JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Synchronous recruitment of epigenetic modifiers to endotoxin synergistically activated Tnf-? gene in acute kidney injury.
PUBLISHED: 01-01-2013
As a consequence of acute kidney injury (AKI), proximal tubular cells hyperrespond to endotoxin (lipopolysaccharide, LPS) by exaggerated renal Tnf-? Production. This LPS hyperresponsiveness is transcriptionally mediated. The epigenetic pathways that control these responses are unknown.
Authors: Nataliya I. Skrypnyk, Raymond C. Harris, Mark P. de Caestecker.
Published: 08-09-2013
Ischemia-reperfusion induced acute kidney injury (IR-AKI) is widely used as a model of AKI in mice, but results are often quite variable with high, often unreported mortality rates that may confound analyses. Bilateral renal pedicle clamping is commonly used to induce IR-AKI, but differences between effective clamp pressures and/or renal responses to ischemia between kidneys often lead to more variable results. In addition, shorter clamp times are known to induce more variable tubular injury, and while mice undergoing bilateral injury with longer clamp times develop more consistent tubular injury, they often die within the first 3 days after injury due to severe renal insufficiency. To improve post-injury survival and obtain more consistent and predictable results, we have developed two models of unilateral ischemia-reperfusion injury followed by contralateral nephrectomy. Both surgeries are performed using a dorsal approach, reducing surgical stress resulting from ventral laparotomy, commonly used for mouse IR-AKI surgeries. For induction of moderate injury BALB/c mice undergo unilateral clamping of the renal pedicle for 26 min and also undergo simultaneous contralateral nephrectomy. Using this approach, 50-60% of mice develop moderate AKI 24 hr after injury but 90-100% of mice survive. To induce more severe AKI, BALB/c mice undergo renal pedicle clamping for 30 min followed by contralateral nephrectomy 8 days after injury. This allows functional assessment of renal recovery after injury with 90-100% survival. Early post-injury tubular damage as well as post injury fibrosis are highly consistent using this model.
23 Related JoVE Articles!
Play Button
Use of a Hanging-weight System for Isolated Renal Artery Occlusion
Authors: Almut Grenz, Julee H. Hong, Alexander Badulak, Douglas Ridyard, Timothy Luebbert, Jae-Hwan Kim, Holger K. Eltzschig.
Institutions: University of Colorado, University of Colorado, Korea University College of Medicine.
In hospitalized patients, over 50% of cases of acute kidney injury (AKI) are caused by renal ischemia 1-3. A recent study of hospitalized patients revealed that only a mild increase in serum creatinine levels (0.3 to 0.4 mg/dl) is associated with a 70% greater risk of death than in persons without any increase 1. Along these lines, surgical procedures requiring cross-clamping of the aorta and renal vessels are associated with a renal failure rates of up to 30% 4. Similarly, AKI after cardiac surgery occurs in over 10% of patients under normal circumstances and is associated with dramatic increases in mortality. AKI are also common complications after liver transplantation. At least 8-17% of patients end up requiring renal replacement therapy 5. Moreover, delayed graft function due to tubule cell injury during kidney transplantation is frequently related to ischemia-associated AKI 6. Moreover, AKI occurs in approximately 20% of patients suffering from sepsis 6.The occurrence of AKI is associated with dramatic increases of morbidity and mortality 1. Therapeutic approaches are very limited and the majority of interventional trials in AKI have failed in humans. Therefore, additional therapeutic modalities to prevent renal injury from ischemia are urgently needed 3, 7-9. To elucidate mechanisms of renal injury due to ischemia and possible therapeutic strategies murine models are intensively required 7-13. Mouse models provide the possibility of utilizing different genetic models including gene-targeted mice and tissue specific gene-targeted mice (cre-flox system). However, murine renal ischemia is technically challenging and experimental details significantly influence results. We performed a systematic evaluation of a novel model for isolated renal artery occlusion in mice, which specifically avoids the use of clamping or suturing the renal pedicle 14. This model requires a nephrectomy of the right kidney since ischemia can be only performed in one kidney due to the experimental setting. In fact, by using a hanging-weight system, the renal artery is only instrumented once throughout the surgical procedure. In addition, no venous or urethral obstruction occurs with this technique. We could demonstrate time-dose-dependent and highly reproducible renal injury with ischemia by measuring serum creatinine. Moreover, when comparing this new model with conventional clamping of the whole pedicle, renal protection by ischemic preconditioning is more profound and more reliable. Therefore his new technique might be useful for other researchers who are working in the field of acute kidney injury.
Medicine, Issue 53, targeted gene deletion, murine model, acute renal failure, ischemia, reperfusion, video demonstration
Play Button
Normothermic Cardiac Arrest and Cardiopulmonary Resuscitation: A Mouse Model of Ischemia-Reperfusion Injury
Authors: Michael P. Hutchens, Richard J. Traystman, Tetsuhiro Fujiyoshi, Shin Nakayama, Paco S. Herson.
Institutions: Oregon Health & Sciences University, University of Colorado Denver.
Acute Kidney Injury (AKI) is a common, highly lethal, complication of critical illness which has a high mortality1-4 and which is most frequently caused by whole-body hypoperfusion.5,6 Successful reproduction of whole-body hypoperfusion in rodent models has been fraught with difficulty.7-9,9,10 Models which employ focal ischemia have repeatedly demonstrated results which do not translate to the clinical setting, and larger animal models which allow for whole body hypoperfusion lack access to the full toolset of genetic manipulation possible in the mouse.11,12 However, in recent years a mouse model of cardiac arrest and cardiopulmonary resuscitation has emerged which can be adapted to model AKI.13 This model reliably reproduces physiologic, functional, anatomic, and histologic outcomes seen in clinical AKI, is rapidly repeatable, and offers all of the significant advantages of a murine surgical model, including access to genetic manipulative techniques, low cost relative to large animals, and ease of use. Our group has developed extensive experience with use of this model to assess a number of organ-specific outcomes in AKI.14,15
Medicine, Issue 54, AKI, Acute Kidney Injury, Acute Renal Failure, Cardiac Arrest, Cardiopulmonary Resuscitation, Mouse Model, Chest Compressions, CA/CPR. stereology, perfusion-fixation
Play Button
In vivo Imaging Method to Distinguish Acute and Chronic Inflammation
Authors: Jen-Chieh Tseng, Andrew L. Kung.
Institutions: Harvard Medical School, Columbia University Medical Center.
Inflammation is a fundamental aspect of many human diseases. In this video report, we demonstrate non-invasive bioluminescence imaging techniques that distinguish acute and chronic inflammation in mouse models. With tissue damage or pathogen invasion, neutrophils are the first line of defense, playing a major role in mediating the acute inflammatory response. As the inflammatory reaction progresses, circulating monocytes gradually migrate into the site of injury and differentiate into mature macrophages, which mediate chronic inflammation and promote tissue repair by removing tissue debris and producing anti-inflammatory cytokines. Intraperitoneal injection of luminol (5-amino-2,3-dihydro-1,4-phthalazinedione, sodium salt) enables detection of acute inflammation largely mediated by tissue-infiltrating neutrophils. Luminol specifically reacts with the superoxide generated within the phagosomes of neutrophils since bioluminescence results from a myeloperoxidase (MPO) mediated reaction. Lucigenin (bis-N-methylacridinium nitrate) also reacts with superoxide in order to generate bioluminescence. However, lucigenin bioluminescence is independent of MPO and it solely relies on phagocyte NADPH oxidase (Phox) in macrophages during chronic inflammation. Together, luminol and lucigenin allow non-invasive visualization and longitudinal assessment of different phagocyte populations across both acute and chronic inflammatory phases. Given the important role of inflammation in a variety of human diseases, we believe this non-invasive imaging method can help investigate the differential roles of neutrophils and macrophages in a variety of pathological conditions.
Immunology, Issue 78, Infection, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Cancer Biology, Stem Cell Biology, Inflammation, Phagocytes, Phagocyte, Superoxides, Molecular Imaging, chemiluminescence, in vivo imaging, superoxide, bioluminescence, chronic inflammation, acute inflammation, phagocytes, cells, imaging, animal model
Play Button
Intravenous Microinjections of Zebrafish Larvae to Study Acute Kidney Injury
Authors: Chiara Cianciolo Cosentino, Beth L. Roman, Iain A. Drummond, Neil A. Hukriede.
Institutions: University of Pittsburgh, University of Pittsburgh, Harvard Medical School.
In this video article we describe a zebrafish model of AKI using gentamicin as the nephrotoxicant. The technique consists of intravenous microinjections on 2 dpf zebrafish. This technique represents an efficient and rapid method to deliver soluble substances into the bloodstream of zebrafish larvae, allowing for the injection of 15-20 fish per hour. In addition to AKI studies, this microinjection technique can also be used for other types of experimental studies such as angiography. We provide a detailed protocol of the technique from equipment required to visual measures of decreased kidney function. In addition, we also demonstrate the process of fixation, whole mount immunohistochemistry with a kidney tubule marker, plastic embedding and sectioning of the larval zebrafish. We demonstrate that zebrafish larvae injected with gentamicin show morphological features consistent with AKI: edema, loss of cell polarity in proximal tubular epithelial cells, and morphological disruption of the tubule.
Developmental Biology, Issue 42, intravenous microinjection, zebrafish, gentamicin, acute kidney injury
Play Button
Quantitative In vitro Assay to Measure Neutrophil Adhesion to Activated Primary Human Microvascular Endothelial Cells under Static Conditions
Authors: Kevin Wilhelmsen, Katherine Farrar, Judith Hellman.
Institutions: University of California, San Francisco, University of California, San Francisco.
The vascular endothelium plays an integral part in the inflammatory response. During the acute phase of inflammation, endothelial cells (ECs) are activated by host mediators or directly by conserved microbial components or host-derived danger molecules. Activated ECs express cytokines, chemokines and adhesion molecules that mobilize, activate and retain leukocytes at the site of infection or injury. Neutrophils are the first leukocytes to arrive, and adhere to the endothelium through a variety of adhesion molecules present on the surfaces of both cells. The main functions of neutrophils are to directly eliminate microbial threats, promote the recruitment of other leukocytes through the release of additional factors, and initiate wound repair. Therefore, their recruitment and attachment to the endothelium is a critical step in the initiation of the inflammatory response. In this report, we describe an in vitro neutrophil adhesion assay using calcein AM-labeled primary human neutrophils to quantitate the extent of microvascular endothelial cell activation under static conditions. This method has the additional advantage that the same samples quantitated by fluorescence spectrophotometry can also be visualized directly using fluorescence microscopy for a more qualitative assessment of neutrophil binding.
Immunology, Issue 78, Cellular Biology, Infection, Molecular Biology, Medicine, Biomedical Engineering, Biophysics, Endothelium, Vascular, Neutrophils, Inflammation, Inflammation Mediators, Neutrophil, Leukocyte Adhesion, Endothelial cells, assay
Play Button
Modeling Neural Immune Signaling of Episodic and Chronic Migraine Using Spreading Depression In Vitro
Authors: Aya D. Pusic, Yelena Y. Grinberg, Heidi M. Mitchell, Richard P. Kraig.
Institutions: The University of Chicago Medical Center, The University of Chicago Medical Center.
Migraine and its transformation to chronic migraine are healthcare burdens in need of improved treatment options. We seek to define how neural immune signaling modulates the susceptibility to migraine, modeled in vitro using spreading depression (SD), as a means to develop novel therapeutic targets for episodic and chronic migraine. SD is the likely cause of migraine aura and migraine pain. It is a paroxysmal loss of neuronal function triggered by initially increased neuronal activity, which slowly propagates within susceptible brain regions. Normal brain function is exquisitely sensitive to, and relies on, coincident low-level immune signaling. Thus, neural immune signaling likely affects electrical activity of SD, and therefore migraine. Pain perception studies of SD in whole animals are fraught with difficulties, but whole animals are well suited to examine systems biology aspects of migraine since SD activates trigeminal nociceptive pathways. However, whole animal studies alone cannot be used to decipher the cellular and neural circuit mechanisms of SD. Instead, in vitro preparations where environmental conditions can be controlled are necessary. Here, it is important to recognize limitations of acute slices and distinct advantages of hippocampal slice cultures. Acute brain slices cannot reveal subtle changes in immune signaling since preparing the slices alone triggers: pro-inflammatory changes that last days, epileptiform behavior due to high levels of oxygen tension needed to vitalize the slices, and irreversible cell injury at anoxic slice centers. In contrast, we examine immune signaling in mature hippocampal slice cultures since the cultures closely parallel their in vivo counterpart with mature trisynaptic function; show quiescent astrocytes, microglia, and cytokine levels; and SD is easily induced in an unanesthetized preparation. Furthermore, the slices are long-lived and SD can be induced on consecutive days without injury, making this preparation the sole means to-date capable of modeling the neuroimmune consequences of chronic SD, and thus perhaps chronic migraine. We use electrophysiological techniques and non-invasive imaging to measure neuronal cell and circuit functions coincident with SD. Neural immune gene expression variables are measured with qPCR screening, qPCR arrays, and, importantly, use of cDNA preamplification for detection of ultra-low level targets such as interferon-gamma using whole, regional, or specific cell enhanced (via laser dissection microscopy) sampling. Cytokine cascade signaling is further assessed with multiplexed phosphoprotein related targets with gene expression and phosphoprotein changes confirmed via cell-specific immunostaining. Pharmacological and siRNA strategies are used to mimic and modulate SD immune signaling.
Neuroscience, Issue 52, innate immunity, hormesis, microglia, T-cells, hippocampus, slice culture, gene expression, laser dissection microscopy, real-time qPCR, interferon-gamma
Play Button
Strategies for Study of Neuroprotection from Cold-preconditioning
Authors: Heidi M. Mitchell, David M. White, Richard P. Kraig.
Institutions: The University of Chicago Medical Center.
Neurological injury is a frequent cause of morbidity and mortality from general anesthesia and related surgical procedures that could be alleviated by development of effective, easy to administer and safe preconditioning treatments. We seek to define the neural immune signaling responsible for cold-preconditioning as means to identify novel targets for therapeutics development to protect brain before injury onset. Low-level pro-inflammatory mediator signaling changes over time are essential for cold-preconditioning neuroprotection. This signaling is consistent with the basic tenets of physiological conditioning hormesis, which require that irritative stimuli reach a threshold magnitude with sufficient time for adaptation to the stimuli for protection to become evident. Accordingly, delineation of the immune signaling involved in cold-preconditioning neuroprotection requires that biological systems and experimental manipulations plus technical capacities are highly reproducible and sensitive. Our approach is to use hippocampal slice cultures as an in vitro model that closely reflects their in vivo counterparts with multi-synaptic neural networks influenced by mature and quiescent macroglia / microglia. This glial state is particularly important for microglia since they are the principal source of cytokines, which are operative in the femtomolar range. Also, slice cultures can be maintained in vitro for several weeks, which is sufficient time to evoke activating stimuli and assess adaptive responses. Finally, environmental conditions can be accurately controlled using slice cultures so that cytokine signaling of cold-preconditioning can be measured, mimicked, and modulated to dissect the critical node aspects. Cytokine signaling system analyses require the use of sensitive and reproducible multiplexed techniques. We use quantitative PCR for TNF-α to screen for microglial activation followed by quantitative real-time qPCR array screening to assess tissue-wide cytokine changes. The latter is a most sensitive and reproducible means to measure multiple cytokine system signaling changes simultaneously. Significant changes are confirmed with targeted qPCR and then protein detection. We probe for tissue-based cytokine protein changes using multiplexed microsphere flow cytometric assays using Luminex technology. Cell-specific cytokine production is determined with double-label immunohistochemistry. Taken together, this brain tissue preparation and style of use, coupled to the suggested investigative strategies, may be an optimal approach for identifying potential targets for the development of novel therapeutics that could mimic the advantages of cold-preconditioning.
Neuroscience, Issue 43, innate immunity, hormesis, microglia, hippocampus, slice culture, immunohistochemistry, neural-immune, gene expression, real-time PCR
Play Button
Isolation, Purification and Labeling of Mouse Bone Marrow Neutrophils for Functional Studies and Adoptive Transfer Experiments
Authors: Muthulekha Swamydas, Michail S. Lionakis.
Institutions: National Institute of Allergy and Infectious Diseases, NIH.
Neutrophils are critical effector cells of the innate immune system. They are rapidly recruited at sites of acute inflammation and exert protective or pathogenic effects depending on the inflammatory milieu. Nonetheless, despite the indispensable role of neutrophils in immunity, detailed understanding of the molecular factors that mediate neutrophils' effector and immunopathogenic effects in different infectious diseases and inflammatory conditions is still lacking, partly because of their short half life, the difficulties with handling of these cells and the lack of reliable experimental protocols for obtaining sufficient numbers of neutrophils for downstream functional studies and adoptive transfer experiments. Therefore, simple, fast, economical and reliable methods are highly desirable for harvesting sufficient numbers of mouse neutrophils for assessing functions such as phagocytosis, killing, cytokine production, degranulation and trafficking. To that end, we present a reproducible density gradient centrifugation-based protocol, which can be adapted in any laboratory to isolate large numbers of neutrophils from the bone marrow of mice with high purity and viability. Moreover, we present a simple protocol that uses CellTracker dyes to label the isolated neutrophils, which can then be adoptively transferred into recipient mice and tracked in several tissues for at least 4 hr post-transfer using flow cytometry. Using this approach, differential labeling of neutrophils from wild-type and gene-deficient mice with different CellTracker dyes can be successfully employed to perform competitive repopulation studies for evaluating the direct role of specific genes in trafficking of neutrophils from the blood into target tissues in vivo.
Immunology, Issue 77, Cellular Biology, Infection, Infectious Diseases, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Neutrophils, Adoptive Transfer, immunology, Neutrophils, mouse, bone marrow, adoptive transfer, density gradient, labeling, CellTracker, cell, isolation, flow cytometry, animal model
Play Button
Systematic Analysis of In Vitro Cell Rolling Using a Multi-well Plate Microfluidic System
Authors: Oren Levy, Priya Anandakumaran, Jessica Ngai, Rohit Karnik, Jeffrey M. Karp.
Institutions: Brigham and Women's Hospital, Brigham and Women's Hospital, Harvard University, Harvard University, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology.
A major challenge for cell-based therapy is the inability to systemically target a large quantity of viable cells with high efficiency to tissues of interest following intravenous or intraarterial infusion. Consequently, increasing cell homing is currently studied as a strategy to improve cell therapy. Cell rolling on the vascular endothelium is an important step in the process of cell homing and can be probed in-vitro using a parallel plate flow chamber (PPFC). However, this is an extremely tedious, low throughput assay, with poorly controlled flow conditions. Instead, we used a multi-well plate microfluidic system that enables study of cellular rolling properties in a higher throughput under precisely controlled, physiologically relevant shear flow1,2. In this paper, we show how the rolling properties of HL-60 (human promyelocytic leukemia) cells on P- and E-selectin-coated surfaces as well as on cell monolayer-coated surfaces can be readily examined. To better simulate inflammatory conditions, the microfluidic channel surface was coated with endothelial cells (ECs), which were then activated with tumor necrosis factor-α (TNF-α), significantly increasing interactions with HL-60 cells under dynamic conditions. The enhanced throughput and integrated multi-parameter software analysis platform, that permits rapid analysis of parameters such as rolling velocities and rolling path, are important advantages for assessing cell rolling properties in-vitro. Allowing rapid and accurate analysis of engineering approaches designed to impact cell rolling and homing, this platform may help advance exogenous cell-based therapy.
Bioengineering, Issue 80, Microfluidics, Endothelial Cells, Leukocyte Rolling, HL-60 cells, TNF-α, P-selectin, E-selectin
Play Button
Transient Expression of Proteins by Hydrodynamic Gene Delivery in Mice
Authors: Daniella Kovacsics, Jayne Raper.
Institutions: Hunter College, CUNY.
Efficient expression of transgenes in vivo is of critical importance in studying gene function and developing treatments for diseases. Over the past years, hydrodynamic gene delivery (HGD) has emerged as a simple, fast, safe and effective method for delivering transgenes into rodents. This technique relies on the force generated by the rapid injection of a large volume of physiological solution to increase the permeability of cell membranes of perfused organs and thus deliver DNA into cells. One of the main advantages of HGD is the ability to introduce transgenes into mammalian cells using naked plasmid DNA (pDNA). Introducing an exogenous gene using a plasmid is minimally laborious, highly efficient and, contrary to viral carriers, remarkably safe. HGD was initially used to deliver genes into mice, it is now used to deliver a wide range of substances, including oligonucleotides, artificial chromosomes, RNA, proteins and small molecules into mice, rats and, to a limited degree, other animals. This protocol describes HGD in mice and focuses on three key aspects of the method that are critical to performing the procedure successfully: correct insertion of the needle into the vein, the volume of injection and the speed of delivery. Examples are given to show the application of this method to the transient expression of two genes that encode secreted, primate-specific proteins, apolipoprotein L-I (APOL-I) and haptoglobin-related protein (HPR).
Genetics, Issue 87, hydrodynamic gene delivery, hydrodynamics-based transfection, mouse, gene therapy, plasmid DNA, transient gene expression, tail vein injection
Play Button
Mouse Models of Periventricular Leukomalacia
Authors: Yan Shen, Jennifer M. Plane, Wenbin Deng.
Institutions: University of California, Davis.
We describe a protocol for establishing mouse models of periventricular leukomalacia (PVL). PVL is the predominant form of brain injury in premature infants and the most common antecedent of cerebral palsy. PVL is characterized by periventricular white matter damage with prominent oligodendroglial injury. Hypoxia/ischemia with or without systemic infection/inflammation are the primary causes of PVL. We use P6 mice to create models of neonatal brain injury by the induction of hypoxia/ischemia with or without systemic infection/inflammation with unilateral carotid ligation followed by exposure to hypoxia with or without injection of the endotoxin lipopolysaccharide (LPS). Immunohistochemistry of myelin basic protein (MBP) or O1 and electron microscopic examination show prominent myelin loss in cerebral white matter with additional damage to the hippocampus and thalamus. Establishment of mouse models of PVL will greatly facilitate the study of disease pathogenesis using available transgenic mouse strains, conduction of drug trials in a relatively high throughput manner to identify candidate therapeutic agents, and testing of stem cell transplantation using immunodeficiency mouse strains.
JoVE Neuroscience, Issue 39, brain, mouse, white matter injury, oligodendrocyte, periventricular leukomalacia
Play Button
Accurate and Simple Measurement of the Pro-inflammatory Cytokine IL-1β using a Whole Blood Stimulation Assay
Authors: Barbara Yang, Tuyet-Hang Pham, Raphaela Goldbach-Mansky, Massimo Gadina.
Institutions: National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Arthritis and Musculoskeletal and Skin Diseases.
Inflammatory processes resulting from the secretion of soluble mediators by immune cells, lead to various manifestations in skin, joints and other tissues as well as altered cytokine homeostasis. The innate immune system plays a crucial role in recognizing pathogens and other endogenous danger stimuli. One of the major cytokines released by innate immune cells is Interleukin (IL)-1. Therefore, we utilize a whole blood stimulation assay in order to measure the secretion of inflammatory cytokines and specifically of the pro-inflammatory cytokine IL-1β 1, 2, 3. Patients with genetic dysfunctions of the innate immune system causing autoinflammatory syndromes show an exaggerated release of mature IL-1β upon stimulation with LPS alone. In order to evaluate the innate immune component of patients who present with inflammatory-associated pathologies, we use a specific immunoassay to detect cellular immune responses to pathogen-associated molecular patterns (PAMPs), such as the gram-negative bacterial endotoxin, lipopolysaccharide (LPS). These PAMPs are recognized by pathogen recognition receptors (PRRs), which are found on the cells of the innate immune system 4, 5, 6, 7. A primary signal, LPS, in conjunction with a secondary signal, ATP, is necessary for the activation of the inflammasome, a multiprotein complex that processes pro-IL-1β to its mature, bioactive form 4, 5, 6, 8, 9, 10. The whole blood assay requires minimal sample manipulation to assess cytokine production when compared to other methods that require labor intensive isolation and culturing of specific cell populations. This method differs from other whole blood stimulation assays; rather than diluting samples with a ratio of RPMI media, we perform a white blood cell count directly from diluted whole blood and therefore, stimulate a known number of white blood cells in culture 2. The results of this particular whole blood assay demonstrate a novel technique useful in elucidating patient cohorts presenting with autoinflammatory pathophysiologies.
Immunology, Issue 49, Interleukin-1 beta, autoinflammatory, whole blood stimulation, lipopolysaccharide, ATP, cytokine production, pattern-recognition receptors, pathogen-associated molecular patterns
Play Button
Laser Ablation of the Zebrafish Pronephros to Study Renal Epithelial Regeneration
Authors: Corbin S. Johnson, Nicholas F. Holzemer, Rebecca A. Wingert.
Institutions: University of Notre Dame .
Acute kidney injury (AKI) is characterized by high mortality rates from deterioration of renal function over a period of hours or days that culminates in renal failure1. AKI can be caused by a number of factors including ischemia, drug-based toxicity, or obstructive injury1. This results in an inability to maintain fluid and electrolyte homeostasis. While AKI has been observed for decades, effective clinical therapies have yet to be developed. Intriguingly, some patients with AKI recover renal functions over time, a mysterious phenomenon that has been only rudimentally characterized1,2. Research using mammalian models of AKI has shown that ischemic or nephrotoxin-injured kidneys experience epithelial cell death in nephron tubules1,2, the functional units of the kidney that are made up of a series of specialized regions (segments) of epithelial cell types3. Within nephrons, epithelial cell death is highest in proximal tubule cells. There is evidence that suggests cell destruction is followed by dedifferentiation, proliferation, and migration of surrounding epithelial cells, which can regenerate the nephron entirely1,2. However, there are many unanswered questions about the mechanisms of renal epithelial regeneration, ranging from the signals that modulate these events to reasons for the wide variation of abilities among humans to regenerate injured kidneys. The larval zebrafish provides an excellent model to study kidney epithelial regeneration as its pronephric kidney is comprised of nephrons that are conserved with higher vertebrates including mammals4,5. The nephrons of zebrafish larvae can be visualized with fluorescence techniques because of the relative transparency of the young zebrafish6. This provides a unique opportunity to image cell and molecular changes in real-time, in contrast to mammalian models where nephrons are inaccessible because the kidneys are structurally complex systems internalized within the animal. Recent studies have employed the aminoglycoside gentamicin as a toxic causative agent for study of AKI and subsequent renal failure: gentamicin and other antibiotics have been shown to cause AKI in humans, and researchers have formulated methods to use this agent to trigger kidney damage in zebrafish7,8. However, the effects of aminoglycoside toxicity in zebrafish larvae are catastrophic and lethal, which presents a difficulty when studying epithelial regeneration and function over time. Our method presents the use of targeted cell ablation as a novel tool for the study of epithelial injury in zebrafish. Laser ablation gives researchers the ability to induce cell death in a limited population of cells. Varying areas of cells can be targeted based on morphological location, function, or even expression of a particular cellular phenotype. Thus, laser ablation will increase the specificity of what researchers can study, and can be a powerful new approach to shed light on the mechanisms of renal epithelial regeneration. This protocol can be broadly applied to target cell populations in other organs in the zebrafish embryo to study injury and regeneration in any number of contexts of interest.
Developmental Biology, Issue 54, kidney, zebrafish, regeneration, epithelium, acute kidney injury, ablation
Play Button
Intraductal Injection of LPS as a Mouse Model of Mastitis: Signaling Visualized via an NF-κB Reporter Transgenic
Authors: Whitney Barham, Taylor Sherrill, Linda Connelly, Timothy S. Blackwell, Fiona E. Yull.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center, University of Hawaii at Hilo College of Pharmacy.
Animal models of human disease are necessary in order to rigorously study stages of disease progression and associated mechanisms, and ultimately, as pre-clinical models to test interventions. In these methods, we describe a technique in which lipopolysaccharide (LPS) is injected into the lactating mouse mammary gland via the nipple, effectively modeling mastitis, or inflammation, of the gland. This simulated infection results in increased nuclear factor kappa B (NF-κB) signaling, as visualized through bioluminescent imaging of an NF-κB luciferase reporter mouse1. Our ultimate goal in developing these methods was to study the inflammation associated with mastitis in the lactating gland, which often includes redness, swelling, and immune cell infiltration2,3. Therefore, we were keenly aware that incision or any type of wounding of the skin, the nipple, or the gland in order to introduce the LPS could not be utilized in our methods since the approach would likely confound the read-out of inflammation. We also desired a straight-forward method that did not require specially made hand-drawn pipettes or the use of micromanipulators to hold these specialized tools in place. Thus, we determined to use a commercially available insulin syringe and to inject the agent into the mammary duct of an intact nipple. This method was successful and allowed us to study the inflammation associated with LPS injection without any additional effects overlaid by the process of injection. In addition, this method also utilized an NF-κB luciferase reporter transgenic mouse and bioluminescent imaging technology to visually and quantitatively show increased NF-κB signaling within the LPS-injected gland4. These methods are of interest to researchers of many disciplines who wish to model disease within the lactating mammary gland, as ultimately, the technique described here could be utilized for injection of a number of substances, and is not limited to only LPS.
Medicine, Issue 67, mastitis, intraductal injection, NF-kappaB, reporter transgenic, LPS, bioluminescent imaging, lactation
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Renal Ischaemia Reperfusion Injury: A Mouse Model of Injury and Regeneration
Authors: Emily E. Hesketh, Alicja Czopek, Michael Clay, Gary Borthwick, David Ferenbach, David Kluth, Jeremy Hughes.
Institutions: University of Edinburgh.
Renal ischaemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) in patients and occlusion of renal blood flow is unavoidable during renal transplantation. Experimental models that accurately and reproducibly recapitulate renal IRI are crucial in dissecting the pathophysiology of AKI and the development of novel therapeutic agents. Presented here is a mouse model of renal IRI that results in reproducible AKI. This is achieved by a midline laparotomy approach for the surgery with one incision allowing both a right nephrectomy that provides control tissue and clamping of the left renal pedicle to induce ischaemia of the left kidney. By careful monitoring of the clamp position and body temperature during the period of ischaemia this model achieves reproducible functional and structural injury. Mice sacrificed 24 hr following surgery demonstrate loss of renal function with elevation of the serum or plasma creatinine level as well as structural kidney damage with acute tubular necrosis evident. Renal function improves and the acute tissue injury resolves during the course of 7 days following renal IRI such that this model may be used to study renal regeneration. This model of renal IRI has been utilized to study the molecular and cellular pathophysiology of AKI as well as analysis of the subsequent renal regeneration.
Medicine, Issue 88, Murine, Acute Kidney Injury, Ischaemia, Reperfusion, Nephrectomy, Regeneration, Laparotomy
Play Button
The Utilization of Oropharyngeal Intratracheal PAMP Administration and Bronchoalveolar Lavage to Evaluate the Host Immune Response in Mice
Authors: Irving C. Allen.
Institutions: Virginia Polytechnic Institute and State University.
The host immune response to pathogens is a complex biological process. The majority of in vivo studies classically employed to characterize host-pathogen interactions take advantage of intraperitoneal injections of select bacteria or pathogen associated molecular patterns (PAMPs) in mice. While these techniques have yielded tremendous data associated with infectious disease pathobiology, intraperitoneal injection models are not always appropriate for host-pathogen interaction studies in the lung. Utilizing an acute lung inflammation model in mice, it is possible to conduct a high resolution analysis of the host innate immune response utilizing lipopolysaccharide (LPS). Here, we describe the methods to administer LPS using nonsurgical oropharyngeal intratracheal administration, monitor clinical parameters associated with disease pathogenesis, and utilize bronchoalveolar lavage fluid to evaluate the host immune response. The techniques that are described are widely applicable for studying the host innate immune response to a diverse range of PAMPs and pathogens. Likewise, with minor modifications, these techniques can also be applied in studies evaluating allergic airway inflammation and in pharmacological applications.
Infection, Issue 86, LPS, Lipopolysaccharide, mouse, pneumonia, gram negative bacteria, inflammation, acute lung inflammation, innate immunity, host pathogen interaction, lung, respiratory disease
Play Button
An In vitro Model to Study Immune Responses of Human Peripheral Blood Mononuclear Cells to Human Respiratory Syncytial Virus Infection
Authors: Marloes Vissers, Marrit N. Habets, Inge M. L. Ahout, Jop Jans, Marien I. de Jonge, Dimitri A. Diavatopoulos, Gerben Ferwerda.
Institutions: Radboud university medical center.
Human respiratory syncytial virus (HRSV) infections present a broad spectrum of disease severity, ranging from mild infections to life-threatening bronchiolitis. An important part of the pathogenesis of severe disease is an enhanced immune response leading to immunopathology. Here, we describe a protocol used to investigate the immune response of human immune cells to an HRSV infection. First, we describe methods used for culturing, purification and quantification of HRSV. Subsequently, we describe a human in vitro model in which peripheral blood mononuclear cells (PBMCs) are stimulated with live HRSV. This model system can be used to study multiple parameters that may contribute to disease severity, including the innate and adaptive immune response. These responses can be measured at the transcriptional and translational level. Moreover, viral infection of cells can easily be measured using flow cytometry. Taken together, stimulation of PBMC with live HRSV provides a fast and reproducible model system to examine mechanisms involved in HRSV-induced disease.
Immunology, Issue 82, Blood Cells, Respiratory Syncytial Virus, Human, Respiratory Tract Infections, Paramyxoviridae Infections, Models, Immunological, Immunity, HRSV culture, purification, quantification, PBMC isolation, stimulation, inflammatory pathways
Play Button
Isolation and Chemical Characterization of Lipid A from Gram-negative Bacteria
Authors: Jeremy C. Henderson, John P. O'Brien, Jennifer S. Brodbelt, M. Stephen Trent.
Institutions: The University of Texas at Austin, The University of Texas at Austin, The University of Texas at Austin.
Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate immune response, and have provided many new targets in the development of antibacterial compounds.
Chemistry, Issue 79, Membrane Lipids, Toll-Like Receptors, Endotoxins, Glycolipids, Lipopolysaccharides, Lipid A, Microbiology, Lipids, lipid A, Bligh-Dyer, thin layer chromatography (TLC), lipopolysaccharide, mass spectrometry, Collision Induced Dissociation (CID), Photodissociation (PD)
Play Button
Isolation of Cortical Microglia with Preserved Immunophenotype and Functionality From Murine Neonates
Authors: Stefano G. Daniele, Amanda A. Edwards, Kathleen A. Maguire-Zeiss.
Institutions: Georgetown University Medical Center.
Isolation of microglia from CNS tissue is a powerful investigative tool used to study microglial biology ex vivo. The present method details a procedure for isolation of microglia from neonatal murine cortices by mechanical agitation with a rotary shaker. This microglia isolation method yields highly pure cortical microglia that exhibit morphological and functional characteristics indicative of quiescent microglia in normal, nonpathological conditions in vivo. This procedure also preserves the microglial immunophenotype and biochemical functionality as demonstrated by the induction of morphological changes, nuclear translocation of the p65 subunit of NF-κB (p65), and secretion of the hallmark proinflammatory cytokine, tumor necrosis factor-α (TNF-α), upon lipopolysaccharide (LPS) and Pam3CSK4 (Pam) challenges. Therefore, the present isolation procedure preserves the immunophenotype of both quiescent and activated microglia, providing an experimental method of investigating microglia biology in ex vivo conditions.
Immunology, Issue 83, neuroinflammation, Cytokines, neurodegeneration, LPS, Pam3CSK4, TLRs, PAMPs, DAMPs
Play Button
Mouse Kidney Transplantation: Models of Allograft Rejection
Authors: George H. Tse, Emily E. Hesketh, Michael Clay, Gary Borthwick, Jeremy Hughes, Lorna P. Marson.
Institutions: The University of Edinburgh.
Rejection of the transplanted kidney in humans is still a major cause of morbidity and mortality. The mouse model of renal transplantation closely replicates both the technical and pathological processes that occur in human renal transplantation. Although mouse models of allogeneic rejection in organs other than the kidney exist, and are more technically feasible, there is evidence that different organs elicit disparate rejection modes and dynamics, for instance the time course of rejection in cardiac and renal allograft differs significantly in certain strain combinations. This model is an attractive tool for many reasons despite its technical challenges. As inbred mouse strain haplotypes are well characterized it is possible to choose donor and recipient combinations to model acute allograft rejection by transplanting across MHC class I and II loci. Conversely by transplanting between strains with similar haplotypes a chronic process can be elicited were the allograft kidney develops interstitial fibrosis and tubular atrophy. We have modified the surgical technique to reduce operating time and improve ease of surgery, however a learning curve still needs to be overcome in order to faithfully replicate the model. This study will provide key points in the surgical procedure and aid the process of establishing this technique.
Medicine, Issue 92, transplantation, mouse model, surgery, kidney, immunology, rejection
Play Button
Purification and Visualization of Lipopolysaccharide from Gram-negative Bacteria by Hot Aqueous-phenol Extraction
Authors: Michael R. Davis, Jr., Joanna B. Goldberg.
Institutions: University of Virginia Health System.
Lipopolysaccharide (LPS) is a major component of Gram-negative bacterial outer membranes. It is a tripartite molecule consisting of lipid A, which is embedded in the outer membrane, a core oligosaccharide and repeating O-antigen units that extend outward from the surface of the cell1, 2. LPS is an immunodominant molecule that is important for the virulence and pathogenesis of many bacterial species, including Pseudomonas aeruginosa, Salmonella species, and Escherichia coli3-5, and differences in LPS O-antigen composition form the basis for serotyping of strains. LPS is involved in attachment to host cells at the initiation of infection and provides protection from complement-mediated killing; strains that lack LPS can be attenuated for virulence6-8. For these reasons, it is important to visualize LPS, particularly from clinical isolates. Visualizing LPS banding patterns and recognition by specific antibodies can be useful tools to identify strain lineages and to characterize various mutants. In this report, we describe a hot aqueous-phenol method for the isolation and purification of LPS from Gram-negative bacterial cells. This protocol allows for the extraction of LPS away from nucleic acids and proteins that can interfere with visualization of LPS that occurs with shorter, less intensive extraction methods9. LPS prepared this way can be separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and directly stained using carbohydrate/glycoprotein stains or standard silver staining methods. Many anti-sera to LPS contain antibodies that cross-react with outer membrane proteins or other antigenic targets that can hinder reactivity observed following Western immunoblot of SDS-PAGE-separated crude cell lysates. Protease treatment of crude cell lysates alone is not always an effective way of removing this background using this or other visualization methods. Further, extensive protease treatment in an attempt to remove this background can lead to poor quality LPS that is not well resolved by any of the aforementioned methods. For these reasons, we believe that the following protocol, adapted from Westpahl and Jann10, is ideal for LPS extraction.
Immunology, Issue 63, Microbiology, Gram-negative, LPS, extraction, polysaccharide staining, Western immunoblot
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.