JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils.
PLoS ONE
PUBLISHED: 01-01-2013
Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies.
ABSTRACT
Interaction of activated platelets and leukocytes (mainly neutrophils) on the activated endothelium mediates thrombosis and vascular inflammation.1,2 During thrombus formation at the site of arteriolar injury, platelets adherent to the activated endothelium and subendothelial matrix proteins support neutrophil rolling and adhesion.3 Conversely, under venular inflammatory conditions, neutrophils adherent to the activated endothelium can support adhesion and accumulation of circulating platelets. Heterotypic platelet-neutrophil aggregation requires sequential processes by the specific receptor-counter receptor interactions between cells.4 It is known that activated endothelial cells release adhesion molecules such as von Willebrand factor, thereby initiating platelet adhesion and accumulation under high shear conditions.5 Also, activated endothelial cells support neutrophil rolling and adhesion by expressing selectins and intercellular adhesion molecule-1 (ICAM-1), respectively, under low shear conditions.4 Platelet P-selectin interacts with neutrophils through P-selectin glycoprotein ligand-1 (PSGL-1), thereby inducing activation of neutrophil β2 integrins and firm adhesion between two cell types. Despite the advances in in vitro experiments in which heterotypic platelet-neutrophil interactions are determined in whole blood or isolated cells,6,7 those studies cannot manipulate oxidant stress conditions during vascular disease. In this report, using fluorescently-labeled, specific antibodies against a mouse platelet and neutrophil marker, we describe a detailed intravital microscopic protocol to monitor heterotypic interactions of platelets and neutrophils on the activated endothelium during TNF-α-induced inflammation or following laser-induced injury in cremaster muscle microvessels of live mice.
18 Related JoVE Articles!
Play Button
Preparation and Pathogen Inactivation of Double Dose Buffy Coat Platelet Products using the INTERCEPT Blood System
Authors: Mohammad R. Abedi, Ann-Charlotte Doverud.
Institutions: Örebro University Hospital.
Blood centers are faced with many challenges including maximizing production yield from the blood product donations they receive as well as ensuring the highest possible level of safety for transfusion patients, including protection from transfusion transmitted diseases. This must be accomplished in a fiscally responsible manner which minimizes operating expenses including consumables, equipment, waste, and personnel costs, among others. Several methods are available to produce platelet concentrates for transfusion. One of the most common is the buffy coat method in which a single therapeutic platelet unit (≥ 2.0 x1011 platelets per unit or per local regulations) is prepared by pooling the buffy coat layer from up to six whole blood donations. A procedure for producing "double dose" whole blood derived platelets has only recently been developed. Presented here is a novel method for preparing double dose whole blood derived platelet concentrates from pools of 7 buffy coats and subsequently treating the double dose units with the INTERCEPT Blood System for pathogen inactivation. INTERCEPT was developed to inactivate viruses, bacteria, parasites, and contaminating donor white cells which may be present in donated blood. Pairing INTERCEPT with the double dose buffy coat method by utilizing the INTERCEPT Processing Set with Dual Storage Containers (the "DS set"), allows blood centers to treat each of their double dose units in a single pathogen inactivation processing set, thereby maximizing patient safety while minimizing costs. The double dose buffy coat method requires fewer buffy coats and reduces the use of consumables by up to 50% (e.g. pooling sets, filter sets, platelet additive solution, and sterile connection wafers) compared to preparation and treatment of single dose buffy coat platelet units. Other cost savings include less waste, less equipment maintenance, lower power requirements, reduced personnel time, and lower collection cost compared to the apheresis technique.
Medicine, Issue 70, Immunology, Hematology, Infectious Disease, Pathology, pathogen inactivation, pathogen reduction, double-dose platelets, INTERCEPT Blood System, amotosalen, UVA, platelet, blood processing, buffy coat, IBS, transfusion
4414
Play Button
Isolation of Human Umbilical Vein Endothelial Cells and Their Use in the Study of Neutrophil Transmigration Under Flow Conditions
Authors: Anutosh Ganguly, Hong Zhang, Ritu Sharma, Sean Parsons, Kamala D. Patel.
Institutions: University of Calgary .
Neutrophils are the most abundant type of white blood cell. They form an essential part of the innate immune system1. During acute inflammation, neutrophils are the first inflammatory cells to migrate to the site of injury. Recruitment of neutrophils to an injury site is a stepwise process that includes first, dilation of blood vessels to increase blood flow; second, microvascular structural changes and escape of plasma proteins from the bloodstream; third, rolling, adhesion and transmigration of the neutrophil across the endothelium; and fourth accumulation of neutrophils at the site of injury2,3. A wide array of in vivo and in vitro methods has evolved to enable the study of these processes4. This method focuses on neutrophil transmigration across human endothelial cells. One popular method for examining the molecular processes involved in neutrophil transmigration utilizes human neutrophils interacting with primary human umbilical vein endothelial cells (HUVEC)5. Neutrophil isolation has been described visually elsewhere6; thus this article will show the method for isolation of HUVEC. Once isolated and grown to confluence, endothelial cells are activated resulting in the upregulation of adhesion and activation molecules. For example, activation of endothelial cells with cytokines like TNF-α results in increased E-selectin and IL-8 expression7. E-selectin mediates capture and rolling of neutrophils and IL-8 mediates activation and firm adhesion of neutrophils. After adhesion neutrophils transmigrate. Transmigration can occur paracellularly (through endothelial cell junctions) or transcellularly (through the endothelial cell itself). In most cases, these interactions occur under flow conditions found in the vasculature7,8. The parallel plate flow chamber is a widely used system that mimics the hydrodynamic shear stresses found in vivo and enables the study of neutrophil recruitment under flow condition in vitro9,10. Several companies produce parallel plate flow chambers and each have advantages and disadvantages. If fluorescent imaging is needed, glass or an optically similar polymer needs to be used. Endothelial cells do not grow well on glass. Here we present an easy and rapid method for phase-contrast, DIC and fluorescent imaging of neutrophil transmigration using a low volume ibidi channel slide made of a polymer that supports the rapid adhesion and growth of human endothelial cells and has optical qualities that are comparable to glass. In this method, endothelial cells were grown and stimulated in an ibidi μslide. Neutrophils were introduced under flow conditions and transmigration was assessed. Fluorescent imaging of the junctions enabled real-time determination of the extent of paracellular versus transcellular transmigration.
Immunology, Issue 66, Medicine, Physiology, Cellular Biology, HUVEC, ibidi, leukocyte recruitment, neutrophil, flow chamber
4032
Play Button
Mouse Complete Stasis Model of Inferior Vena Cava Thrombosis
Authors: Shirley K. Wrobleski, Diana M. Farris, José A. Diaz, Daniel D. Myers Jr., Thomas W. Wakefield.
Institutions: University of Michigan .
Venous thromboembolism (VTE) includes both deep vein thrombosis (DVT) and pulmonary embolism (PE). In the United States (U.S.), the high morbidity and mortality rates make VTE a serious health concern 1-2. After heart disease and stroke, VTE is the third most common vascular disease 3. In the U.S. alone, there is an estimated 900,000 people affected each year, with 300,000 deaths occurring annually 3. A reliable in vivo animal model to study the mechanisms of this disease is necessary. The advantages of using the mouse complete stasis model of inferior vena cava thrombosis are several. The mouse model allows for the administration of very small volumes of limited availability test agents, reducing costs dramatically. Most promising is the potential for mice with gene knockouts that allow specific inflammatory and coagulation factor functions to be delineated. Current molecular assays allow for the quantitation of vein wall, thrombus, whole blood, and plasma for assays. However, a major concern involving this model is the operative size constraints and the friability of the vessels. Also, due to the small IVC sample weight (mean 0.005 grams) it is necessary to increase animal numbers for accurate statistical analysis for tissue, thrombus, and blood assays such as real-time polymerase chain reaction (RT-PCR), western blot, enzyme-linked immunosorbent (ELISA), zymography, vein wall and thrombus cellular analysis, and whole blood and plasma assays 4-8. The major disadvantage with the stasis model is that the lack of blood flow inhibits the maximal effect of administered systemic therapeutic agents on the thrombus and vein wall.
Medicine, Issue 52, Animal model, mouse, venous thrombosis, stasis induced thrombosis, inflammation, venous disease
2738
Play Button
Electrolytic Inferior Vena Cava Model (EIM) of Venous Thrombosis
Authors: Jose A. Diaz, Shirley K. Wrobleski, Angela E. Hawley, Benedict R. Lucchesi, Thomas W. Wakefield, Daniel D. Myers, Jr..
Institutions: University of Michigan , University of Michigan.
Animal models serve a vital role in deep venous thrombosis (DVT) research in order to study thrombus formation, thrombus resolution and to test potential therapeutic compounds (1). New compounds to be utilized in the treatment and prevention of DVT are currently being developed. The delivery of potential therapeutic antagonist compounds to an affected thrombosed vein has been problematic. In the context of therapeutic applications, a model that uses partial stasis and consistently generates thrombi within a major vein has been recently established. The Electrolytic Inferior vena cava Model (EIM) is mouse model of DVT that permits thrombus formation in the presence of continuous blood flow. This model allows therapeutic agents to be in contact with the thrombus in a dynamic fashion, and is more sensitive than other models of DVT (1). In addition, this thrombosis model closely simulates clinical situations of thrombus formation and is ideal to study venous endothelial cell activation, leukocyte migration, venous thrombogenesis, and to test therapeutic applications (1). The EIM model is technically simple, easily reproducible, creates consistent thrombi sizes and allows for a large sample (i.e. thrombus and vein wall) which is required for analytical purposes.
Medicine, Issue 53, Endothelial dysfunction, Thrombosis, Electrolytic injury, Inflammation, Animal model
2737
Play Button
Platelet Adhesion and Aggregation Under Flow using Microfluidic Flow Cells
Authors: Carolyn G. Conant, Michael A. Schwartz, Tanner Nevill, Cristian Ionescu-Zanetti.
Institutions: Fluxion Biosciences, Inc..
Platelet aggregation occurs in response to vascular injury where the extracellular matrix below the endothelium has been exposed. The platelet adhesion cascade takes place in the presence of shear flow, a factor not accounted for in conventional (static) well-plate assays. This article reports on a platelet-aggregation assay utilizing a microfluidic well-plate format to emulate physiological shear flow conditions. Extracellular proteins, collagen I or von Willebrand factor are deposited within the microfluidic channel using active perfusion with a pneumatic pump. The matrix proteins are then washed with buffer and blocked to prepare the microfluidic channel for platelet interactions. Whole blood labeled with fluorescent dye is perfused through the channel at various flow rates in order to achieve platelet activation and aggregation. Inhibitors of platelet aggregation can be added prior to the flow cell experiment to generate IC50 dose response data.
Medicine, Issue 32, thrombus formation, anti-thrombotic, microfluidic, whole blood assay, IC50, drug screening, platelet, adhesion
1644
Play Button
Demonstration of Proteolytic Activation of the Epithelial Sodium Channel (ENaC) by Combining Current Measurements with Detection of Cleavage Fragments
Authors: Matteus Krappitz, Christoph Korbmacher, Silke Haerteis.
Institutions: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
The described methods can be used to investigate the effect of proteases on ion channels, receptors, and other plasma membrane proteins heterologously expressed in Xenopus laevis oocytes. In combination with site-directed mutagenesis, this approach provides a powerful tool to identify functionally relevant cleavage sites. Proteolytic activation is a characteristic feature of the amiloride-sensitive epithelial sodium channel (ENaC). The final activating step involves cleavage of the channel’s γ-subunit in a critical region potentially targeted by several proteases including chymotrypsin and plasmin. To determine the stimulatory effect of these serine proteases on ENaC, the amiloride-sensitive whole-cell current (ΔIami) was measured twice in the same oocyte before and after exposure to the protease using the two-electrode voltage-clamp technique. In parallel to the electrophysiological experiments, a biotinylation approach was used to monitor the appearance of γENaC cleavage fragments at the cell surface. Using the methods described, it was demonstrated that the time course of proteolytic activation of ENaC-mediated whole-cell currents correlates with the appearance of a γENaC cleavage product at the cell surface. These results suggest a causal link between channel cleavage and channel activation. Moreover, they confirm the concept that a cleavage event in γENaC is required as a final step in proteolytic channel activation. The methods described here may well be applicable to address similar questions for other types of ion channels or membrane proteins.
Biochemistry, Issue 89, two-electrode voltage-clamp, electrophysiology, biotinylation, Xenopus laevis oocytes, epithelial sodium channel, ENaC, proteases, proteolytic channel activation, ion channel, cleavage sites, cleavage fragments
51582
Play Button
A New Murine Model of Endovascular Aortic Aneurysm Repair
Authors: Martin Rouer, Olivier Meilhac, Sandrine Delbosc, Liliane Louedec, Graciela Pavon-Djavid, Jane Cross, Josette Legagneux, Maxime Bouilliant-Linet, Jean-Baptiste Michel, Jean-Marc Alsac.
Institutions: Hôpital X. Bichat, AP-HP, Paris, Institut Galilée - Université Paris 13, Paris, France, Université Paris-Est Creteil, Ecole de chirurgie de l'assistance publique des hôpitaux de Paris, Université René Descartes.
Endovascular aneurysm exclusion is a validated technique to prevent aneurysm rupture. Long-term results highlight technique limitations and new aspects of Abdominal aortic aneurysm (AAA) pathophysiology. There is no abdominal aortic aneurysm endograft exclusion model cheap and reproducible, which would allow deep investigations of AAA before and after treatment. We hereby describe how to induce, and then to exclude with a covered coronary stentgraft an abdominal aortic aneurysm in a rat. The well known elastase induced AAA model was first reported in 19901 in a rat, then described in mice2. Elastin degradation leads to dilation of the aorta with inflammatory infiltration of the abdominal wall and intra luminal thrombus, matching with human AAA. Endovascular exclusion with small covered stentgraft is then performed, excluding any interactions between circulating blood and the aneurysm thrombus. Appropriate exclusion and stentgraft patency is confirmed before euthanasia by an angiography thought the left carotid artery. Partial control of elastase diffusion makes aneurysm shape different for each animal. It is difficult to create an aneurysm, which will allow an appropriate length of aorta below the aneurysm for an easy stentgraft introduction, and with adequate proximal and distal neck to prevent endoleaks. Lots of failure can result to stentgraft introduction which sometimes lead to aorta tear with pain and troubles to stitch it, and endothelial damage with post op aorta thrombosis. Giving aspirin to rats before stentgraft implantation decreases failure rate without major hemorrhage. Clamping time activates neutrophils, endothelium and platelets, and may interfere with biological analysis.
Medicine, Issue 77, Anatomy, Physiology, Biomedical Engineering, Bioengineering, Cardiology, Aortic Diseases, Aortic Aneurysm, Aortic Aneurysm, Disease Models, Animal, Vascular Surgical Procedures, Vascular Grafting, Microsurgery, animal models, Cardiovascular Diseases, Abdominal aortic aneurysm, rat, stentgraft exclusion, EVAR, animal model
50740
Play Button
Systematic Analysis of In Vitro Cell Rolling Using a Multi-well Plate Microfluidic System
Authors: Oren Levy, Priya Anandakumaran, Jessica Ngai, Rohit Karnik, Jeffrey M. Karp.
Institutions: Brigham and Women's Hospital, Brigham and Women's Hospital, Harvard University, Harvard University, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology.
A major challenge for cell-based therapy is the inability to systemically target a large quantity of viable cells with high efficiency to tissues of interest following intravenous or intraarterial infusion. Consequently, increasing cell homing is currently studied as a strategy to improve cell therapy. Cell rolling on the vascular endothelium is an important step in the process of cell homing and can be probed in-vitro using a parallel plate flow chamber (PPFC). However, this is an extremely tedious, low throughput assay, with poorly controlled flow conditions. Instead, we used a multi-well plate microfluidic system that enables study of cellular rolling properties in a higher throughput under precisely controlled, physiologically relevant shear flow1,2. In this paper, we show how the rolling properties of HL-60 (human promyelocytic leukemia) cells on P- and E-selectin-coated surfaces as well as on cell monolayer-coated surfaces can be readily examined. To better simulate inflammatory conditions, the microfluidic channel surface was coated with endothelial cells (ECs), which were then activated with tumor necrosis factor-α (TNF-α), significantly increasing interactions with HL-60 cells under dynamic conditions. The enhanced throughput and integrated multi-parameter software analysis platform, that permits rapid analysis of parameters such as rolling velocities and rolling path, are important advantages for assessing cell rolling properties in-vitro. Allowing rapid and accurate analysis of engineering approaches designed to impact cell rolling and homing, this platform may help advance exogenous cell-based therapy.
Bioengineering, Issue 80, Microfluidics, Endothelial Cells, Leukocyte Rolling, HL-60 cells, TNF-α, P-selectin, E-selectin
50866
Play Button
Quantitative In vitro Assay to Measure Neutrophil Adhesion to Activated Primary Human Microvascular Endothelial Cells under Static Conditions
Authors: Kevin Wilhelmsen, Katherine Farrar, Judith Hellman.
Institutions: University of California, San Francisco, University of California, San Francisco.
The vascular endothelium plays an integral part in the inflammatory response. During the acute phase of inflammation, endothelial cells (ECs) are activated by host mediators or directly by conserved microbial components or host-derived danger molecules. Activated ECs express cytokines, chemokines and adhesion molecules that mobilize, activate and retain leukocytes at the site of infection or injury. Neutrophils are the first leukocytes to arrive, and adhere to the endothelium through a variety of adhesion molecules present on the surfaces of both cells. The main functions of neutrophils are to directly eliminate microbial threats, promote the recruitment of other leukocytes through the release of additional factors, and initiate wound repair. Therefore, their recruitment and attachment to the endothelium is a critical step in the initiation of the inflammatory response. In this report, we describe an in vitro neutrophil adhesion assay using calcein AM-labeled primary human neutrophils to quantitate the extent of microvascular endothelial cell activation under static conditions. This method has the additional advantage that the same samples quantitated by fluorescence spectrophotometry can also be visualized directly using fluorescence microscopy for a more qualitative assessment of neutrophil binding.
Immunology, Issue 78, Cellular Biology, Infection, Molecular Biology, Medicine, Biomedical Engineering, Biophysics, Endothelium, Vascular, Neutrophils, Inflammation, Inflammation Mediators, Neutrophil, Leukocyte Adhesion, Endothelial cells, assay
50677
Play Button
In vivo Near Infrared Fluorescence (NIRF) Intravascular Molecular Imaging of Inflammatory Plaque, a Multimodal Approach to Imaging of Atherosclerosis
Authors: Marcella A. Calfon, Amir Rosenthal, Georgios Mallas, Adam Mauskapf, R. Nika Nudelman, Vasilis Ntziachristos, Farouc A. Jaffer.
Institutions: Harvard Medical School, Helmholtz Zentrum München und Technische Universität München, Northeastern University.
The vascular response to injury is a well-orchestrated inflammatory response triggered by the accumulation of macrophages within the vessel wall leading to an accumulation of lipid-laden intra-luminal plaque, smooth muscle cell proliferation and progressive narrowing of the vessel lumen. The formation of such vulnerable plaques prone to rupture underlies the majority of cases of acute myocardial infarction. The complex molecular and cellular inflammatory cascade is orchestrated by the recruitment of T lymphocytes and macrophages and their paracrine effects on endothelial and smooth muscle cells.1 Molecular imaging in atherosclerosis has evolved into an important clinical and research tool that allows in vivo visualization of inflammation and other biological processes. Several recent examples demonstrate the ability to detect high-risk plaques in patients, and assess the effects of pharmacotherapeutics in atherosclerosis.4 While a number of molecular imaging approaches (in particular MRI and PET) can image biological aspects of large vessels such as the carotid arteries, scant options exist for imaging of coronary arteries.2 The advent of high-resolution optical imaging strategies, in particular near-infrared fluorescence (NIRF), coupled with activatable fluorescent probes, have enhanced sensitivity and led to the development of new intravascular strategies to improve biological imaging of human coronary atherosclerosis. Near infrared fluorescence (NIRF) molecular imaging utilizes excitation light with a defined band width (650-900 nm) as a source of photons that, when delivered to an optical contrast agent or fluorescent probe, emits fluorescence in the NIR window that can be detected using an appropriate emission filter and a high sensitivity charge-coupled camera. As opposed to visible light, NIR light penetrates deeply into tissue, is markedly less attenuated by endogenous photon absorbers such as hemoglobin, lipid and water, and enables high target-to-background ratios due to reduced autofluorescence in the NIR window. Imaging within the NIR 'window' can substantially improve the potential for in vivo imaging.2,5 Inflammatory cysteine proteases have been well studied using activatable NIRF probes10, and play important roles in atherogenesis. Via degradation of the extracellular matrix, cysteine proteases contribute importantly to the progression and complications of atherosclerosis8. In particular, the cysteine protease, cathepsin B, is highly expressed and colocalizes with macrophages in experimental murine, rabbit, and human atheromata.3,6,7 In addition, cathepsin B activity in plaques can be sensed in vivo utilizing a previously described 1-D intravascular near-infrared fluorescence technology6, in conjunction with an injectable nanosensor agent that consists of a poly-lysine polymer backbone derivatized with multiple NIR fluorochromes (VM110/Prosense750, ex/em 750/780nm, VisEn Medical, Woburn, MA) that results in strong intramolecular quenching at baseline.10 Following targeted enzymatic cleavage by cysteine proteases such as cathepsin B (known to colocalize with plaque macrophages), the fluorochromes separate, resulting in substantial amplification of the NIRF signal. Intravascular detection of NIR fluorescence signal by the utilized novel 2D intravascular NIRF catheter now enables high-resolution, geometrically accurate in vivo detection of cathepsin B activity in inflamed plaque. In vivo molecular imaging of atherosclerosis using catheter-based 2D NIRF imaging, as opposed to a prior 1-D spectroscopic approach,6 is a novel and promising tool that utilizes augmented protease activity in macrophage-rich plaque to detect vascular inflammation.11,12 The following research protocol describes the use of an intravascular 2-dimensional NIRF catheter to image and characterize plaque structure utilizing key aspects of plaque biology. It is a translatable platform that when integrated with existing clinical imaging technologies including angiography and intravascular ultrasound (IVUS), offers a unique and novel integrated multimodal molecular imaging technique that distinguishes inflammatory atheromata, and allows detection of intravascular NIRF signals in human-sized coronary arteries.
Medicine, Issue 54, Atherosclerosis, inflammation, imaging, near infrared fluorescence, plaque, intravascular, catheter
2257
Play Button
Photothrombotic Ischemia: A Minimally Invasive and Reproducible Photochemical Cortical Lesion Model for Mouse Stroke Studies
Authors: Vivien Labat-gest, Simone Tomasi.
Institutions: University of Turin , University of Turin , University of Turin , University of Turin .
The photothrombotic stroke model aims to induce an ischemic damage within a given cortical area by means of photo-activation of a previously injected light-sensitive dye. Following illumination, the dye is activated and produces singlet oxygen that damages components of endothelial cell membranes, with subsequent platelet aggregation and thrombi formation, which eventually determines the interruption of local blood flow. This approach, initially proposed by Rosenblum and El-Sabban in 1977, was later improved by Watson in 1985 in rat brain and set the basis of the current model. Also, the increased availability of transgenic mouse lines further contributed to raise the interest on the photothrombosis model. Briefly, a photosensitive dye (Rose Bengal) is injected intraperitoneally and enters the blood stream. When illuminated by a cold light source, the dye becomes activated and induces endothelial damage with platelet activation and thrombosis, resulting in local blood flow interruption. The light source can be applied on the intact skull with no need of craniotomy, which allows targeting of any cortical area of interest in a reproducible and non-invasive way. The mouse is then sutured and allowed to wake up. The evaluation of ischemic damage can be quickly accomplished by triphenyl-tetrazolium chloride or cresyl violet staining. This technique produces infarction of small size and well-delimited boundaries, which is highly advantageous for precise cell characterization or functional studies. Furthermore, it is particularly suitable for studying cellular and molecular responses underlying brain plasticity in transgenic mice.
Medicine, Issue 76, Biomedical Engineering, Immunology, Anatomy, Physiology, Neuroscience, Neurobiology, Surgery, Cerebral Cortex, Brain Ischemia, Stroke, Brain Injuries, Brain Ischemia, Thrombosis, Photothrombosis, Rose Bengal, experimental stroke, animal models, cortex, injury, protocol, method, technique, video, ischemia, animal model
50370
Play Button
Bioenergetics and the Oxidative Burst: Protocols for the Isolation and Evaluation of Human Leukocytes and Platelets
Authors: Philip A. Kramer, Balu K. Chacko, Saranya Ravi, Michelle S. Johnson, Tanecia Mitchell, Victor M. Darley-Usmar.
Institutions: University of Alabama at Birmingham.
Mitochondrial dysfunction is known to play a significant role in a number of pathological conditions such as atherosclerosis, diabetes, septic shock, and neurodegenerative diseases but assessing changes in bioenergetic function in patients is challenging. Although diseases such as diabetes or atherosclerosis present clinically with specific organ impairment, the systemic components of the pathology, such as hyperglycemia or inflammation, can alter bioenergetic function in circulating leukocytes or platelets. This concept has been recognized for some time but its widespread application has been constrained by the large number of primary cells needed for bioenergetic analysis. This technical limitation has been overcome by combining the specificity of the magnetic bead isolation techniques, cell adhesion techniques, which allow cells to be attached without activation to microplates, and the sensitivity of new technologies designed for high throughput microplate respirometry. An example of this equipment is the extracellular flux analyzer. Such instrumentation typically uses oxygen and pH sensitive probes to measure rates of change in these parameters in adherent cells, which can then be related to metabolism. Here we detail the methods for the isolation and plating of monocytes, lymphocytes, neutrophils and platelets, without activation, from human blood and the analysis of mitochondrial bioenergetic function in these cells. In addition, we demonstrate how the oxidative burst in monocytes and neutrophils can also be measured in the same samples. Since these methods use only 8-20 ml human blood they have potential for monitoring reactive oxygen species generation and bioenergetics in a clinical setting.
Immunology, Issue 85, bioenergetics, translational, mitochondria, oxidative stress, reserve capacity, leukocytes
51301
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
50823
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Isolation, Purification and Labeling of Mouse Bone Marrow Neutrophils for Functional Studies and Adoptive Transfer Experiments
Authors: Muthulekha Swamydas, Michail S. Lionakis.
Institutions: National Institute of Allergy and Infectious Diseases, NIH.
Neutrophils are critical effector cells of the innate immune system. They are rapidly recruited at sites of acute inflammation and exert protective or pathogenic effects depending on the inflammatory milieu. Nonetheless, despite the indispensable role of neutrophils in immunity, detailed understanding of the molecular factors that mediate neutrophils' effector and immunopathogenic effects in different infectious diseases and inflammatory conditions is still lacking, partly because of their short half life, the difficulties with handling of these cells and the lack of reliable experimental protocols for obtaining sufficient numbers of neutrophils for downstream functional studies and adoptive transfer experiments. Therefore, simple, fast, economical and reliable methods are highly desirable for harvesting sufficient numbers of mouse neutrophils for assessing functions such as phagocytosis, killing, cytokine production, degranulation and trafficking. To that end, we present a reproducible density gradient centrifugation-based protocol, which can be adapted in any laboratory to isolate large numbers of neutrophils from the bone marrow of mice with high purity and viability. Moreover, we present a simple protocol that uses CellTracker dyes to label the isolated neutrophils, which can then be adoptively transferred into recipient mice and tracked in several tissues for at least 4 hr post-transfer using flow cytometry. Using this approach, differential labeling of neutrophils from wild-type and gene-deficient mice with different CellTracker dyes can be successfully employed to perform competitive repopulation studies for evaluating the direct role of specific genes in trafficking of neutrophils from the blood into target tissues in vivo.
Immunology, Issue 77, Cellular Biology, Infection, Infectious Diseases, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Neutrophils, Adoptive Transfer, immunology, Neutrophils, mouse, bone marrow, adoptive transfer, density gradient, labeling, CellTracker, cell, isolation, flow cytometry, animal model
50586
Play Button
A Simple Protocol for Platelet-mediated Clumping of Plasmodium falciparum-infected Erythrocytes in a Resource Poor Setting
Authors: Dumizulu L. Tembo, Jacqui Montgomery, Alister G. Craig, Samuel C. Wassmer.
Institutions: Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Liverpool School of Tropical Medicine, New York University School of Medicine.
P. falciparum causes the majority of severe malarial infections. The pathophysiological mechanisms underlying cerebral malaria (CM) are not fully understood and several hypotheses have been put forward, including mechanical obstruction of microvessels by P. falciparum-parasitized red blood cells (pRBC). Indeed, during the intra-erythrocytic stage of its life cycle, P. falciparum has the unique ability to modify the surface of the infected erythrocyte by exporting surface antigens with varying adhesive properties onto the RBC membrane. This allows the sequestration of pRBC in multiple tissues and organs by adhesion to endothelial cells lining the microvasculature of post-capillary venules 1. By doing so, the mature forms of the parasite avoid splenic clearance of the deformed infected erythrocytes 2 and restrict their environment to a more favorable low oxygen pressure 3. As a consequence of this sequestration, it is only immature asexual parasites and gametocytes that can be detected in peripheral blood. Cytoadherence and sequestration of mature pRBC to the numerous host receptors expressed on microvascular beds occurs in severe and uncomplicated disease. However, several lines of evidence suggest that only specific adhesive phenotypes are likely to be associated with severe pathological outcomes of malaria. One example of such specific host-parasite interactions has been demonstrated in vitro, where the ability of intercellular adhesion molecule-1 to support binding of pRBC with particular adhesive properties has been linked to development of cerebral malaria 4,5. The placenta has also been recognized as a site of preferential pRBC accumulation in malaria-infected pregnant women, with chondrotin sulphate A expressed on syncytiotrophoblasts that line the placental intervillous space as the main receptor 6. Rosetting of pRBC to uninfected erythrocytes via the complement receptor 1 (CD35)7,8 has also been associated with severe disease 9. One of the most recently described P. falciparum cytoadherence phenotypes is the ability of the pRBC to form platelet-mediated clumps in vitro. The formation of such pRBC clumps requires CD36, a glycoprotein expressed on the surface of platelets. Another human receptor, gC1qR/HABP1/p32, expressed on diverse cell types including endothelial cells and platelets, has also been shown to facilitate pRBC adhesion on platelets to form clumps 10. Whether clumping occurs in vivo remains unclear, but it may account for the significant accumulation of platelets described in brain microvasculature of Malawian children who died from CM 11. In addition, the ability of clinical isolate cultures to clump in vitro was directly linked to the severity of disease in Malawian 12 and Mozambican patients 13, (although not in Malian 14). With several aspects of the pRBC clumping phenotype poorly characterized, current studies on this subject have not followed a standardized procedure. This is an important issue because of the known high variability inherent in the assay 15. Here, we present a method for in vitro platelet-mediated clumping of P. falciparum with hopes that it will provide a platform for a consistent method for other groups and raise awareness of the limitations in investigating this phenotype in future studies. Being based in Malawi, we provide a protocol specifically designed for a limited resource setting, with the advantage that freshly collected clinical isolates can be examined for phenotype without need for cryopreservation.
Infection, Issue 75, Infectious Diseases, Immunology, Medicine, Microbiology, Molecular Biology, Cellular Biology, Parasitology, Clumping, platelets, Plasmodium falciparum, CD36, malaria, malarial infections, parasites, red blood cells, plasma, limited resources, clinical techniques, assay
4316
Play Button
Neutrophil Extracellular Traps: How to Generate and Visualize Them
Authors: Volker Brinkmann, Britta Laube, Ulrike Abu Abed, Christian Goosmann, Arturo Zychlinsky.
Institutions: Max Planck Institute for Infection Biology, Max Planck Institute for Infection Biology.
Neutrophil granulocytes are the most abundant group of leukocytes in the peripheral blood. As professional phagocytes, they engulf bacteria and kill them intracellularly when their antimicrobial granules fuse with the phagosome. We found that neutrophils have an additional way of killing microorganisms: upon activation, they release granule proteins and chromatin that together form extracellular fibers that bind pathogens. These novel structures, or Neutrophil Extracellular Traps (NETs), degrade virulence factors and kill bacteria1, fungi2 and parasites3. The structural backbone of NETs is DNA, and they are quickly degraded in the presence of DNases. Thus, bacteria expressing DNases are more virulent4. Using correlative microscopy combining TEM, SEM, immunofluorescence and live cell imaging techniques, we could show that upon stimulation, the nuclei of neutrophils lose their shape and the eu- and heterochromatin homogenize. Later, the nuclear envelope and the granule membranes disintegrate allowing the mixing of NET components. Finally, the NETs are released as the cell membrane breaks. This cell death program (NETosis) is distinct from apoptosis and necrosis and depends on the generation of Reactive Oxygen Species by NADPH oxidase5. Neutrophil extracellular traps are abundant at sites of acute inflammation. NETs appear to be a form of innate immune response that bind microorganisms, prevent them from spreading, and ensure a high local concentration of antimicrobial agents to degrade virulence factors and kill pathogens thus allowing neutrophils to fulfill their antimicrobial function even beyond their life span. There is increasing evidence, however, that NETs are also involved in diseases that range from auto-immune syndromes to infertility6. We describe methods to isolate Neutrophil Granulocytes from peripheral human blood7 and stimulate them to form NETs. Also we include protocols to visualize the NETs in light and electron microscopy.
JoVE Immunology, Issue 36, Neutrophil, Granulocyte, Neutrophil Extracellular Trap, NET, isolation, immunolabeling, electron microscopy
1724
Play Button
Neutrophil Isolation Protocol
Authors: Hana Oh, Brian Siano, Scott Diamond.
Institutions: University of Pennsylvania .
Neutrophil polymorphonuclear granulocytes (PMN) are the most abundant leukocytes in humans and among the first cells to arrive on the site of inflammatory immune response. Due to their key role in inflammation, neutrophil functions such as locomotion, cytokine production, phagocytosis, and tumor cell combat are extensively studied. To characterize the specific functions of neutrophils, a clean, fast, and reliable method of separating them from other blood cells is desirable for in vitro studies, especially since neutrophils are short-lived and should be used within 2-4 hours of collection. Here, we demonstrate a standard density gradient separation method to isolate human neutrophils from whole blood using commercially available separation media that is a mixture of sodium metrizoate and Dextran 500. The procedure consists of layering whole blood over the density gradient medium, centrifugation, separation of neutrophil layer, and lysis of residual erythrocytes. Cells are then washed, counted, and resuspended in buffer to desired concentration. When performed correctly, this method has been shown to yield samples of >95% neutrophils with >95% viability.
immunology, issue 17, blood, neutrophils, neutrophil polymorphonuclear granulocytes, cell separation, cell isolation
745
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.