmission now represents the dominant mechanism of HIV transmission, and given the continual spread of sexually transmitted infections (STIs), it is critical to understand the interplay between host and pathogen at the genital mucosa. The substantial gaps in knowledge around FGT immunity are partially due to the difficulty in successfully collecting and processing mucosal samples. In order to facilitate studies with sufficient sample size, collection techniques must be minimally invasive and efficient. To this end, a protocol for the collection of cervical cytobrush samples and subsequent isolation of cervical mononuclear cells (CMC) has been optimized. Using ex vivo flow cytometry-based immunophenotyping, it is possible to accurately and reliably quantify CMC lymphocyte/monocyte population frequencies and phenotypes. This technique can be coupled with the collection of cervical-vaginal lavage (CVL), which contains soluble immune mediators including cytokines, chemokines and anti-proteases, all of which can be used to determine the anti- or pro-inflammatory environment in the vagina.
Medicine, Issue 89, mucosal, immunology, FGT, lavage, cervical, CMC
Play Button
In Vitro Assay to Evaluate the Impact of Immunoregulatory Pathways on HIV-specific CD4 T Cell Effector Function
Authors: Filippos Porichis, Meghan G. Hart, Jennifer Zupkosky, Lucie Barblu, Daniel E. Kaufmann.
Institutions: The Ragon Institute of MGH, MIT and Harvard, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM).
T cell exhaustion is a major factor in failed pathogen clearance during chronic viral infections. Immunoregulatory pathways, such as PD-1 and IL-10, are upregulated upon this ongoing antigen exposure and contribute to loss of proliferation, reduced cytolytic function, and impaired cytokine production by CD4 and CD8 T cells. In the murine model of LCMV infection, administration of blocking antibodies against these two pathways augmented T cell responses. However, there is currently no in vitro assay to measure the impact of such blockade on cytokine secretion in cells from human samples. Our protocol and experimental approach enable us to accurately and efficiently quantify the restoration of cytokine production by HIV-specific CD4 T cells from HIV infected subjects. Here, we depict an in vitro experimental design that enables measurements of cytokine secretion by HIV-specific CD4 T cells and their impact on other cell subsets. CD8 T cells were depleted from whole blood and remaining PBMCs were isolated via Ficoll separation method. CD8-depleted PBMCs were then incubated with blocking antibodies against PD-L1 and/or IL-10Rα and, after stimulation with an HIV-1 Gag peptide pool, cells were incubated at 37 °C, 5% CO2. After 48 hr, supernatant was collected for cytokine analysis by beads arrays and cell pellets were collected for either phenotypic analysis using flow cytometry or transcriptional analysis using qRT-PCR. For more detailed analysis, different cell populations were obtained by selective subset depletion from PBMCs or by sorting using flow cytometry before being assessed in the same assays. These methods provide a highly sensitive and specific approach to determine the modulation of cytokine production by antigen-specific T-helper cells and to determine functional interactions between different populations of immune cells.
Immunology, Issue 80, Virus Diseases, Immune System Diseases, HIV, CD4 T cell, CD8 T cell, antigen-presenting cell, Cytokines, immunoregulatory networks, PD-1: IL-10, exhaustion, monocytes
Play Button
Community-based Adapted Tango Dancing for Individuals with Parkinson's Disease and Older Adults
Authors: Madeleine E. Hackney, Kathleen McKee.
Institutions: Emory University School of Medicine, Brigham and Woman‘s Hospital and Massachusetts General Hospital.
Adapted tango dancing improves mobility and balance in older adults and additional populations with balance impairments. It is composed of very simple step elements. Adapted tango involves movement initiation and cessation, multi-directional perturbations, varied speeds and rhythms. Focus on foot placement, whole body coordination, and attention to partner, path of movement, and aesthetics likely underlie adapted tango’s demonstrated efficacy for improving mobility and balance. In this paper, we describe the methodology to disseminate the adapted tango teaching methods to dance instructor trainees and to implement the adapted tango by the trainees in the community for older adults and individuals with Parkinson’s Disease (PD). Efficacy in improving mobility (measured with the Timed Up and Go, Tandem stance, Berg Balance Scale, Gait Speed and 30 sec chair stand), safety and fidelity of the program is maximized through targeted instructor and volunteer training and a structured detailed syllabus outlining class practices and progression.
Behavior, Issue 94, Dance, tango, balance, pedagogy, dissemination, exercise, older adults, Parkinson's Disease, mobility impairments, falls
Play Button
Using Continuous Data Tracking Technology to Study Exercise Adherence in Pulmonary Rehabilitation
Authors: Amanda K. Rizk, Rima Wardini, Emilie Chan-Thim, Barbara Trutschnigg, Amélie Forget, Véronique Pepin.
Institutions: Concordia University, Concordia University, Hôpital du Sacré-Coeur de Montréal.
Pulmonary rehabilitation (PR) is an important component in the management of respiratory diseases. The effectiveness of PR is dependent upon adherence to exercise training recommendations. The study of exercise adherence is thus a key step towards the optimization of PR programs. To date, mostly indirect measures, such as rates of participation, completion, and attendance, have been used to determine adherence to PR. The purpose of the present protocol is to describe how continuous data tracking technology can be used to measure adherence to a prescribed aerobic training intensity on a second-by-second basis. In our investigations, adherence has been defined as the percent time spent within a specified target heart rate range. As such, using a combination of hardware and software, heart rate is measured, tracked, and recorded during cycling second-by-second for each participant, for each exercise session. Using statistical software, the data is subsequently extracted and analyzed. The same protocol can be applied to determine adherence to other measures of exercise intensity, such as time spent at a specified wattage, level, or speed on the cycle ergometer. Furthermore, the hardware and software is also available to measure adherence to other modes of training, such as the treadmill, elliptical, stepper, and arm ergometer. The present protocol, therefore, has a vast applicability to directly measure adherence to aerobic exercise.
Medicine, Issue 81, Data tracking, exercise, rehabilitation, adherence, patient compliance, health behavior, user-computer interface.
Play Button
Enzyme-linked Immunospot Assay (ELISPOT): Quantification of Th-1 Cellular Immune Responses Against Microbial Antigens
Authors: Isfahan R. Chambers, Tiffany R. Cone, Kyra Oswald-Richter, Wonder P. Drake.
Institutions: Vanderbilt University School of Medicine, Vanderbilt University School of Medicine.
Adaptive immunity is an important component to clearance of intracellular pathogens. The ability to detect and quantify these responses in humans is an important diagnostic tool. The enzyme-linked immunospot assay (ELISPOT) is gaining popularity for its ability to identify cellular immune responses against microbial antigens, including immunosuppressed populations such as those with HIV infection, transplantation, and steroid use. This assay has the capacity to quantify the immune responses against specific microbial antigens, as well as distinguish if these responses are Th1 or Th2 in character. ELISPOT is not limited to the site of inflammation. It is versatile in its ability to assess for immune responses within peripheral blood, as well as sites of active involvement such as bronchoalveolar lavage, cerebral spinal fluid, and ascites. Detection of immune responses against a single or multiple antigens is possible, as well as specific epitopes within microbial proteins. This assay facilitates detection of immune responses over time, as well as distinctions in antigens recognized by host T cells. Dual color ELISPOT assays are available for detection of simultaneous expression of two cytokines. Recent applications for this technique include diagnosis of extrapulmonary tuberculosis, as well as investigation of the contribution of infectious antigens to autoimmune diseases.
Immunology, Issue 45, ELISPOT, Th-1 Immune Response, interferon gamma, T cell, adaptive immunity
Play Button
Diagnosing Pulmonary Tuberculosis with the Xpert MTB/RIF Test
Authors: Thomas Bodmer, Angelika Ströhle.
Institutions: University of Bern, MCL Laboratories Inc..
Tuberculosis (TB) due to Mycobacterium tuberculosis (MTB) remains a major public health issue: the infection affects up to one third of the world population1, and almost two million people are killed by TB each year.2 Universal access to high-quality, patient-centered treatment for all TB patients is emphasized by WHO's Stop TB Strategy.3 The rapid detection of MTB in respiratory specimens and drug therapy based on reliable drug resistance testing results are a prerequisite for the successful implementation of this strategy. However, in many areas of the world, TB diagnosis still relies on insensitive, poorly standardized sputum microscopy methods. Ineffective TB detection and the emergence and transmission of drug-resistant MTB strains increasingly jeopardize global TB control activities.2 Effective diagnosis of pulmonary TB requires the availability - on a global scale - of standardized, easy-to-use, and robust diagnostic tools that would allow the direct detection of both the MTB complex and resistance to key antibiotics, such as rifampicin (RIF). The latter result can serve as marker for multidrug-resistant MTB (MDR TB) and has been reported in > 95% of the MDR-TB isolates.4, 5 The rapid availability of reliable test results is likely to directly translate into sound patient management decisions that, ultimately, will cure the individual patient and break the chain of TB transmission in the community.2 Cepheid's (Sunnyvale, CA, U.S.A.) Xpert MTB/RIF assay6, 7 meets the demands outlined above in a remarkable manner. It is a nucleic-acids amplification test for 1) the detection of MTB complex DNA in sputum or concentrated sputum sediments; and 2) the detection of RIF resistance-associated mutations of the rpoB gene.8 It is designed for use with Cepheid's GeneXpert Dx System that integrates and automates sample processing, nucleic acid amplification, and detection of the target sequences using real-time PCR and reverse transcriptase PCR. The system consists of an instrument, personal computer, barcode scanner, and preloaded software for running tests and viewing the results.9 It employs single-use disposable Xpert MTB/RIF cartridges that hold PCR reagents and host the PCR process. Because the cartridges are self-contained, cross-contamination between samples is eliminated.6 Current nucleic acid amplification methods used to detect MTB are complex, labor-intensive, and technically demanding. The Xpert MTB/RIF assay has the potential to bring standardized, sensitive and very specific diagnostic testing for both TB and drug resistance to universal-access point-of-care settings3, provided that they will be able to afford it. In order to facilitate access, the Foundation for Innovative New Diagnostics (FIND) has negotiated significant price reductions. Current FIND-negotiated prices, along with the list of countries eligible for the discounts, are available on the web.10
Immunology, Issue 62, tuberculosis, drug resistance, rifampicin, rapid diagnosis, Xpert MTB/RIF test
Play Button
An In vitro Co-infection Model to Study Plasmodium falciparum-HIV-1 Interactions in Human Primary Monocyte-derived Immune Cells
Authors: Guadalupe Andreani, Dominic Gagnon, Robert Lodge, Michel J. Tremblay, Dave Richard.
Institutions: CHUL (CHUQ), Quebec City, Quebec, Canada.
Plasmodium falciparum, the causative agent of the deadliest form of malaria, and human immunodeficiency virus type-1 (HIV-1) are among the most important health problems worldwide, being responsible for a total of 4 million deaths annually1. Due to their extensive overlap in developing regions, especially Sub-Saharan Africa, co-infections with malaria and HIV-1 are common, but the interplay between the two diseases is poorly understood. Epidemiological reports have suggested that malarial infection transiently enhances HIV-1 replication and increases HIV-1 viral load in co-infected individuals2,3. Because this viremia stays high for several weeks after treatment with antimalarials, this phenomenon could have an impact on disease progression and transmission. The cellular immunological mechanisms behind these observations have been studied only scarcely. The few in vitro studies investigating the impact of malaria on HIV-1 have demonstrated that exposure to soluble malarial antigens can increase HIV-1 infection and reactivation in immune cells. However, these studies used whole cell extracts of P. falciparum schizont stage parasites and peripheral blood mononuclear cells (PBMC), making it hard to decipher which malarial component(s) was responsible for the observed effects and what the target host cells were4,5. Recent work has demonstrated that exposure of immature monocyte-derived dendritic cells to the malarial pigment hemozoin increased their ability to transfer HIV-1 to CD4+ T cells6,7, but that it decreased HIV-1 infection of macrophages8. To shed light on this complex process, a systematic analysis of the interactions between the malaria parasite and HIV-1 in different relevant human primary cell populations is critically needed. Several techniques for investigating the impact of HIV-1 on the phagocytosis of micro-organisms and the effect of such pathogens on HIV-1 replication have been described. We here present a method to investigate the effects of P. falciparum-infected erythrocytes on the replication of HIV-1 in human primary monocyte-derived macrophages. The impact of parasite exposure on HIV-1 transcriptional/translational events is monitored by using single cycle pseudotyped viruses in which a luciferase reporter gene has replaced the Env gene while the effect on the quantity of virus released by the infected macrophages is determined by measuring the HIV-1 capsid protein p24 by ELISA in cell supernatants.
Immunology, Issue 66, Infection, Medicine, Malaria, HIV-1, Monocyte-Derived Macrophages, PBMC, Red blood cells, Dendritic Cells, Co-infections, Parasites, Plasmodium falciparum, AIDS
Play Button
Peptide-based Identification of Functional Motifs and their Binding Partners
Authors: Martin N. Shelton, Ming Bo Huang, Syed Ali, Kateena Johnson, William Roth, Michael Powell, Vincent Bond.
Institutions: Morehouse School of Medicine, Institute for Systems Biology, Universiti Sains Malaysia.
Specific short peptides derived from motifs found in full-length proteins, in our case HIV-1 Nef, not only retain their biological function, but can also competitively inhibit the function of the full-length protein. A set of 20 Nef scanning peptides, 20 amino acids in length with each overlapping 10 amino acids of its neighbor, were used to identify motifs in Nef responsible for its induction of apoptosis. Peptides containing these apoptotic motifs induced apoptosis at levels comparable to the full-length Nef protein. A second peptide, derived from the Secretion Modification Region (SMR) of Nef, retained the ability to interact with cellular proteins involved in Nef's secretion in exosomes (exNef). This SMRwt peptide was used as the "bait" protein in co-immunoprecipitation experiments to isolate cellular proteins that bind specifically to Nef's SMR motif. Protein transfection and antibody inhibition was used to physically disrupt the interaction between Nef and mortalin, one of the isolated SMR-binding proteins, and the effect was measured with a fluorescent-based exNef secretion assay. The SMRwt peptide's ability to outcompete full-length Nef for cellular proteins that bind the SMR motif, make it the first inhibitor of exNef secretion. Thus, by employing the techniques described here, which utilize the unique properties of specific short peptides derived from motifs found in full-length proteins, one may accelerate the identification of functional motifs in proteins and the development of peptide-based inhibitors of pathogenic functions.
Virology, Issue 76, Biochemistry, Immunology, Infection, Infectious Diseases, Molecular Biology, Medicine, Genetics, Microbiology, Genomics, Proteins, Exosomes, HIV, Peptides, Exocytosis, protein trafficking, secretion, HIV-1, Nef, Secretion Modification Region, SMR, peptide, AIDS, assay
Play Button
Development of Cell-type specific anti-HIV gp120 aptamers for siRNA delivery
Authors: Jiehua Zhou, Haitang Li, Jane Zhang, Swiderski Piotr, John Rossi.
Institutions: Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope.
The global epidemic of infection by HIV has created an urgent need for new classes of antiretroviral agents. The potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases including HIV. Many previous reports have shown that novel RNAi-based anti-HIV/AIDS therapeutic strategies have considerable promise; however, a key obstacle to the successful therapeutic application and clinical translation of siRNAs is efficient delivery. Particularly, considering the safety and efficacy of RNAi-based therapeutics, it is highly desirable to develop a targeted intracellular siRNA delivery approach to specific cell populations or tissues. The HIV-1 gp120 protein, a glycoprotein envelope on the surface of HIV-1, plays an important role in viral entry into CD4 cells. The interaction of gp120 and CD4 that triggers HIV-1 entry and initiates cell fusion has been validated as a clinically relevant anti-viral strategy for drug discovery. Herein, we firstly discuss the selection and identification of 2'-F modified anti-HIV gp120 RNA aptamers. Using a conventional nitrocellulose filter SELEX method, several new aptamers with nanomolar affinity were isolated from a 50 random nt RNA library. In order to successfully obtain bound species with higher affinity, the selection stringency is carefully controlled by adjusting the conditions. The selected aptamers can specifically bind and be rapidly internalized into cells expressing the HIV-1 envelope protein. Additionally, the aptamers alone can neutralize HIV-1 infectivity. Based upon the best aptamer A-1, we also create a novel dual inhibitory function anti-gp120 aptamer-siRNA chimera in which both the aptamer and the siRNA portions have potent anti-HIV activities. Further, we utilize the gp120 aptamer-siRNA chimeras for cell-type specific delivery of the siRNA into HIV-1 infected cells. This dual function chimera shows considerable potential for combining various nucleic acid therapeutic agents (aptamer and siRNA) in suppressing HIV-1 infection, making the aptamer-siRNA chimeras attractive therapeutic candidates for patients failing highly active antiretroviral therapy (HAART).
Immunology, Issue 52, SELEX (Systematic Evolution of Ligands by EXponential enrichment), RNA aptamer, HIV-1 gp120, RNAi (RNA interference), siRNA (small interfering RNA), cell-type specific delivery
Play Button
The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool
Authors: Richard A. Rudick, Deborah Miller, Francois Bethoux, Stephen M. Rao, Jar-Chi Lee, Darlene Stough, Christine Reece, David Schindler, Bernadett Mamone, Jay Alberts.
Institutions: Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation.
Precise measurement of neurological and neuropsychological impairment and disability in multiple sclerosis is challenging. We report a new test, the Multiple Sclerosis Performance Test (MSPT), which represents a new approach to quantifying MS related disability. The MSPT takes advantage of advances in computer technology, information technology, biomechanics, and clinical measurement science. The resulting MSPT represents a computer-based platform for precise, valid measurement of MS severity. Based on, but extending the Multiple Sclerosis Functional Composite (MSFC), the MSPT provides precise, quantitative data on walking speed, balance, manual dexterity, visual function, and cognitive processing speed. The MSPT was tested by 51 MS patients and 49 healthy controls (HC). MSPT scores were highly reproducible, correlated strongly with technician-administered test scores, discriminated MS from HC and severe from mild MS, and correlated with patient reported outcomes. Measures of reliability, sensitivity, and clinical meaning for MSPT scores were favorable compared with technician-based testing. The MSPT is a potentially transformative approach for collecting MS disability outcome data for patient care and research. Because the testing is computer-based, test performance can be analyzed in traditional or novel ways and data can be directly entered into research or clinical databases. The MSPT could be widely disseminated to clinicians in practice settings who are not connected to clinical trial performance sites or who are practicing in rural settings, drastically improving access to clinical trials for clinicians and patients. The MSPT could be adapted to out of clinic settings, like the patient’s home, thereby providing more meaningful real world data. The MSPT represents a new paradigm for neuroperformance testing. This method could have the same transformative effect on clinical care and research in MS as standardized computer-adapted testing has had in the education field, with clear potential to accelerate progress in clinical care and research.
Medicine, Issue 88, Multiple Sclerosis, Multiple Sclerosis Functional Composite, computer-based testing, 25-foot walk test, 9-hole peg test, Symbol Digit Modalities Test, Low Contrast Visual Acuity, Clinical Outcome Measure
Play Button
Methods Development for Blood Borne Macrophage Carriage of Nanoformulated Antiretroviral Drugs
Authors: Shantanu Balkundi, Ari S. Nowacek, Upal Roy, Andrea Martinez-Skinner, JoEllyn McMillan, Howard E. Gendelman.
Institutions: University of Nebraska Medical Center.
Nanoformulated drugs can improve pharmacodynamics and bioavailability while serving also to reduce drug toxicities for antiretroviral (ART) medicines. To this end, our laboratory has applied the principles of nanomedicine to simplify ART regimens and as such reduce toxicities while improving compliance and drug pharmacokinetics. Simple and reliable methods for manufacturing nanoformulated ART (nanoART) are shown. Particles of pure drug are encapsulated by a thin layer of surfactant lipid coating and produced by fractionating larger drug crystals into smaller ones by either wet milling or high-pressure homogenization. In an alternative method free drug is suspended in a droplet of a polymer. Herein, drug is dissolved within a polymer then agitated by ultrasonication until individual nanosized droplets are formed. Dynamic light scattering and microscopic examination characterize the physical properties of the particles (particle size, charge and shape). Their biologic properties (cell uptake and retention, cytotoxicity and antiretroviral efficacy) are determined with human monocyte-derived macrophages (MDM). MDM are derived from human peripheral blood monocytes isolated from leukopacks using centrifugal elutriation for purification. Such blood-borne macrophages may be used as cellular transporters for nanoART distribution to human immunodeficiency virus (HIV) infected organs. We posit that the repackaging of clinically available antiretroviral medications into nanoparticles for HIV-1 treatments may improve compliance and positively affect disease outcomes.
Immunology, Issue 46, NanoART, antiretroviral, HIV/AIDS, monocytes/macrophages, wet milling, homogenization, ultrasonication
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Rapid Screening of HIV Reverse Transcriptase and Integrase Inhibitors
Authors: Steven J. Smith, Stephen H. Hughes.
Institutions: National Cancer Institute.
Although a number of anti HIV drugs have been approved, there are still problems with toxicity and drug resistance. This demonstrates a need to identify new compounds that can inhibit infection by the common drug resistant HIV-1 strains with minimal toxicity. Here we describe an efficient assay that can be used to rapidly determine the cellular cytotoxicity and efficacy of a compound against WT and mutant viral strains. The desired target cell line is seeded in a 96-well plate and, after a 24 hr incubation, serially dilutions of the compounds to be tested are added. No further manipulations are necessary for cellular cytotoxicity assays; for anti HIV assays a predetermined amount of either a WT or drug resistant HIV-1 vector that expresses luciferase is added to the cells. Cytotoxicity is measured by using an ATP dependent luminescence assay and the impact of the compounds on infectivity is measured by determining the amount of luciferase in the presence or the absence of the putative inhibitors. This screening assay takes 4 days to complete and multiple compounds can be screened in parallel. Compounds are screened in triplicate and the data are normalized to the infectivity/ATP levels in absence of target compounds. This technique provides a quick and accurate measurement of the efficacy and toxicity of potential anti HIV compounds.
Immunology, Issue 86, HIV, cytotoxicity, infectivity, luciferase, drug resistance, integrase, reverse transcriptase
Play Button
Demonstrating a Multi-drug Resistant Mycobacterium tuberculosis Amplification Microarray
Authors: Yvonne Linger, Alexander Kukhtin, Julia Golova, Alexander Perov, Peter Qu, Christopher Knickerbocker, Christopher G. Cooney, Darrell P. Chandler.
Institutions: Akonni Biosystems, Inc..
Simplifying microarray workflow is a necessary first step for creating MDR-TB microarray-based diagnostics that can be routinely used in lower-resource environments. An amplification microarray combines asymmetric PCR amplification, target size selection, target labeling, and microarray hybridization within a single solution and into a single microfluidic chamber. A batch processing method is demonstrated with a 9-plex asymmetric master mix and low-density gel element microarray for genotyping multi-drug resistant Mycobacterium tuberculosis (MDR-TB). The protocol described here can be completed in 6 hr and provide correct genotyping with at least 1,000 cell equivalents of genomic DNA. Incorporating on-chip wash steps is feasible, which will result in an entirely closed amplicon method and system. The extent of multiplexing with an amplification microarray is ultimately constrained by the number of primer pairs that can be combined into a single master mix and still achieve desired sensitivity and specificity performance metrics, rather than the number of probes that are immobilized on the array. Likewise, the total analysis time can be shortened or lengthened depending on the specific intended use, research question, and desired limits of detection. Nevertheless, the general approach significantly streamlines microarray workflow for the end user by reducing the number of manually intensive and time-consuming processing steps, and provides a simplified biochemical and microfluidic path for translating microarray-based diagnostics into routine clinical practice.
Immunology, Issue 86, MDR-TB, gel element microarray, closed amplicon, drug resistance, rifampin, isoniazid, streptomycin, ethambutol
Play Button
Amplifying and Quantifying HIV-1 RNA in HIV Infected Individuals with Viral Loads Below the Limit of Detection by Standard Clinical Assays
Authors: Helene Mens, Mary Kearney, Ann Wiegand, Jonathan Spindler, Frank Maldarelli, John W. Mellors, John M. Coffin.
Institutions: NCI-Frederick, University of Pittsburgh, Tuffts University.
Amplifying viral genes and quantifying HIV-1 RNA in HIV-1 infected individuals with viral loads below the limit of detection by standard assays (below 50-75 copies/ml) is necessary to gain insight to viral dynamics and virus host interactions in patients who naturally control the infection and those who are on combination antiretroviral therapy (cART). Here we describe how to amplify viral genomes by single genome sequencing (the SGS protocol) 13, 19 and how to accurately quantify HIV-1 RNA in patients with low viral loads (the single-copy assay (SCA) protocol) 12, 20. The single-copy assay is a real-time PCR assay with sensitivity depending on the volume of plasma being assayed. If a single virus genome is detected in 7 ml of plasma, then the RNA copy number is reported to be 0.3 copies/ml. The assay has an internal control testing for the efficiency of RNA extraction, and controls for possible amplification from DNA or contamination. Patient samples are measured in triplicate. The single-genome sequencing assay (SGS), now widely used and considered to be non-labor intensive 3, 7, 12, 14, 15,is a limiting dilution assay, in which endpoint diluted cDNA product is spread over a 96-well plate. According to a Poisson distribution, when less than 1/3 of the wells give product, there is an 80% chance of the PCR product being resultant of amplification from a single cDNA molecule. SGS has the advantage over cloning of not being subjected to resampling and not being biased by PCR-introduced recombination 19. However, the amplification success of SCA and SGS depend on primer design. Both assays were developed for HIV-1 subtype B, but can be adapted for other subtypes and other regions of the genome by changing primers, probes, and standards.
Immunology, Issue 55, single genome sequencing, SGS, real-time PCR, single-copy assay, SCA, HIV-1, ultra-sensitive, RNA extraction
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
Play Button
Using Micro-Electro-Mechanical Systems (MEMS) to Develop Diagnostic Tools
Authors: Utkan Demirci.
Institutions: Brigham and Women's Hospital.
Cellular Biology, Issue 8, microfluidics, diagnostics, capture, blood, HIV, bioengineering
Play Button
Using Learning Outcome Measures to assess Doctoral Nursing Education
Authors: Glenn H. Raup, Jeff King, Romana J. Hughes, Natasha Faidley.
Institutions: Harris College of Nursing and Health Sciences, Texas Christian University.
Education programs at all levels must be able to demonstrate successful program outcomes. Grades alone do not represent a comprehensive measurement methodology for assessing student learning outcomes at either the course or program level. The development and application of assessment rubrics provides an unequivocal measurement methodology to ensure a quality learning experience by providing a foundation for improvement based on qualitative and quantitatively measurable, aggregate course and program outcomes. Learning outcomes are the embodiment of the total learning experience and should incorporate assessment of both qualitative and quantitative program outcomes. The assessment of qualitative measures represents a challenge for educators in any level of a learning program. Nursing provides a unique challenge and opportunity as it is the application of science through the art of caring. Quantification of desired student learning outcomes may be enhanced through the development of assessment rubrics designed to measure quantitative and qualitative aspects of the nursing education and learning process. They provide a mechanism for uniform assessment by nursing faculty of concepts and constructs that are otherwise difficult to describe and measure. A protocol is presented and applied to a doctoral nursing education program with recommendations for application and transformation of the assessment rubric to other education programs. Through application of these specially designed rubrics, all aspects of an education program can be adequately assessed to provide information for program assessment that facilitates the closure of the gap between desired and actual student learning outcomes for any desired educational competency.
Medicine, Issue 40, learning, outcomes, measurement, program, assessment, rubric
Play Button
Molecular Evolution of the Tre Recombinase
Authors: Frank Buchholz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Here we report the generation of Tre recombinase through directed, molecular evolution. Tre recombinase recognizes a pre-defined target sequence within the LTR sequences of the HIV-1 provirus, resulting in the excision and eradication of the provirus from infected human cells. We started with Cre, a 38-kDa recombinase, that recognizes a 34-bp double-stranded DNA sequence known as loxP. Because Cre can effectively eliminate genomic sequences, we set out to tailor a recombinase that could remove the sequence between the 5'-LTR and 3'-LTR of an integrated HIV-1 provirus. As a first step we identified sequences within the LTR sites that were similar to loxP and tested for recombination activity. Initially Cre and mutagenized Cre libraries failed to recombine the chosen loxLTR sites of the HIV-1 provirus. As the start of any directed molecular evolution process requires at least residual activity, the original asymmetric loxLTR sequences were split into subsets and tested again for recombination activity. Acting as intermediates, recombination activity was shown with the subsets. Next, recombinase libraries were enriched through reiterative evolution cycles. Subsequently, enriched libraries were shuffled and recombined. The combination of different mutations proved synergistic and recombinases were created that were able to recombine loxLTR1 and loxLTR2. This was evidence that an evolutionary strategy through intermediates can be successful. After a total of 126 evolution cycles individual recombinases were functionally and structurally analyzed. The most active recombinase -- Tre -- had 19 amino acid changes as compared to Cre. Tre recombinase was able to excise the HIV-1 provirus from the genome HIV-1 infected HeLa cells (see "HIV-1 Proviral DNA Excision Using an Evolved Recombinase", Hauber J., Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany). While still in its infancy, directed molecular evolution will allow the creation of custom enzymes that will serve as tools of "molecular surgery" and molecular medicine.
Cell Biology, Issue 15, HIV-1, Tre recombinase, Site-specific recombination, molecular evolution
Play Button
Comprehensive & Cost Effective Laboratory Monitoring of HIV/AIDS: an African Role Model
Authors: Denise Lawrie, George Janossy, Maarten Roos, Deborah K. Glencross.
Institutions: National Health Laboratory Services (NHLS-SA), University of Witwatersrand, Lightcurve Films.
We present the video about assisting anti-retroviral therapy (ART) by an apt laboratory service - representing a South-African role model for economical large scale diagnostic testing. In the low-income countries inexpensive ART has transformed the prospects for the survival of HIV seropositive patients but there are doubts whether there is a need for the laboratory monitoring of ART and at what costs - in situations when the overall quality of pathology services can still be very low. The appropriate answer is to establish economically sound services with better coordination and stricter internal quality assessment than seen in western countries. This video, photographed at location in the National Health Laboratory Services (NHLS-SA) at the Witwatersrand University, Johannesburg, South Africa, provides such a coordinated scheme expanding the original 2-color CD4-CD45 PanLeucoGating strategy (PLG). Thus the six modules of the video presentation reveal the simplicity of a 4-color flow cytometric assay to combine haematological, immunological and virology-related tests in a single tube. These video modules are: (i) the set-up of instruments; (ii) sample preparations; (iii) testing absolute counts and monitoring quality for each sample by bead-count-rate; (iv) the heamatological CD45 test for white cell counts and differentials; (v) the CD4 counts, and (vi) the activation of CD8+ T cells measured by CD38 display, a viral load related parameter. The potential cost-savings are remarkable. This arrangement is a prime example for the feasibility of performing > 800-1000 tests per day with a stricter quality control than that applied in western laboratories, and also with a transfer of technology to other laboratories within a NHLS-SA network. Expert advisors, laboratory managers and policy makers who carry the duty of making decisions about introducing modern medical technology are frequently not in a position to see the latest technical details as carried out in the large regional laboratories with huge burdens of workload. Hence this video shows details of these new developments.
Immunology, Issue 44, Human Immunodeficiency virus (HIV); CD4 lymphocyte count, white cell count, CD45, panleucogating, lymphocyte activation, CD38, HIV viral load, antiretroviral therapy (ART), internal quality control
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.