JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Feature selection in the reconstruction of complex network representations of spectral data.
PUBLISHED: 01-01-2013
Complex networks have been extensively used in the last decade to characterize and analyze complex systems, and they have been recently proposed as a novel instrument for the analysis of spectra extracted from biological samples. Yet, the high number of measurements composing spectra, and the consequent high computational cost, make a direct network analysis unfeasible. We here present a comparative analysis of three customary feature selection algorithms, including the binning of spectral data and the use of information theory metrics. Such algorithms are compared by assessing the score obtained in a classification task, where healthy subjects and people suffering from different types of cancers should be discriminated. Results indicate that a feature selection strategy based on Mutual Information outperforms the more classical data binning, while allowing a reduction of the dimensionality of the data set in two orders of magnitude.
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Published: 08-30-2013
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
20 Related JoVE Articles!
Play Button
Concurrent Quantification of Cellular and Extracellular Components of Biofilms
Authors: Sharukh S. Khajotia, Kristin H. Smart, Mpala Pilula, David M. Thompson.
Institutions: University of Oklahoma Health Sciences Center, University of Oklahoma Health Sciences Center, The Copperbelt University.
Confocal laser scanning microscopy (CLSM) is a powerful tool for investigation of biofilms. Very few investigations have successfully quantified concurrent distribution of more than two components within biofilms because: 1) selection of fluorescent dyes having minimal spectral overlap is complicated, and 2) quantification of multiple fluorochromes poses a multifactorial problem. Objectives: Report a methodology to quantify and compare concurrent 3-dimensional distributions of three cellular/extracellular components of biofilms grown on relevant substrates. Methods: The method consists of distinct, interconnected steps involving biofilm growth, staining, CLSM imaging, biofilm structural analysis and visualization, and statistical analysis of structural parameters. Biofilms of Streptococcus mutans (strain UA159) were grown for 48 hr on sterile specimens of Point 4 and TPH3 resin composites. Specimens were subsequently immersed for 60 sec in either Biotène PBF (BIO) or Listerine Total Care (LTO) mouthwashes, or water (control group; n=5/group). Biofilms were stained with fluorochromes for extracellular polymeric substances, proteins and nucleic acids before imaging with CLSM. Biofilm structural parameters calculated using ISA3D image analysis software were biovolume and mean biofilm thickness. Mixed models statistical analyses compared structural parameters between mouthwash and control groups (SAS software; α=0.05). Volocity software permitted visualization of 3D distributions of overlaid biofilm components (fluorochromes). Results: Mouthwash BIO produced biofilm structures that differed significantly from the control (p<0.05) on both resin composites, whereas LTO did not produce differences (p>0.05) on either product. Conclusions: This methodology efficiently and successfully quantified and compared concurrent 3D distributions of three major components within S. mutans biofilms on relevant substrates, thus overcoming two challenges to simultaneous assessment of biofilm components. This method can also be used to determine the efficacy of antibacterial/antifouling agents against multiple biofilm components, as shown using mouthwashes. Furthermore, this method has broad application because it facilitates comparison of 3D structures/architecture of biofilms in a variety of disciplines.
Immunology, Issue 82, Extracellular Matrix, Streptococcus mutans, Dental Materials, Fluorescent Dyes, Composite Resins, Microscopy, Confocal, Permanent, Biofilms, Microbiological Phenomena, Streptococcus mutans, 3-dimensional structure, confocal laser scanning microscopy, fluorescent stains, dental biomaterials, dental resin composites, biofilm structural analysis, image analysis, image reconstruction
Play Button
Concentration of Metabolites from Low-density Planktonic Communities for Environmental Metabolomics using Nuclear Magnetic Resonance Spectroscopy
Authors: R. Craig Everroad, Seiji Yoshida, Yuuri Tsuboi, Yasuhiro Date, Jun Kikuchi, Shigeharu Moriya.
Institutions: RIKEN Advanced Science Institute, Yokohama City University, RIKEN Plant Science Center, Nagoya University.
Environmental metabolomics is an emerging field that is promoting new understanding in how organisms respond to and interact with the environment and each other at the biochemical level1. Nuclear magnetic resonance (NMR) spectroscopy is one of several technologies, including gas chromatography–mass spectrometry (GC-MS), with considerable promise for such studies. Advantages of NMR are that it is suitable for untargeted analyses, provides structural information and spectra can be queried in quantitative and statistical manners against recently available databases of individual metabolite spectra2,3. In addition, NMR spectral data can be combined with data from other omics levels (e.g. transcriptomics, genomics) to provide a more comprehensive understanding of the physiological responses of taxa to each other and the environment4,5,6. However, NMR is less sensitive than other metabolomic techniques, making it difficult to apply to natural microbial systems where sample populations can be low-density and metabolite concentrations low compared to metabolites from well-defined and readily extractable sources such as whole tissues, biofluids or cell-cultures. Consequently, the few direct environmental metabolomic studies of microbes performed to date have been limited to culture-based or easily defined high-density ecosystems such as host-symbiont systems, constructed co-cultures or manipulations of the gut environment where stable isotope labeling can be additionally used to enhance NMR signals7,8,9,10,11,12. Methods that facilitate the concentration and collection of environmental metabolites at concentrations suitable for NMR are lacking. Since recent attention has been given to the environmental metabolomics of organisms within the aquatic environment, where much of the energy and material flow is mediated by the planktonic community13,14, we have developed a method for the concentration and extraction of whole-community metabolites from planktonic microbial systems by filtration. Commercially available hydrophilic poly-1,1-difluoroethene (PVDF) filters are specially treated to completely remove extractables, which can otherwise appear as contaminants in subsequent analyses. These treated filters are then used to filter environmental or experimental samples of interest. Filters containing the wet sample material are lyophilized and aqueous-soluble metabolites are extracted directly for conventional NMR spectroscopy using a standardized potassium phosphate extraction buffer2. Data derived from these methods can be analyzed statistically to identify meaningful patterns, or integrated with other omics levels for comprehensive understanding of community and ecosystem function.
Molecular Biology, Issue 62, environmental metabolomics, metabolic profiling, microbial ecology, plankton, NMR spectroscopy, PCA
Play Button
Creating Objects and Object Categories for Studying Perception and Perceptual Learning
Authors: Karin Hauffen, Eugene Bart, Mark Brady, Daniel Kersten, Jay Hegdé.
Institutions: Georgia Health Sciences University, Georgia Health Sciences University, Georgia Health Sciences University, Palo Alto Research Center, Palo Alto Research Center, University of Minnesota .
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2. Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics15,16. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects9,13. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.
Neuroscience, Issue 69, machine learning, brain, classification, category learning, cross-modal perception, 3-D prototyping, inference
Play Button
Absolute Quantum Yield Measurement of Powder Samples
Authors: Luis A. Moreno.
Institutions: Hitachi High Technologies America.
Measurement of fluorescence quantum yield has become an important tool in the search for new solutions in the development, evaluation, quality control and research of illumination, AV equipment, organic EL material, films, filters and fluorescent probes for bio-industry. Quantum yield is calculated as the ratio of the number of photons absorbed, to the number of photons emitted by a material. The higher the quantum yield, the better the efficiency of the fluorescent material. For the measurements featured in this video, we will use the Hitachi F-7000 fluorescence spectrophotometer equipped with the Quantum Yield measuring accessory and Report Generator program. All the information provided applies to this system. Measurement of quantum yield in powder samples is performed following these steps: Generation of instrument correction factors for the excitation and emission monochromators. This is an important requirement for the correct measurement of quantum yield. It has been performed in advance for the full measurement range of the instrument and will not be shown in this video due to time limitations. Measurement of integrating sphere correction factors. The purpose of this step is to take into consideration reflectivity characteristics of the integrating sphere used for the measurements. Reference and Sample measurement using direct excitation and indirect excitation. Quantum Yield calculation using Direct and Indirect excitation. Direct excitation is when the sample is facing directly the excitation beam, which would be the normal measurement setup. However, because we use an integrating sphere, a portion of the emitted photons resulting from the sample fluorescence are reflected by the integrating sphere and will re-excite the sample, so we need to take into consideration indirect excitation. This is accomplished by measuring the sample placed in the port facing the emission monochromator, calculating indirect quantum yield and correcting the direct quantum yield calculation. Corrected quantum yield calculation. Chromaticity coordinates calculation using Report Generator program. The Hitachi F-7000 Quantum Yield Measurement System offer advantages for this application, as follows: High sensitivity (S/N ratio 800 or better RMS). Signal is the Raman band of water measured under the following conditions: Ex wavelength 350 nm, band pass Ex and Em 5 nm, response 2 sec), noise is measured at the maximum of the Raman peak. High sensitivity allows measurement of samples even with low quantum yield. Using this system we have measured quantum yields as low as 0.1 for a sample of salicylic acid and as high as 0.8 for a sample of magnesium tungstate. Highly accurate measurement with a dynamic range of 6 orders of magnitude allows for measurements of both sharp scattering peaks with high intensity, as well as broad fluorescence peaks of low intensity under the same conditions. High measuring throughput and reduced light exposure to the sample, due to a high scanning speed of up to 60,000 nm/minute and automatic shutter function. Measurement of quantum yield over a wide wavelength range from 240 to 800 nm. Accurate quantum yield measurements are the result of collecting instrument spectral response and integrating sphere correction factors before measuring the sample. Large selection of calculated parameters provided by dedicated and easy to use software. During this video we will measure sodium salicylate in powder form which is known to have a quantum yield value of 0.4 to 0.5.
Molecular Biology, Issue 63, Powders, Quantum, Yield, F-7000, Quantum Yield, phosphor, chromaticity, Photo-luminescence
Play Button
Non-contact, Label-free Monitoring of Cells and Extracellular Matrix using Raman Spectroscopy
Authors: Miriam Votteler, Daniel A. Carvajal Berrio, Marieke Pudlas, Heike Walles, Katja Schenke-Layland.
Institutions: Eberhard Karls University, Tübingen, Fraunhofer Institute of Interfacial Engineering and Biotechnology (IGB) Stuttgart, Germany, University of Stuttgart, Germany, Julius-Maximillians University, Würzburg, Germany.
Non-destructive, non-contact and label-free technologies to monitor cell and tissue cultures are needed in the field of biomedical research.1-5 However, currently available routine methods require processing steps and alter sample integrity. Raman spectroscopy is a fast method that enables the measurement of biological samples without the need for further processing steps. This laser-based technology detects the inelastic scattering of monochromatic light.6 As every chemical vibration is assigned to a specific Raman band (wavenumber in cm-1), each biological sample features a typical spectral pattern due to their inherent biochemical composition.7-9 Within Raman spectra, the peak intensities correlate with the amount of the present molecular bonds.1 Similarities and differences of the spectral data sets can be detected by employing a multivariate analysis (e.g. principal component analysis (PCA)).10 Here, we perform Raman spectroscopy of living cells and native tissues. Cells are either seeded on glass bottom dishes or kept in suspension under normal cell culture conditions (37 °C, 5% CO2) before measurement. Native tissues are dissected and stored in phosphate buffered saline (PBS) at 4 °C prior measurements. Depending on our experimental set up, we then either focused on the cell nucleus or extracellular matrix (ECM) proteins such as elastin and collagen. For all studies, a minimum of 30 cells or 30 random points of interest within the ECM are measured. Data processing steps included background subtraction and normalization.
Bioengineering, Issue 63, Raman spectroscopy, label-free analysis, living cells, extracellular matrix, tissue engineering
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Metabolomic Analysis of Rat Brain by High Resolution Nuclear Magnetic Resonance Spectroscopy of Tissue Extracts
Authors: Norbert W. Lutz, Evelyne Béraud, Patrick J. Cozzone.
Institutions: Aix-Marseille Université, Aix-Marseille Université.
Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism. While the genome and the proteome define the tasks cells can perform, the metabolome is part of the actual phenotype. Among the methods currently used in metabolomics, spectroscopic techniques are of special interest because they allow one to simultaneously analyze a large number of metabolites without prior selection for specific biochemical pathways, thus enabling a broad unbiased approach. Here, an optimized experimental protocol for metabolomic analysis by high-resolution NMR spectroscopy is presented, which is the method of choice for efficient quantification of tissue metabolites. Important strengths of this method are (i) the use of crude extracts, without the need to purify the sample and/or separate metabolites; (ii) the intrinsically quantitative nature of NMR, permitting quantitation of all metabolites represented by an NMR spectrum with one reference compound only; and (iii) the nondestructive nature of NMR enabling repeated use of the same sample for multiple measurements. The dynamic range of metabolite concentrations that can be covered is considerable due to the linear response of NMR signals, although metabolites occurring at extremely low concentrations may be difficult to detect. For the least abundant compounds, the highly sensitive mass spectrometry method may be advantageous although this technique requires more intricate sample preparation and quantification procedures than NMR spectroscopy. We present here an NMR protocol adjusted to rat brain analysis; however, the same protocol can be applied to other tissues with minor modifications.
Neuroscience, Issue 91, metabolomics, brain tissue, rodents, neurochemistry, tissue extracts, NMR spectroscopy, quantitative metabolite analysis, cerebral metabolism, metabolic profile
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
A Method for Investigating Age-related Differences in the Functional Connectivity of Cognitive Control Networks Associated with Dimensional Change Card Sort Performance
Authors: Bianca DeBenedictis, J. Bruce Morton.
Institutions: University of Western Ontario.
The ability to adjust behavior to sudden changes in the environment develops gradually in childhood and adolescence. For example, in the Dimensional Change Card Sort task, participants switch from sorting cards one way, such as shape, to sorting them a different way, such as color. Adjusting behavior in this way exacts a small performance cost, or switch cost, such that responses are typically slower and more error-prone on switch trials in which the sorting rule changes as compared to repeat trials in which the sorting rule remains the same. The ability to flexibly adjust behavior is often said to develop gradually, in part because behavioral costs such as switch costs typically decrease with increasing age. Why aspects of higher-order cognition, such as behavioral flexibility, develop so gradually remains an open question. One hypothesis is that these changes occur in association with functional changes in broad-scale cognitive control networks. On this view, complex mental operations, such as switching, involve rapid interactions between several distributed brain regions, including those that update and maintain task rules, re-orient attention, and select behaviors. With development, functional connections between these regions strengthen, leading to faster and more efficient switching operations. The current video describes a method of testing this hypothesis through the collection and multivariate analysis of fMRI data from participants of different ages.
Behavior, Issue 87, Neurosciences, fMRI, Cognitive Control, Development, Functional Connectivity
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Test Samples for Optimizing STORM Super-Resolution Microscopy
Authors: Daniel J. Metcalf, Rebecca Edwards, Neelam Kumarswami, Alex E. Knight.
Institutions: National Physical Laboratory.
STORM is a recently developed super-resolution microscopy technique with up to 10 times better resolution than standard fluorescence microscopy techniques. However, as the image is acquired in a very different way than normal, by building up an image molecule-by-molecule, there are some significant challenges for users in trying to optimize their image acquisition. In order to aid this process and gain more insight into how STORM works we present the preparation of 3 test samples and the methodology of acquiring and processing STORM super-resolution images with typical resolutions of between 30-50 nm. By combining the test samples with the use of the freely available rainSTORM processing software it is possible to obtain a great deal of information about image quality and resolution. Using these metrics it is then possible to optimize the imaging procedure from the optics, to sample preparation, dye choice, buffer conditions, and image acquisition settings. We also show examples of some common problems that result in poor image quality, such as lateral drift, where the sample moves during image acquisition and density related problems resulting in the 'mislocalization' phenomenon.
Molecular Biology, Issue 79, Genetics, Bioengineering, Biomedical Engineering, Biophysics, Basic Protocols, HeLa Cells, Actin Cytoskeleton, Coated Vesicles, Receptor, Epidermal Growth Factor, Actins, Fluorescence, Endocytosis, Microscopy, STORM, super-resolution microscopy, nanoscopy, cell biology, fluorescence microscopy, test samples, resolution, actin filaments, fiducial markers, epidermal growth factor, cell, imaging
Play Button
Electron Cryotomography of Bacterial Cells
Authors: Songye Chen, Alasdair McDowall, Megan J. Dobro, Ariane Briegel, Mark Ladinsky, Jian Shi, Elitza I. Tocheva, Morgan Beeby, Martin Pilhofer, H. Jane Ding, Zhuo Li, Lu Gan, Dylan M. Morris, Grant J. Jensen.
Institutions: California Institute of Technology - Caltech, California Institute of Technology - Caltech.
While much is already known about the basic metabolism of bacterial cells, many fundamental questions are still surprisingly unanswered, including for instance how they generate and maintain specific cell shapes, establish polarity, segregate their genomes, and divide. In order to understand these phenomena, imaging technologies are needed that bridge the resolution gap between fluorescence light microscopy and higher-resolution methods such as X-ray crystallography and NMR spectroscopy. Electron cryotomography (ECT) is an emerging technology that does just this, allowing the ultrastructure of cells to be visualized in a near-native state, in three dimensions (3D), with "macromolecular" resolution (~4nm).1, 2 In ECT, cells are imaged in a vitreous, "frozen-hydrated" state in a cryo transmission electron microscope (cryoTEM) at low temperature (< -180°C). For slender cells (up to ~500 nm in thickness3), intact cells are plunge-frozen within media across EM grids in cryogens such as ethane or ethane/propane mixtures. Thicker cells and biofilms can also be imaged in a vitreous state by first "high-pressure freezing" and then, "cryo-sectioning" them. A series of two-dimensional projection images are then collected through the sample as it is incrementally tilted along one or two axes. A three-dimensional reconstruction, or "tomogram" can then be calculated from the images. While ECT requires expensive instrumentation, in recent years, it has been used in a few labs to reveal the structures of various external appendages, the structures of different cell envelopes, the positions and structures of cytoskeletal filaments, and the locations and architectures of large macromolecular assemblies such as flagellar motors, internal compartments and chemoreceptor arrays.1, 2 In this video article we illustrate how to image cells with ECT, including the processes of sample preparation, data collection, tomogram reconstruction, and interpretation of the results through segmentation and in some cases correlation with light microscopy.
Cellular Biology, Issue 39, Electron cryotomography, microbiology, bacteria, electron microscopy
Play Button
Predicting the Effectiveness of Population Replacement Strategy Using Mathematical Modeling
Authors: John Marshall, Koji Morikawa, Nicholas Manoukis, Charles Taylor.
Institutions: University of California, Los Angeles.
Charles Taylor and John Marshall explain the utility of mathematical modeling for evaluating the effectiveness of population replacement strategy. Insight is given into how computational models can provide information on the population dynamics of mosquitoes and the spread of transposable elements through A. gambiae subspecies. The ethical considerations of releasing genetically modified mosquitoes into the wild are discussed.
Cellular Biology, Issue 5, mosquito, malaria, popuulation, replacement, modeling, infectious disease
Play Button
In vivo Bioluminescent Imaging of Mammary Tumors Using IVIS Spectrum
Authors: Ed Lim, Kshitij D Modi, JaeBeom Kim.
Institutions: Caliper Life Sciences.
4T1 mouse mammary tumor cells can be implanted sub-cutaneously in nu/nu mice to form palpable tumors in 15 to 20 days. This xenograft tumor model system is valuable for the pre-clinical in vivo evaluation of putative antitumor compounds. The 4T1 cell line has been engineered to constitutively express the firefly luciferase gene (luc2). When mice carrying 4T1-luc2 tumors are injected with Luciferin the tumors emit a visual light signal that can be monitored using a sensitive optical imaging system like the IVIS Spectrum. The photon flux from the tumor is proportional to the number of light emitting cells and the signal can be measured to monitor tumor growth and development. IVIS is calibrated to enable absolute quantitation of the bioluminescent signal and longitudinal studies can be performed over many months and over several orders of signal magnitude without compromising the quantitative result. Tumor growth can be monitored for several days by bioluminescence before the tumor size becomes palpable or measurable by traditional physical means. This rapid monitoring can provide insight into early events in tumor development or lead to shorter experimental procedures. Tumor cell death and necrosis due to hypoxia or drug treatment is indicated early by a reduction in the bioluminescent signal. This cell death might not be accompanied by a reduction in tumor size as measured by physical means. The ability to see early events in tumor necrosis has significant impact on the selection and development of therapeutic agents. Quantitative imaging of tumor growth using IVIS provides precise quantitation and accelerates the experimental process to generate results.
Cellular Biology, Issue 26, tumor, mammary, mouse, bioluminescence, in vivo, imaging, IVIS, luciferase, luciferin
Play Button
Automated Midline Shift and Intracranial Pressure Estimation based on Brain CT Images
Authors: Wenan Chen, Ashwin Belle, Charles Cockrell, Kevin R. Ward, Kayvan Najarian.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University Reanimation Engineering Science (VCURES) Center, Virginia Commonwealth University, Virginia Commonwealth University, Virginia Commonwealth University.
In this paper we present an automated system based mainly on the computed tomography (CT) images consisting of two main components: the midline shift estimation and intracranial pressure (ICP) pre-screening system. To estimate the midline shift, first an estimation of the ideal midline is performed based on the symmetry of the skull and anatomical features in the brain CT scan. Then, segmentation of the ventricles from the CT scan is performed and used as a guide for the identification of the actual midline through shape matching. These processes mimic the measuring process by physicians and have shown promising results in the evaluation. In the second component, more features are extracted related to ICP, such as the texture information, blood amount from CT scans and other recorded features, such as age, injury severity score to estimate the ICP are also incorporated. Machine learning techniques including feature selection and classification, such as Support Vector Machines (SVMs), are employed to build the prediction model using RapidMiner. The evaluation of the prediction shows potential usefulness of the model. The estimated ideal midline shift and predicted ICP levels may be used as a fast pre-screening step for physicians to make decisions, so as to recommend for or against invasive ICP monitoring.
Medicine, Issue 74, Biomedical Engineering, Molecular Biology, Neurobiology, Biophysics, Physiology, Anatomy, Brain CT Image Processing, CT, Midline Shift, Intracranial Pressure Pre-screening, Gaussian Mixture Model, Shape Matching, Machine Learning, traumatic brain injury, TBI, imaging, clinical techniques
Play Button
Basics of Multivariate Analysis in Neuroimaging Data
Authors: Christian Georg Habeck.
Institutions: Columbia University.
Multivariate analysis techniques for neuroimaging data have recently received increasing attention as they have many attractive features that cannot be easily realized by the more commonly used univariate, voxel-wise, techniques1,5,6,7,8,9. Multivariate approaches evaluate correlation/covariance of activation across brain regions, rather than proceeding on a voxel-by-voxel basis. Thus, their results can be more easily interpreted as a signature of neural networks. Univariate approaches, on the other hand, cannot directly address interregional correlation in the brain. Multivariate approaches can also result in greater statistical power when compared with univariate techniques, which are forced to employ very stringent corrections for voxel-wise multiple comparisons. Further, multivariate techniques also lend themselves much better to prospective application of results from the analysis of one dataset to entirely new datasets. Multivariate techniques are thus well placed to provide information about mean differences and correlations with behavior, similarly to univariate approaches, with potentially greater statistical power and better reproducibility checks. In contrast to these advantages is the high barrier of entry to the use of multivariate approaches, preventing more widespread application in the community. To the neuroscientist becoming familiar with multivariate analysis techniques, an initial survey of the field might present a bewildering variety of approaches that, although algorithmically similar, are presented with different emphases, typically by people with mathematics backgrounds. We believe that multivariate analysis techniques have sufficient potential to warrant better dissemination. Researchers should be able to employ them in an informed and accessible manner. The current article is an attempt at a didactic introduction of multivariate techniques for the novice. A conceptual introduction is followed with a very simple application to a diagnostic data set from the Alzheimer s Disease Neuroimaging Initiative (ADNI), clearly demonstrating the superior performance of the multivariate approach.
JoVE Neuroscience, Issue 41, fMRI, PET, multivariate analysis, cognitive neuroscience, clinical neuroscience
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.