JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Effect of PEEP and tidal volume on ventilation distribution and end-expiratory lung volume: a prospective experimental animal and pilot clinical study.
PUBLISHED: 01-01-2013
Lung-protective ventilation aims at using low tidal volumes (VT) at optimum positive end-expiratory pressures (PEEP). Optimum PEEP should recruit atelectatic lung regions and avoid tidal recruitment and end-inspiratory overinflation. We examined the effect of VT and PEEP on ventilation distribution, regional respiratory system compliance (C(RS)), and end-expiratory lung volume (EELV) in an animal model of acute lung injury (ALI) and patients with ARDS by using electrical impedance tomography (EIT) with the aim to assess tidal recruitment and overinflation.
Authors: Tatsuya J. Arai, G. Kim Prisk, Sebastiaan Holverda, Rui Carlos Sá, Rebecca J. Theilmann, A. Cortney Henderson, Matthew V. Cronin, Richard B. Buxton, Susan R. Hopkins.
Published: 05-30-2011
This demonstrates a MR imaging method to measure the spatial distribution of pulmonary blood flow in healthy subjects during normoxia (inspired O2, fraction (FIO2) = 0.21) hypoxia (FIO2 = 0.125), and hyperoxia (FIO2 = 1.00). In addition, the physiological responses of the subject are monitored in the MR scan environment. MR images were obtained on a 1.5 T GE MRI scanner during a breath hold from a sagittal slice in the right lung at functional residual capacity. An arterial spin labeling sequence (ASL-FAIRER) was used to measure the spatial distribution of pulmonary blood flow 1,2 and a multi-echo fast gradient echo (mGRE) sequence 3 was used to quantify the regional proton (i.e. H2O) density, allowing the quantification of density-normalized perfusion for each voxel (milliliters blood per minute per gram lung tissue). With a pneumatic switching valve and facemask equipped with a 2-way non-rebreathing valve, different oxygen concentrations were introduced to the subject in the MR scanner through the inspired gas tubing. A metabolic cart collected expiratory gas via expiratory tubing. Mixed expiratory O2 and CO2 concentrations, oxygen consumption, carbon dioxide production, respiratory exchange ratio, respiratory frequency and tidal volume were measured. Heart rate and oxygen saturation were monitored using pulse-oximetry. Data obtained from a normal subject showed that, as expected, heart rate was higher in hypoxia (60 bpm) than during normoxia (51) or hyperoxia (50) and the arterial oxygen saturation (SpO2) was reduced during hypoxia to 86%. Mean ventilation was 8.31 L/min BTPS during hypoxia, 7.04 L/min during normoxia, and 6.64 L/min during hyperoxia. Tidal volume was 0.76 L during hypoxia, 0.69 L during normoxia, and 0.67 L during hyperoxia. Representative quantified ASL data showed that the mean density normalized perfusion was 8.86 ml/min/g during hypoxia, 8.26 ml/min/g during normoxia and 8.46 ml/min/g during hyperoxia, respectively. In this subject, the relative dispersion4, an index of global heterogeneity, was increased in hypoxia (1.07 during hypoxia, 0.85 during normoxia, and 0.87 during hyperoxia) while the fractal dimension (Ds), another index of heterogeneity reflecting vascular branching structure, was unchanged (1.24 during hypoxia, 1.26 during normoxia, and 1.26 during hyperoxia). Overview. This protocol will demonstrate the acquisition of data to measure the distribution of pulmonary perfusion noninvasively under conditions of normoxia, hypoxia, and hyperoxia using a magnetic resonance imaging technique known as arterial spin labeling (ASL). Rationale: Measurement of pulmonary blood flow and lung proton density using MR technique offers high spatial resolution images which can be quantified and the ability to perform repeated measurements under several different physiological conditions. In human studies, PET, SPECT, and CT are commonly used as the alternative techniques. However, these techniques involve exposure to ionizing radiation, and thus are not suitable for repeated measurements in human subjects.
15 Related JoVE Articles!
Play Button
In vivo Measurement of the Mouse Pulmonary Endothelial Surface Layer
Authors: Yimu Yang, Gaoqing Yang, Eric P. Schmidt.
Institutions: University of Colorado School of Medicine.
The endothelial glycocalyx is a layer of proteoglycans and associated glycosaminoglycans lining the vascular lumen. In vivo, the glycocalyx is highly hydrated, forming a substantial endothelial surface layer (ESL) that contributes to the maintenance of endothelial function. As the endothelial glycocalyx is often aberrant in vitro and is lost during standard tissue fixation techniques, study of the ESL requires use of intravital microscopy. To best approximate the complex physiology of the alveolar microvasculature, pulmonary intravital imaging is ideally performed on a freely-moving lung. These preparations, however, typically suffer from extensive motion artifact. We demonstrate how closed-chest intravital microscopy of a freely-moving mouse lung can be used to measure glycocalyx integrity via ESL exclusion of fluorescently-labeled high molecular weight dextrans from the endothelial surface. This non-recovery surgical technique, which requires simultaneous brightfield and fluorescent imaging of the mouse lung, allows for longitudinal observation of the subpleural microvasculature without evidence of inducing confounding lung injury.
Medicine, Issue 72, Cellular Biology, Anatomy, Physiology, Biomedical Engineering, Biophysics, Surgery, Endothelium, Vascular, Inflammation, Pulmonary Circulation, Intravital Microscopy, endothelial surface layer, endothelial, glycocalyx, pulmonary microvasculature, catheter, tracheostomy, venous, catheterization, lung injury, mouse, animal model
Play Button
Evaluation of Respiratory System Mechanics in Mice using the Forced Oscillation Technique
Authors: Toby K. McGovern, Annette Robichaud, Liah Fereydoonzad, Thomas F. Schuessler, James G. Martin.
Institutions: McGill University , SCIREQ Scientific Respiratory Equipment Inc..
The forced oscillation technique (FOT) is a powerful, integrative and translational tool permitting the experimental assessment of lung function in mice in a comprehensive, detailed, precise and reproducible manner. It provides measurements of respiratory system mechanics through the analysis of pressure and volume signals acquired in reaction to predefined, small amplitude, oscillatory airflow waveforms, which are typically applied at the subject's airway opening. The present protocol details the steps required to adequately execute forced oscillation measurements in mice using a computer-controlled piston ventilator (flexiVent; SCIREQ Inc, Montreal, Qc, Canada). The description is divided into four parts: preparatory steps, mechanical ventilation, lung function measurements, and data analysis. It also includes details of how to assess airway responsiveness to inhaled methacholine in anesthetized mice, a common application of this technique which also extends to other outcomes and various lung pathologies. Measurements obtained in naïve mice as well as from an oxidative-stress driven model of airway damage are presented to illustrate how this tool can contribute to a better characterization and understanding of studied physiological changes or disease models as well as to applications in new research areas.
Medicine, Issue 75, Biomedical Engineering, Anatomy, Physiology, Biophysics, Pathology, lung diseases, asthma, respiratory function tests, respiratory system, forced oscillation technique, respiratory system mechanics, airway hyperresponsiveness, flexiVent, lung physiology, lung, oxidative stress, ventilator, cannula, mice, animal model, clinical techniques
Play Button
Endotracheal Intubation in Mice via Direct Laryngoscopy Using an Otoscope
Authors: Joanna L. Thomas, Justin Dumouchel, Jinghong Li, Jenna Magat, Dana Balitzer, Timothy D. Bigby.
Institutions: VA San Diego Healthcare System, University of California, San Diego, University of California, San Diego.
Mice, both wildtype and transgenic, are the principal mammalian model in biomedical research currently. Intubation and mechanical ventilation are necessary for whole animal experiments that require surgery under deep anesthesia or measurements of lung function. Tracheostomy has been the standard for intubating the airway in these mice to allow mechanical ventilation. Orotracheal intubation has been reported but has not been successfully used in many studies because of the substantial technical difficulty or a requirement for highly specialized and expensive equipment. Here we report a technique of direct laryngoscopy using an otoscope fitted with a 2.0 mm speculum and using a 20 G intravenous catheter as an endotracheal tube. We have used this technique extensively and reliably to intubate and conduct accurate assessments of lung function in mice. This technique has proven safe, with essentially no animal loss in experienced hands. Moreover, this technique can be used for repeated studies of mice in chronic models.
Medicine, Issue 86, lung physiology, endotracheal intubation, laryngoscopy, airway resistance, intubation technique
Play Button
Angiogenesis in the Ischemic Rat Lung
Authors: John Jenkins, Elizabeth Wagner.
Institutions: Johns Hopkins University.
The adult lung is perfused by both the systemic bronchial artery and the entire venous return flowing through the pulmonary arteries. In most lung pathologies, it is the smaller systemic vasculature that responds to a need for enhanced lung perfusion and shows robust neovascularization. Pulmonary vascular ischemia induced by pulmonary artery obstruction has been shown to result in rapid systemic arterial angiogenesis in man as well as in several animal models. Although the histologic assessment of the time course of bronchial artery proliferation in rats was carefully described by Weibel 1, mechanisms responsible for this organized growth of new vessels are not clear. We provide surgical details of inducing left pulmonary artery ischemia in the rat that leads to bronchial neovascularization. Quantification of the extent of angiogenesis presents an additional challenge due to the presence of the two vascular beds within the lung. Methods to determine functional angiogenesis based on labeled microsphere injections are provided.
Medicine, Issue 72, Anatomy, Physiology, Biomedical Engineering, Pathology, Surgery, Lung, Lung Diseases, Lung Injury, Thoracic Surgical Procedures, Physiological Processes, Growth and Development, Respiratory System, Physiological Phenomena, angiogenesis, bronchial artery, blood vessels, arteries, rat, ischemia, intubation, artery ligation, thoracotomy, cannulation, animal model
Play Button
Quantitative Autonomic Testing
Authors: Peter Novak.
Institutions: University of Massachusetts Medical School.
Disorders associated with dysfunction of autonomic nervous system are quite common yet frequently unrecognized. Quantitative autonomic testing can be invaluable tool for evaluation of these disorders, both in clinic and research. There are number of autonomic tests, however, only few were validated clinically or are quantitative. Here, fully quantitative and clinically validated protocol for testing of autonomic functions is presented. As a bare minimum the clinical autonomic laboratory should have a tilt table, ECG monitor, continuous noninvasive blood pressure monitor, respiratory monitor and a mean for evaluation of sudomotor domain. The software for recording and evaluation of autonomic tests is critical for correct evaluation of data. The presented protocol evaluates 3 major autonomic domains: cardiovagal, adrenergic and sudomotor. The tests include deep breathing, Valsalva maneuver, head-up tilt, and quantitative sudomotor axon test (QSART). The severity and distribution of dysautonomia is quantitated using Composite Autonomic Severity Scores (CASS). Detailed protocol is provided highlighting essential aspects of testing with emphasis on proper data acquisition, obtaining the relevant parameters and unbiased evaluation of autonomic signals. The normative data and CASS algorithm for interpretation of results are provided as well.
Medicine, Issue 53, Deep breathing, Valsalva maneuver, tilt test, sudomotor testing, Composite Autonomic Severity Score, CASS
Play Button
Characterization of the Isolated, Ventilated, and Instrumented Mouse Lung Perfused with Pulsatile Flow
Authors: Rebecca R. Vanderpool, Naomi C. Chesler.
Institutions: University of Wisconsin – Madison.
The isolated, ventilated and instrumented mouse lung preparation allows steady and pulsatile pulmonary vascular pressure-flow relationships to be measured with independent control over pulmonary arterial flow rate, flow rate waveform, airway pressure and left atrial pressure. Pulmonary vascular resistance is calculated based on multi-point, steady pressure-flow curves; pulmonary vascular impedance is calculated from pulsatile pressure-flow curves obtained at a range of frequencies. As now recognized clinically, impedance is a superior measure of right ventricular afterload than resistance because it includes the effects of vascular compliance, which are not negligible, especially in the pulmonary circulation. Three important metrics of impedance - the zero hertz impedance Z0, the characteristic impedance ZC, and the index of wave reflection RW - provide insight into distal arterial cross-sectional area available for flow, proximal arterial stiffness and the upstream-downstream impedance mismatch, respectively. All results obtained in isolated, ventilated and perfused lungs are independent of sympathetic nervous system tone, volume status and the effects of anesthesia. We have used this technique to quantify the impact of pulmonary emboli and chronic hypoxia on resistance and impedance, and to differentiate between sites of action (i.e., proximal vs. distal) of vasoactive agents and disease using the pressure dependency of ZC. Furthermore, when these techniques are used with the lungs of genetically engineered strains of mice, the effects of molecular-level defects on pulmonary vascular structure and function can be determined.
Medicine, Issue 50, ex-vivo, mouse, lung, pulmonary vascular impedance, characteristic impedance
Play Button
A Simple Method of Mouse Lung Intubation
Authors: Sandhya Das, Kelvin MacDonald, Herng-Yu Sucie Chang, Wayne Mitzner.
Institutions: Johns Hopkins Bloomberg School of Public Health, Oregon Health Sciences University.
A simple procedure to intubate mice for pulmonary function measurements would have several advantages in longitudinal studies with limited numbers or expensive animal. One of the reasons that this is not done more routinely is that it is relatively difficult, despite there being several published studies that describe ways to achieve it. In this paper we demonstrate a procedure that eliminates one of the major hurdles associated with this intubation, that of visualizing the trachea during the entire time of intubation. The approach uses a 0.5 mm fiberoptic light source that serves as an introducer to direct the intubation cannula into the mouse trachea. We show that it is possible to use this procedure to measure lung mechanics in individual mice over a time course of at least several weeks. The technique can be set up with relatively little expense and expertise, and it can be routinely accomplished with relatively little training. This should make it possible for any laboratory to routinely carry out this intubation, thereby allowing longitudinal studies in individual mice, thereby minimizing the number of mice needed and increasing the statistical power by using each mouse as its own control.
Medicine, Issue 73, Biomedical Engineering, Anatomy, Physiology, Surgery, Respiratory System, Respiratory Tract Diseases, pulmonary function, chronic, longitudinal studies, airway resistance, trachea, lung, clinical techniques, intubation, cannula, animal model
Play Button
Development of Obliterative Bronchiolitis in a Murine Model of Orthotopic Lung Transplantation
Authors: Hidemi Suzuki, Lin Fan, David S. Wilkes.
Institutions: Indiana University School of Medicine, Indiana University School of Medicine.
Orthotopic lung transplantation in rats was first reported by Asimacopoulos and colleagues in 1971 1. Currently, this method is well accepted and standardized not only for the study of allo-rejection but also between syngeneic strains for examining mechanisms of ischemia-reperfusion injury after lung transplantation. Although the application of the rat and other large animal model 2 contributed significantly to the elucidation of these studies, the scope of those investigations is limited by the scarcity of knockout and transgenic rats. Due to no effective therapies for obliterative bronchiolitis, the leading cause of death in lung transplant patients, there has been an intensive search for pre-clinical models that replicate obliterative bronchiolitis. The tracheal allograft model is the most widely used and may reproduce some of the histopathologic features of obliterative bronchiolitis 3. However, the lack of an intact vasculature with no connection to the recipient's conducting airways, and incomplete pathologic features of obliterative bronchiolitis limit the utility of this model 4. Unlike transplantation of other solid organs, vascularized mouse lung transplants have only recently been reported by Okazaki and colleagues for the first time in 2007 5. Applying the basic principles of the rat lung transplant, our lab initiated the obliterative bronchiolitis model using minor histoincompatible antigen murine orthotopic single-left lung transplants which allows the further study of obliterative bronchiolitis immunopathogenesis6.
Medicine, Issue 65, Immunology, Microbiology, Physiology, lung, transplantation, mouse, obliterative bronchiolitis, vascularized lung transplants
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
Play Button
Murine Model of Allergen Induced Asthma
Authors: Aravind T. Reddy, Sowmya P. Lakshmi, Raju C. Reddy.
Institutions: Emory University and Atlanta VA Medical Center.
Asthma is a major cause of morbidity and mortality, affecting some 300 million people throughout the world.1 More than 8% of the US population has asthma, with the prevalence increasing.2 As with other diseases, animal models of allergic airway disease greatly facilitate understanding of the underlying pathophysiology, help identify potential therapeutic targets, and allow preclinical testing of possible new therapies. Models of allergic airway disease have been developed in several animal species, but murine models are particularly attractive due to the low cost, ready availability, and well-characterized immune systems of these animals.3 Availability of a variety of transgenic strains further increases the attractiveness of these models.4 Here we describe two murine models of allergic airway disease, both employing ovalbumin as the antigen. Following initial sensitization by intraperitoneal injection, one model delivers the antigen challenge by nebulization, the other by intratracheal delivery. These two models offer complementary advantages, with each mimicking the major features of human asthma.5 The major features of acute asthma include an exaggerated airway response to stimuli such as methacholine (airway hyperresponsiveness; AHR) and eosinophil-rich airway inflammation. These are also prominent effects of allergen challenge in our murine models,5,6 and we describe techniques for measuring them and thus evaluating the effects of experimental manipulation. Specifically, we describe both invasive7 and non-invasive8 techniques for measuring airway hyperresponsiveness as well as methods for assessing infiltration of inflammatory cells into the airways and the lung. Airway inflammatory cells are collected by bronchoalveolar lavage while lung histopathology is used to assess markers of inflammation throughout the organ. These techniques provide powerful tools for studying asthma in ways that would not be possible in humans.
Immunology, Issue 63, Allergy, airway hyperresponsiveness, pulmonary function, eosinophil, ovalbumin, methacholine, airway resistance, plethysmography, flexiVent, bronchoalveolar lavage, physiology
Play Button
Procedure for Lung Engineering
Authors: Elizabeth A. Calle, Thomas H. Petersen, Laura E. Niklason.
Institutions: Yale University, Duke University, Yale University.
Lung tissue, including lung cancer and chronic lung diseases such as chronic obstructive pulmonary disease, cumulatively account for some 280,000 deaths annually; chronic obstructive pulmonary disease is currently the fourth leading cause of death in the United States1. Contributing to this mortality is the fact that lungs do not generally repair or regenerate beyond the microscopic, cellular level. Therefore, lung tissue that is damaged by degeneration or infection, or lung tissue that is surgically resected is not functionally replaced in vivo. To explore whether lung tissue can be generated in vitro, we treated lungs from adult rats using a procedure that removes cellular components to produce an acellular lung extracellular matrix scaffold. This scaffold retains the hierarchical branching structures of airways and vasculature, as well as a largely intact basement membrane, which comprises collagen IV, laminin, and fibronectin. The scaffold is mounted in a bioreactor designed to mimic critical aspects of lung physiology, such as negative pressure ventilation and pulsatile vascular perfusion. By culturing pulmonary epithelium and vascular endothelium within the bioreactor-mounted scaffold, we are able to generate lung tissue that is phenotypically comparable to native lung tissue and that is able to participate in gas exchange for short time intervals (45-120 minutes). These results are encouraging, and suggest that repopulation of lung matrix is a viable strategy for lung regeneration. This possibility presents an opportunity not only to work toward increasing the supply of lung tissue for transplantation, but also to study respiratory cell and molecular biology in vitro for longer time periods and in a more accurate microenvironment than has previously been possible.
Bioengineering, Issue 49, Decellularization, tissue engineering, lung engineering, lung tissue, extracellular matrix
Play Button
Measuring Respiratory Function in Mice Using Unrestrained Whole-body Plethysmography
Authors: Rebecca Lim, Marcus J. Zavou, Phillipa-Louise Milton, Siow Teng Chan, Jean L. Tan, Hayley Dickinson, Sean V. Murphy, Graham Jenkin, Euan M. Wallace.
Institutions: Monash Institute of Medical Research, Monash Medical Centre, Animal Resource Centre, Perth, Australia, Wake Forest Institute for Regenerative Medicine.
Respiratory dysfunction is one of the leading causes of morbidity and mortality in the world and the rates of mortality continue to rise. Quantitative assessment of lung function in rodent models is an important tool in the development of future therapies. Commonly used techniques for assessing respiratory function including invasive plethysmography and forced oscillation. While these techniques provide valuable information, data collection can be fraught with artefacts and experimental variability due to the need for anesthesia and/or invasive instrumentation of the animal. In contrast, unrestrained whole-body plethysmography (UWBP) offers a precise, non-invasive, quantitative way by which to analyze respiratory parameters. This technique avoids the use of anesthesia and restraints, which is common to traditional plethysmography techniques. This video will demonstrate the UWBP procedure including the equipment set up, calibration and lung function recording. It will explain how to analyze the collected data, as well as identify experimental outliers and artefacts that results from animal movement. The respiratory parameters obtained using this technique include tidal volume, minute volume, inspiratory duty cycle, inspiratory flow rate and the ratio of inspiration time to expiration time. UWBP does not rely on specialized skills and is inexpensive to perform. A key feature of UWBP, and most appealing to potential users, is the ability to perform repeated measures of lung function on the same animal.
Physiology, Issue 90, Unrestrained Whole Body Plethysmography, Lung function, Respiratory Disease, Rodents
Play Button
Pressure Controlled Ventilation to Induce Acute Lung Injury in Mice
Authors: Michael Koeppen, Tobias Eckle, Holger K. Eltzschig.
Institutions: University of Colorado.
Murine models are extensively used to investigate acute injuries of different organs systems (1-34). Acute lung injury (ALI), which occurs with prolonged mechanical ventilation, contributes to morbidity and mortality of critical illness, and studies on novel genetic or pharmacological targets are areas of intense investigation (1-3, 5, 8, 26, 30, 33-36). ALI is defined by the acute onset of the disease, which leads to non-cardiac pulmonary edema and subsequent impairment of pulmonary gas exchange (36). We have developed a murine model of ALI by using a pressure-controlled ventilation to induce ventilator-induced lung injury (2). For this purpose, C57BL/6 mice are anesthetized and a tracheotomy is performed followed by induction of ALI via mechanical ventilation. Mice are ventilated in a pressure-controlled setting with an inspiratory peak pressure of 45 mbar over 1 - 3 hours. As outcome parameters, pulmonary edema (wet-to-dry ratio), bronchoalveolar fluid albumin content, bronchoalveolar fluid and pulmonary tissue myeloperoxidase content and pulmonary gas exchange are assessed (2). Using this technique we could show that it sufficiently induces acute lung inflammation and can distinguish between different treatment groups or genotypes (1-3, 5). Therefore this technique may be helpful for researchers who pursue molecular mechanisms involved in ALI using a genetic approach in mice with gene-targeted deletion.
Medicine, Issue 51, Ventilator-induced lung injury, acute lung injury, targeted gene deletion, murine model, lung
Play Button
Nonhuman Primate Lung Decellularization and Recellularization Using a Specialized Large-organ Bioreactor
Authors: Ryan W. Bonvillain, Michelle E. Scarritt, Nicholas C. Pashos, Jacques P. Mayeux, Christopher L. Meshberger, Aline M. Betancourt, Deborah E. Sullivan, Bruce A. Bunnell.
Institutions: Tulane University School of Medicine, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University School of Medicine.
There are an insufficient number of lungs available to meet current and future organ transplantation needs. Bioartificial tissue regeneration is an attractive alternative to classic organ transplantation. This technology utilizes an organ's natural biological extracellular matrix (ECM) as a scaffold onto which autologous or stem/progenitor cells may be seeded and cultured in such a way that facilitates regeneration of the original tissue. The natural ECM is isolated by a process called decellularization. Decellularization is accomplished by treating tissues with a series of detergents, salts, and enzymes to achieve effective removal of cellular material while leaving the ECM intact. Studies conducted utilizing decellularization and subsequent recellularization of rodent lungs demonstrated marginal success in generating pulmonary-like tissue which is capable of gas exchange in vivo. While offering essential proof-of-concept, rodent models are not directly translatable to human use. Nonhuman primates (NHP) offer a more suitable model in which to investigate the use of bioartificial organ production for eventual clinical use. The protocols for achieving complete decellularization of lungs acquired from the NHP rhesus macaque are presented. The resulting acellular lungs can be seeded with a variety of cells including mesenchymal stem cells and endothelial cells. The manuscript also describes the development of a bioreactor system in which cell-seeded macaque lungs can be cultured under conditions of mechanical stretch and strain provided by negative pressure ventilation as well as pulsatile perfusion through the vasculature; these forces are known to direct differentiation along pulmonary and endothelial lineages, respectively. Representative results of decellularization and cell seeding are provided.
Bioengineering, Issue 82, rhesus macaque, decellularization, recellularization, detergent, matrix, scaffold, large-organ bioreactor, mesenchymal stem cells
Play Button
Expired CO2 Measurement in Intubated or Spontaneously Breathing Patients from the Emergency Department
Authors: Franck Verschuren, Maidei Gugu Kabayadondo, Frédéric Thys.
Institutions: Universit Catholique de Louvain Cliniques Universitaires Saint-Luc.
Carbon dioxide (CO2) along with oxygen (O2) share the role of being the most important gases in the human body. The measuring of expired CO2 at the mouth has solicited growing clinical interest among physicians in the emergency department for various indications: (1) surveillance et monitoring of the intubated patient; (2) verification of the correct positioning of an endotracheal tube; (3) monitoring of a patient in cardiac arrest; (4) achieving normocapnia in intubated head trauma patients; (5) monitoring ventilation during procedural sedation. The video allows physicians to familiarize themselves with the use of capnography and the text offers a review of the theory and principals involved. In particular, the importance of CO2 for the organism, the relevance of measuring expired CO2, the differences between arterial and expired CO2, the material used in capnography with their artifacts and traps, will be reviewed. Since the main reluctance in the use of expired CO2 measurement is due to lack of correct knowledge concerning the physiopathology of CO2 by the physician, we hope that this explanation and the video sequences accompanying will help resolve this limitation.
Medicine, Issue 47, capnography, CO2, emergency medicine, end-tidal CO2
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.