JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Enlargement of cerebral ventricles as an early indicator of encephalomyelitis.
PUBLISHED: 01-01-2013
Inflammatory disorders of the central nervous system such as multiple sclerosis and acute disseminated encephalomyelitis involve an invasion of immune cells that ultimately leads to white matter demyelination, neurodegeneration and development of neurological symptoms. A clinical diagnosis is often made when neurodegenerative processes are already ongoing. In an attempt to seek early indicators of disease, we studied the temporal and spatial distribution of brain modifications in experimental autoimmune encephalomyelitis (EAE). In a thorough magnetic resonance imaging study performed with EAE mice, we observed significant enlargement of the ventricles prior to disease clinical manifestation and an increase in free water content within the cerebrospinal fluid as demonstrated by changes in T2 relaxation times. The increase in ventricle size was seen in the lateral, third and fourth ventricles. In some EAE mice the ventricle size started returning to normal values during disease remission. In parallel to this macroscopic phenomenon, we studied the temporal evolution of microscopic lesions commonly observed in the cerebellum also starting prior to disease onset. Our data suggest that changes in ventricle size during the early stages of brain inflammation could be an early indicator of the events preceding neurological disease and warrant further exploration in preclinical and clinical studies.
Authors: Stefan Bittner, Ali M. Afzali, Heinz Wiendl, Sven G. Meuth.
Published: 04-15-2014
Multiple sclerosis is a chronic neuroinflammatory demyelinating disorder of the central nervous system with a strong neurodegenerative component. While the exact etiology of the disease is yet unclear, autoreactive T lymphocytes are thought to play a central role in its pathophysiology. MS therapy is only partially effective so far and research efforts continue to expand our knowledge on the pathophysiology of the disease and to develop novel treatment strategies. Experimental autoimmune encephalomyelitis (EAE) is the most common animal model for MS sharing many clinical and pathophysiological features. There is a broad diversity of EAE models which reflect different clinical, immunological and histological aspects of human MS. Actively-induced EAE in mice is the easiest inducible model with robust and replicable results. It is especially suited for investigating the effects of drugs or of particular genes by using transgenic mice challenged by autoimmune neuroinflammation. Therefore, mice are immunized with CNS homogenates or peptides of myelin proteins. Due to the low immunogenic potential of these peptides, strong adjuvants are used. EAE susceptibility and phenotype depends on the chosen antigen and rodent strain. C57BL/6 mice are the commonly used strain for transgenic mouse construction and respond among others to myelin oligodendrocyte glycoprotein (MOG). The immunogenic epitope MOG35-55 is suspended in complete Freund's adjuvant (CFA) prior to immunization and pertussis toxin is applied on the day of immunization and two days later. Mice develop a "classic" self-limited monophasic EAE with ascending flaccid paralysis within 9-14 days after immunization. Mice are evaluated daily using a clinical scoring system for 25-50 days. Special considerations for care taking of animals with EAE as well as potential applications and limitations of this model are discussed.
22 Related JoVE Articles!
Play Button
Manual Drainage of the Zebrafish Embryonic Brain Ventricles
Authors: Jessica T. Chang, Hazel Sive.
Institutions: Massachusetts Institute of Technology.
Cerebrospinal fluid (CSF) is a protein rich fluid contained within the brain ventricles. It is present during early vertebrate embryonic development and persists throughout life. Adult CSF is thought to cushion the brain, remove waste, and carry secreted molecules1,2. In the adult and older embryo, the majority of CSF is made by the choroid plexus, a series of highly vascularized secretory regions located adjacent to the brain ventricles3-5. In zebrafish, the choroid plexus is fully formed at 144 hours post fertilization (hpf)6. Prior to this, in both zebrafish and other vertebrate embryos including mouse, a significant amount of embryonic CSF (eCSF) is present . These data and studies in chick suggest that the neuroepithelium is secretory early in development and may be the major source of eCSF prior to choroid plexus development7. eCSF contains about three times more protein than adult CSF, suggesting that it may have an important role during development8,9. Studies in chick and mouse demonstrate that secreted factors in the eCSF, fluid pressure, or a combination of these, are important for neurogenesis, gene expression, cell proliferation, and cell survival in the neuroepithelium10-20. Proteomic analyses of human, rat, mouse, and chick eCSF have identified many proteins that may be necessary for CSF function. These include extracellular matrix components, apolipoproteins, osmotic pressure regulating proteins, and proteins involved in cell death and proliferation21-24. However, the complex functions of the eCSF are largely unknown. We have developed a method for removing eCSF from zebrafish brain ventricles, thus allowing for identification of eCSF components and for analysis of the eCSF requirement during development. Although more eCSF can be collected from other vertebrate systems with larger embryos, eCSF can be collected from the earliest stages of zebrafish development, and under genetic or environmental conditions that lead to abnormal brain ventricle volume or morphology. Removal and collection of eCSF allows for mass spectrometric analysis, investigation of eCSF function, and reintroduction of select factors into the ventricles to assay their function. Thus the accessibility of the early zebrafish embryo allows for detailed analysis of eCSF function during development.
Neuroscience, Issue 70, Developmental Biology, Medicine, Anatomy, Physiology, Zebrafish, Danio rerio, eCSF, neuroepithelium, brain ventricular system, brain, microsurgery, animal model
Play Button
The Rabbit Blood-shunt Model for the Study of Acute and Late Sequelae of Subarachnoid Hemorrhage: Technical Aspects
Authors: Lukas Andereggen, Volker Neuschmelting, Michael von Gunten, Hans Rudolf Widmer, Jukka Takala, Stephan M. Jakob, Javier Fandino, Serge Marbacher.
Institutions: University and Bern University Hospital (Inselspital), Kantonsspital Aarau, Boston Children's Hospital, Boston Children's Hospital, University and Bern University Hospital (Inselspital), University Hospital Cologne, Länggasse Bern.
Early brain injury and delayed cerebral vasospasm both contribute to unfavorable outcomes after subarachnoid hemorrhage (SAH). Reproducible and controllable animal models that simulate both conditions are presently uncommon. Therefore, new models are needed in order to mimic human pathophysiological conditions resulting from SAH. This report describes the technical nuances of a rabbit blood-shunt SAH model that enables control of intracerebral pressure (ICP). An extracorporeal shunt is placed between the arterial system and the subarachnoid space, which enables examiner-independent SAH in a closed cranium. Step-by-step procedural instructions and necessary equipment are described, as well as technical considerations to produce the model with minimal mortality and morbidity. Important details required for successful surgical creation of this robust, simple and consistent ICP-controlled SAH rabbit model are described.
Medicine, Issue 92, Subarachnoid hemorrhage, animal models, rabbit, extracorporeal blood shunt, early brain injury, delayed cerebral vasospasm, microsurgery.
Play Button
Assessing Cell Cycle Progression of Neural Stem and Progenitor Cells in the Mouse Developing Brain after Genotoxic Stress
Authors: Olivier Etienne, Amandine Bery, Telma Roque, Chantal Desmaze, François D. Boussin.
Institutions: CEA DSV iRCM SCSR, INSERM, U967, Université Paris Diderot, Sorbonne Paris Cité, Université Paris Sud, UMR 967.
Neurons of the cerebral cortex are generated during brain development from different types of neural stem and progenitor cells (NSPC), which form a pseudostratified epithelium lining the lateral ventricles of the embryonic brain. Genotoxic stresses, such as ionizing radiation, have highly deleterious effects on the developing brain related to the high sensitivity of NSPC. Elucidation of the cellular and molecular mechanisms involved depends on the characterization of the DNA damage response of these particular types of cells, which requires an accurate method to determine NSPC progression through the cell cycle in the damaged tissue. Here is shown a method based on successive intraperitoneal injections of EdU and BrdU in pregnant mice and further detection of these two thymidine analogues in coronal sections of the embryonic brain. EdU and BrdU are both incorporated in DNA of replicating cells during S phase and are detected by two different techniques (azide or a specific antibody, respectively), which facilitate their simultaneous detection. EdU and BrdU staining are then determined for each NSPC nucleus in function of its distance from the ventricular margin in a standard region of the dorsal telencephalon. Thus this dual labeling technique allows distinguishing cells that progressed through the cell cycle from those that have activated a cell cycle checkpoint leading to cell cycle arrest in response to DNA damage. An example of experiment is presented, in which EdU was injected before irradiation and BrdU immediately after and analyzes performed within the 4 hr following irradiation. This protocol provides an accurate analysis of the acute DNA damage response of NSPC in function of the phase of the cell cycle at which they have been irradiated. This method is easily transposable to many other systems in order to determine the impact of a particular treatment on cell cycle progression in living tissues.
Neuroscience, Issue 87, EdU, BrdU, in utero irradiation, neural stem and progenitor cells, cell cycle, embryonic cortex, immunostaining, cell cycle checkpoints, apoptosis, genotoxic stress, embronic mouse brain
Play Button
Intracerebroventricular Viral Injection of the Neonatal Mouse Brain for Persistent and Widespread Neuronal Transduction
Authors: Ji-Yoen Kim, Stacy D. Grunke, Yona Levites, Todd E. Golde, Joanna L. Jankowsky.
Institutions: Baylor College of Medicine, University of Florida, Baylor College of Medicine.
With the pace of scientific advancement accelerating rapidly, new methods are needed for experimental neuroscience to quickly and easily manipulate gene expression in the mouse brain. Here we describe a technique first introduced by Passini and Wolfe for direct intracranial delivery of virally-encoded transgenes into the neonatal mouse brain. In its most basic form, the procedure requires only an ice bucket and a microliter syringe. However, the protocol can also be adapted for use with stereotaxic frames to improve consistency for researchers new to the technique. The method relies on the ability of adeno-associated virus (AAV) to move freely from the cerebral ventricles into the brain parenchyma while the ependymal lining is still immature during the first 12-24 hr after birth. Intraventricular injection of AAV at this age results in widespread transduction of neurons throughout the brain. Expression begins within days of injection and persists for the lifetime of the animal. Viral titer can be adjusted to control the density of transduced neurons, while co-expression of a fluorescent protein provides a vital label of transduced cells. With the rising availability of viral core facilities to provide both off-the-shelf, pre-packaged reagents and custom viral preparation, this approach offers a timely method for manipulating gene expression in the mouse brain that is fast, easy, and far less expensive than traditional germline engineering.
Neuroscience, Issue 91, AAV, adeno-associated virus, viral transduction, neuronal transduction, intraventricular injection, neonatal injection, brain transgenesis, viral labeling
Play Button
Isolation of Cerebrospinal Fluid from Rodent Embryos for use with Dissected Cerebral Cortical Explants
Authors: Mauro W. Zappaterra, Anthony S. LaMantia, Christopher A. Walsh, Maria K. Lehtinen.
Institutions: VA Greater Los Angeles Healthcare System, The George Washington University School of Medicine and Health Sciences, Boston Children's Hospital, Boston Children's Hospital, Boston Children's Hospital, Harvard Medical School.
The CSF is a complex fluid with a dynamically varying proteome throughout development and in adulthood. During embryonic development, the nascent CSF differentiates from the amniotic fluid upon closure of the anterior neural tube. CSF volume then increases over subsequent days as the neuroepithelial progenitor cells lining the ventricles and the choroid plexus generate CSF. The embryonic CSF contacts the apical, ventricular surface of the neural stem cells of the developing brain and spinal cord. CSF provides crucial fluid pressure for the expansion of the developing brain and distributes important growth promoting factors to neural progenitor cells in a temporally-specific manner. To investigate the function of the CSF, it is important to isolate pure samples of embryonic CSF without contamination from blood or the developing telencephalic tissue. Here, we describe a technique to isolate relatively pure samples of ventricular embryonic CSF that can be used for a wide range of experimental assays including mass spectrometry, protein electrophoresis, and cell and primary explant culture. We demonstrate how to dissect and culture cortical explants on porous polycarbonate membranes in order to grow developing cortical tissue with reduced volumes of media or CSF. With this method, experiments can be performed using CSF from varying ages or conditions to investigate the biological activity of the CSF proteome on target cells.
Neuroscience, Issue 73, Neurobiology, Developmental Biology, Anatomy, Physiology, Stem Cell Biology, Cellular Biology, Biomedical Engineering, Medicine, Surgery, Neural Stem Cells (NSCs), stem cells, Cerebral Cortex, Cerebrospinal Fluid, CSF, ventricular embryonic CSF, Isolation, Brain, Cerebral Cortical Explant, tissue, culture, mouse, animal model
Play Button
Patient-specific Modeling of the Heart: Estimation of Ventricular Fiber Orientations
Authors: Fijoy Vadakkumpadan, Hermenegild Arevalo, Natalia A. Trayanova.
Institutions: Johns Hopkins University.
Patient-specific simulations of heart (dys)function aimed at personalizing cardiac therapy are hampered by the absence of in vivo imaging technology for clinically acquiring myocardial fiber orientations. The objective of this project was to develop a methodology to estimate cardiac fiber orientations from in vivo images of patient heart geometries. An accurate representation of ventricular geometry and fiber orientations was reconstructed, respectively, from high-resolution ex vivo structural magnetic resonance (MR) and diffusion tensor (DT) MR images of a normal human heart, referred to as the atlas. Ventricular geometry of a patient heart was extracted, via semiautomatic segmentation, from an in vivo computed tomography (CT) image. Using image transformation algorithms, the atlas ventricular geometry was deformed to match that of the patient. Finally, the deformation field was applied to the atlas fiber orientations to obtain an estimate of patient fiber orientations. The accuracy of the fiber estimates was assessed using six normal and three failing canine hearts. The mean absolute difference between inclination angles of acquired and estimated fiber orientations was 15.4 °. Computational simulations of ventricular activation maps and pseudo-ECGs in sinus rhythm and ventricular tachycardia indicated that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.The new insights obtained from the project will pave the way for the development of patient-specific models of the heart that can aid physicians in personalized diagnosis and decisions regarding electrophysiological interventions.
Bioengineering, Issue 71, Biomedical Engineering, Medicine, Anatomy, Physiology, Cardiology, Myocytes, Cardiac, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, MRI, Diffusion Magnetic Resonance Imaging, Cardiac Electrophysiology, computerized simulation (general), mathematical modeling (systems analysis), Cardiomyocyte, biomedical image processing, patient-specific modeling, Electrophysiology, simulation
Play Button
Induction and Clinical Scoring of Chronic-Relapsing Experimental Autoimmune Encephalomyelitis
Authors: Christine Beeton, Adriana Garcia, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that commonly affects young adults. It is characterized by demyelination and glial scaring in areas disseminated in the brain and spinal cord. These lesions alter nerve conduction and induce the disabling neurological deficits that vary with the location of the demyelinated plaques in the CNS (e.g. paraparesis, paralysis, blindness, incontinence). Experimental autoimmune encephalomyelitis (EAE) is a model for MS. EAE was first induced accidentally in humans during vaccination against rabies, using viruses grown on rabbit spinal cords. Residues of spinal injected with the inactivated virus induced the CNS disease. Following these observations, a first model of EAE was described in non-human primates immunized with a CNS homogenate by Rivers and Schwenther in 1935. EAE has since been generated in a variety of species and can follow different courses depending on the species/strain and immunizing antigen used. For example, immunizing Lewis rats with myelin basic protein in emulsion with adjuvant induces an acute model of EAE, while the same antigen induces a chronic disease in guinea pigs. The EAE model described here is induced by immunizing DA rats against DA rat spinal cord in emulsion in complete Freund's adjuvant. Rats develop an ascending flaccid paralysis within 7-14 days post-immunization. Clinical signs follow a relapsing-remitting course over several weeks. Pathology shows large immune infiltrates in the CNS and demyelination plaques. Special considerations for taking care for animals with EAE are described at the end of the video.
Immunology, Issue 5, Autoimmune Disease, Animal Model, EAE, Experimental Allergic Encephalomyelitis, Multiple Sclerosis, Immunology, Clinical Scoring, Disease Model, Inflammation, Central Nervous System
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Overcoming Unresponsiveness in Experimental Autoimmune Encephalomyelitis (EAE) Resistant Mouse Strains by Adoptive Transfer and Antigenic Challenge
Authors: Michael K. Shaw, Xiao-qing Zhao, Harley Y. Tse.
Institutions: St. John-Providence Health System, Wayne State University School of Medicine.
Experimental autoimmune encephalomyelitis (EAE) is an inflammatory disease of the central nervous system (CNS) and has been used as an animal model for study of the human demyelinating disease, multiple sclerosis (MS). EAE is characterized by pathologic infiltration of mononuclear cells into the CNS and by clinical manifestation of paralytic disease. Similar to MS, EAE is also under genetic control in that certain mouse strains are susceptible to disease induction while others are resistant. Typically, C57BL/6 (H-2b) mice immunized with myelin basic protein (MBP) fail to develop paralytic signs. This unresponsiveness is certainly not due to defects in antigen processing or antigen presentation of MBP, as an experimental protocol described here had been used to induce severe EAE in C57BL/6 mice as well as other reputed resistant mouse strains. In addition, encephalitogenic T cell clones from C57BL/6 and Balb/c mice reactive to MBP had been successfully isolated and propagated. The experimental protocol involves using a cellular adoptive transfer system in which MBP-primed (200 μg/mouse) C57BL/6 donor lymph node cells are isolated and cultured for five days with the antigen to expand the pool of MBP-specific T cells. At the end of the culture period, 50 million viable cells are transferred into naive syngeneic recipients through the tail vein. Recipient mice so treated normally do not develop EAE, thus reaffirming their resistant status, and they can remain normal indefinitely. Ten days post cell transfer, recipient mice are challenged with complete Freund adjuvant (CFA)-emulsified MBP in four sites in the flanks. Severe EAE starts to develop in these mice ten to fourteen days after challenge. Results showed that the induction of disease was antigenic specific as challenge with irrelevant antigens did not induce clinical signs of disease. Significantly, a titration of the antigen dose used to challenge the recipient mice showed that it could be as low as 5 μg/mouse. In addition, a kinetic study of the timing of antigenic challenge showed that challenge to induce disease was effective as early as 5 days post antigenic challenge and as long as over 445 days post antigenic challenge. These data strongly point toward the involvement of a "long-lived" T cell population in maintaining unresponsiveness. The involvement of regulatory T cells (Tregs) in this system is not defined.
Immunology, Issue 62, Autoimmune diseases, experimental autoimmune encephalomyelitis, immunization, myelin basic protein, adoptive transfer, paralysis
Play Button
Implanting Glass Spinal Cord Windows in Adult Mice with Experimental Autoimmune Encephalomyelitis
Authors: Keith K. Fenrich, Pascal Weber, Genevieve Rougon, Franck Debarbieux.
Institutions: Aix Marseille University, European Research Center for Medical Imaging (CERIMED).
Experimental autoimmune encephalomyelitis (EAE) in adult rodents is the standard experimental model for studying autonomic demyelinating diseases such as multiple sclerosis. Here we present a low-cost and reproducible glass window implantation protocol that is suitable for intravital microscopy and studying the dynamics of spinal cord cytoarchitecture with subcellular resolution in live adult mice with EAE. Briefly, we surgically expose the vertebrae T12-L2 and construct a chamber around the exposed vertebrae using a combination of cyanoacrylate and dental cement. A laminectomy is performed from T13 to L1, and a thin layer of transparent silicone elastomer is applied to the dorsal surface of the exposed spinal cord. A modified glass cover slip is implanted over the exposed spinal cord taking care that the glass does not directly contact the spinal cord. To reduce the infiltration of inflammatory cells between the window and spinal cord, anti-inflammatory treatment is administered every 2 days (as recommended by ethics committee) for the first 10 days after implantation. EAE is induced only 2-3 weeks after the cessation of anti-inflammatory treatment. Using this approach we successfully induced EAE in 87% of animals with implanted windows and, using Thy1-CFP-23 mice (blue axons in dorsal spinal cord), quantified axonal loss throughout EAE progression. Taken together, this protocol may be useful for studying the recruitment of various cell populations as well as their interaction dynamics, with subcellular resolution and for extended periods of time. This intravital imaging modality represents a valuable tool for developing therapeutic strategies to treat autoimmune demyelinating diseases such as EAE.
Medicine, Issue 82, Spinal cord, two-photon microscopy, In vivo, intravital microscopy, EAE, Multiple Sclerosis, transgenic mouse
Play Button
Lesion Explorer: A Video-guided, Standardized Protocol for Accurate and Reliable MRI-derived Volumetrics in Alzheimer's Disease and Normal Elderly
Authors: Joel Ramirez, Christopher J.M. Scott, Alicia A. McNeely, Courtney Berezuk, Fuqiang Gao, Gregory M. Szilagyi, Sandra E. Black.
Institutions: Sunnybrook Health Sciences Centre, University of Toronto.
Obtaining in vivo human brain tissue volumetrics from MRI is often complicated by various technical and biological issues. These challenges are exacerbated when significant brain atrophy and age-related white matter changes (e.g. Leukoaraiosis) are present. Lesion Explorer (LE) is an accurate and reliable neuroimaging pipeline specifically developed to address such issues commonly observed on MRI of Alzheimer's disease and normal elderly. The pipeline is a complex set of semi-automatic procedures which has been previously validated in a series of internal and external reliability tests1,2. However, LE's accuracy and reliability is highly dependent on properly trained manual operators to execute commands, identify distinct anatomical landmarks, and manually edit/verify various computer-generated segmentation outputs. LE can be divided into 3 main components, each requiring a set of commands and manual operations: 1) Brain-Sizer, 2) SABRE, and 3) Lesion-Seg. Brain-Sizer's manual operations involve editing of the automatic skull-stripped total intracranial vault (TIV) extraction mask, designation of ventricular cerebrospinal fluid (vCSF), and removal of subtentorial structures. The SABRE component requires checking of image alignment along the anterior and posterior commissure (ACPC) plane, and identification of several anatomical landmarks required for regional parcellation. Finally, the Lesion-Seg component involves manual checking of the automatic lesion segmentation of subcortical hyperintensities (SH) for false positive errors. While on-site training of the LE pipeline is preferable, readily available visual teaching tools with interactive training images are a viable alternative. Developed to ensure a high degree of accuracy and reliability, the following is a step-by-step, video-guided, standardized protocol for LE's manual procedures.
Medicine, Issue 86, Brain, Vascular Diseases, Magnetic Resonance Imaging (MRI), Neuroimaging, Alzheimer Disease, Aging, Neuroanatomy, brain extraction, ventricles, white matter hyperintensities, cerebrovascular disease, Alzheimer disease
Play Button
Systemic Injection of Neural Stem/Progenitor Cells in Mice with Chronic EAE
Authors: Matteo Donegà, Elena Giusto, Chiara Cossetti, Julia Schaeffer, Stefano Pluchino.
Institutions: University of Cambridge, UK, University of Cambridge, UK.
Neural stem/precursor cells (NPCs) are a promising stem cell source for transplantation approaches aiming at brain repair or restoration in regenerative neurology. This directive has arisen from the extensive evidence that brain repair is achieved after focal or systemic NPC transplantation in several preclinical models of neurological diseases. These experimental data have identified the cell delivery route as one of the main hurdles of restorative stem cell therapies for brain diseases that requires urgent assessment. Intraparenchymal stem cell grafting represents a logical approach to those pathologies characterized by isolated and accessible brain lesions such as spinal cord injuries and Parkinson's disease. Unfortunately, this principle is poorly applicable to conditions characterized by a multifocal, inflammatory and disseminated (both in time and space) nature, including multiple sclerosis (MS). As such, brain targeting by systemic NPC delivery has become a low invasive and therapeutically efficacious protocol to deliver cells to the brain and spinal cord of rodents and nonhuman primates affected by experimental chronic inflammatory damage of the central nervous system (CNS). This alternative method of cell delivery relies on the NPC pathotropism, specifically their innate capacity to (i) sense the environment via functional cell adhesion molecules and inflammatory cytokine and chemokine receptors; (ii) cross the leaking anatomical barriers after intravenous (i.v.) or intracerebroventricular (i.c.v.) injection; (iii) accumulate at the level of multiple perivascular site(s) of inflammatory brain and spinal cord damage; and (i.v.) exert remarkable tissue trophic and immune regulatory effects onto different host target cells in vivo. Here we describe the methods that we have developed for the i.v. and i.c.v. delivery of syngeneic NPCs in mice with experimental autoimmune encephalomyelitis (EAE), as model of chronic CNS inflammatory demyelination, and envisage the systemic stem cell delivery as a valuable technique for the selective targeting of the inflamed brain in regenerative neurology.
Immunology, Issue 86, Somatic neural stem/precursor cells, neurodegenerative disorders, regenerative medicine, multiple sclerosis, experimental autoimmune encephalomyelitis, systemic delivery, intravenous, intracerebroventricular
Play Button
In Situ Detection of Autoreactive CD4 T Cells in Brain and Heart Using Major Histocompatibility Complex Class II Dextramers
Authors: Chandirasegaran Massilamany, Arunakumar Gangaplara, Ting Jia, Christian Elowsky, Qingsheng Li, You Zhou, Jay Reddy.
Institutions: University of Nebraska, Lincoln, University of Nebraska, Lincoln, University of Nebraska, Lincoln.
This report demonstrates the use of major histocompatibility complex (MHC) class II dextramers for detection of autoreactive CD4 T cells in situ in myelin proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) in SJL mice and cardiac myosin heavy chain-α (Myhc) 334-352-induced experimental autoimmune myocarditis (EAM) in A/J mice. Two sets of cocktails of dextramer reagents were used, where dextramers+ cells were analyzed by laser scanning confocal microscope (LSCM): EAE, IAs/PLP 139-151 dextramers (specific)/anti-CD4 and IAs/Theiler’s murine encephalomyelitis virus (TMEV) 70-86 dextramers (control)/anti-CD4; and EAM, IAk/Myhc 334-352 dextramers/anti-CD4 and IAk/bovine ribonuclease (RNase) 43-56 dextramers (control)/anti-CD4. LSCM analysis of brain sections obtained from EAE mice showed the presence of cells positive for CD4 and PLP 139-151 dextramers, but not TMEV 70-86 dextramers suggesting that the staining obtained with PLP 139-151 dextramers was specific. Likewise, heart sections prepared from EAM mice also revealed the presence of Myhc 334-352, but not RNase 43-56-dextramer+ cells as expected. Further, a comprehensive method has also been devised to quantitatively analyze the frequencies of antigen-specific CD4 T cells in the ‘Z’ serial images.
Immunology, Issue 90, dextramers; MHC class II; in situ; EAE; brain; EAM; heart; confocal microscopy.
Play Button
Zebrafish Brain Ventricle Injection
Authors: Jennifer H. Gutzman, Hazel Sive.
Institutions: Whitehead Institute for Biochemical Research, MIT - Massachusetts Institute of Technology.
Proper brain ventricle formation during embryonic brain development is required for normal brain function. Brain ventricles are the highly conserved cavities within the brain that are filled with cerebrospinal fluid. In zebrafish, after neural tube formation, the neuroepithelium undergoes a series of constrictions and folds while it fills with fluid resulting in brain ventricle formation. In order to understand the process of ventricle formation, and the neuroepithelial shape changes that occur at the same time, we needed a way to visualize the ventricle space in comparison to the brain tissue. However, the nature of transparent zebrafish embryos makes it difficult to differentiate the tissue from the ventricle space. Therefore, we developed a brain ventricle injection technique where the ventricle space is filled with a fluorescent dye and imaged by brightfield and fluorescent microscopy. The brightfield and the fluorescent images are then processed and superimposed in Photoshop. This technique allows for visualization of the ventricle space with the fluorescent dye, in comparison to the shape of the neuroepithelium in the brightfield image. Brain ventricle injection in zebrafish can be employed from 18 hours post fertilization through early larval stages. We have used this technique extensively in our studies of brain ventricle formation and morphogenesis as well as in characterizing brain morphogenesis mutants (1-3).
Neuroscience, Issue 26, brain, ventricle, zebrafish, morphology, microinjection, development, imaging
Play Button
In Utero Intraventricular Injection and Electroporation of E16 Rat Embryos
Authors: William Walantus, Laura Elias, Arnold Kriegstein.
Institutions: University of California, San Francisco - UCSF.
In-utero in-vivo injection and electroporation of the embryonic rat neocortex provides a powerful tool for the manipulation of individual progenitors lining the walls of the lateral ventricle. This technique is now widely used to study the processes involved in corticogenesis by over-expressing or knocking down genes and observing the effects on cellular proliferation, migration, and differentiation. In comparison to traditional knockout strategies, in-utero electroporation provides a rapid means to manipulate a population of cells during a specific temporal window. In this video protocol, we outline the experimental methodology for preparing rats for surgery, exposing the uterine horns through laporatomy, injecting DNA into the lateral ventricles of the developing embryo, electroporating DNA into the progenitors lining the lateral wall, and caring for animals post-surgery. Our laboratory uses this protocol for surgeries on E15-E21 rats, however it is most commonly performed at E16 as shown in this video.
Neuroscience, Issue 6, Protocol, Stem Cells, Cerebral Cortex, Brain Development, Electroporation, Intra Uterine Injections, transfection
Play Button
Isolation of Brain and Spinal Cord Mononuclear Cells Using Percoll Gradients
Authors: Paula A. Pino, Astrid E. Cardona.
Institutions: University of Texas at San Antonio - UTSA.
Isolation of immune cells that infiltrate the central nervous system (CNS) during infection, trauma, autoimmunity or neurodegeneration, is often required to define their phenotype and effector functions. Histochemical approaches are instrumental to determine the location of the infiltrating cells and to analyze the associated CNS pathology. However, in-situ histochemistry and immunofluorescent staining techniques are limited by the number of antibodies that can be used at a single time to characterize immune cell subtypes in a particular tissue. Therefore, histological approaches in conjunction with immune-phenotyping by flow cytometry are critical to fully characterize the composition of local CNS infiltration. This protocol is based on the separation of CNS cellular suspensions over discontinous percoll gradients. The current article describes a rapid protocol to efficiently isolate mononuclear cells from brain and spinal cord tissues that can be effectively utilized for identification of various immune cell populations in a single sample by flow cytometry.
Immunology, Issue 48, Microglia, monocytes/macrophages, CNS, inflammation, EAE, chemokines, mouse, flow cytometry
Play Button
An Assay for Permeability of the Zebrafish Embryonic Neuroepithelium
Authors: Jessica T. Chang, Hazel Sive.
Institutions: Massachusetts Institute of Technology, Whitehead Institute of Biomedical Research.
The brain ventricular system is conserved among vertebrates and is composed of a series of interconnected cavities called brain ventricles, which form during the earliest stages of brain development and are maintained throughout the animal's life. The brain ventricular system is found in vertebrates, and the ventricles develop after neural tube formation, when the central lumen fills with cerebrospinal fluid (CSF) 1,2. CSF is a protein rich fluid that is essential for normal brain development and function3-6. In zebrafish, brain ventricle inflation begins at approximately 18 hr post fertilization (hpf), after the neural tube is closed. Multiple processes are associated with brain ventricle formation, including formation of a neuroepithelium, tight junction formation that regulates permeability and CSF production. We showed that the Na,K-ATPase is required for brain ventricle inflation, impacting all these processes 7,8, while claudin 5a is necessary for tight junction formation 9. Additionally, we showed that "relaxation" of the embryonic neuroepithelium, via inhibition of myosin, is associated with brain ventricle inflation. To investigate the regulation of permeability during zebrafish brain ventricle inflation, we developed a ventricular dye retention assay. This method uses brain ventricle injection in a living zebrafish embryo, a technique previously developed in our lab10, to fluorescently label the cerebrospinal fluid. Embryos are then imaged over time as the fluorescent dye moves through the brain ventricles and neuroepithelium. The distance the dye front moves away from the basal (non-luminal) side of the neuroepithelium over time is quantified and is a measure of neuroepithelial permeability (Figure 1). We observe that dyes 70 kDa and smaller will move through the neuroepithelium and can be detected outside the embryonic zebrafish brain at 24 hpf (Figure 2). This dye retention assay can be used to analyze neuroepithelial permeability in a variety of different genetic backgrounds, at different times during development, and after environmental perturbations. It may also be useful in examining pathological accumulation of CSF. Overall, this technique allows investigators to analyze the role and regulation of permeability during development and disease.
Neuroscience, Issue 68, Zebrafish, neuroepithelium, brain ventricle, permeability
Play Button
In Utero Intraventricular Injection and Electroporation of E15 Mouse Embryos
Authors: William Walantus, David Castaneda, Laura Elias, Arnold Kriegstein.
Institutions: University of California, San Francisco - UCSF.
In-utero in-vivo injection and electroporation of the embryonic mouse neocortex provides a powerful tool for the manipulation of individual progenitors lining the walls of the lateral ventricle. This technique is now widely used to study the processes involved in corticogenesis by over-expressing or knocking down genes and observing the effects on cellular proliferation, migration, and differentiation. In comparison to traditional knockout strategies, in-utero electroporation provides a rapid means to manipulate a population of cells during a specific temporal window. In this video protocol we outline the experimental methodology for preparing mice for surgery, exposing the uterine horns through laporatomy, injecting DNA into the lateral ventricles of the developing embryo, electroporating DNA into the progenitors lining the lateral wall, and caring for animals post-surgery. Our laboratory uses this protocol for surgeries on E13-E16 mice, however, it is most commonly performed at E15, as shown in this video.
Neuroscience, Issue 6, Protocol, electroporation, Injection, Stem Cells, brain, transfection
Play Button
Isolation of Mononuclear Cells from the Central Nervous System of Rats with EAE
Authors: Christine Beeton, K. George Chandy.
Institutions: University of California, Irvine (UCI).
Whether studying an autoimmune disease directed to the central nervous system (CNS), such as experimental autoimmune encephalomyelitis (EAE, 1), or the immune response to an infection of the CNS, such as poliomyelitis, Lyme neuroborreliosis, or neurosyphilis, it is often necessary to isolate the CNS-infiltrating immune cells. In this video-protocol we demonstrate how to isolate mononuclear cells (MNCs) from the CNS of a rat with EAE. The first step of this procedure requires a cardiac perfusion of the rodent with a saline solution to ensure that no blood remains in the blood vessels irrigating the CNS. Any blood contamination will artificially increase the number of apparent CNS-infiltrating MNCs and may alter the apparent composition of the immune infiltrate. We then demonstrate how to remove the brain and spinal cord of the rat for subsequent dilaceration to prepare a single-cell suspension. This suspension is separated on a two-layer Percoll gradient to isolate the MNCs. After washing, these cells are then ready to undergo any required procedure. Mononuclear cells isolated using this procedure are viable and can be used for electrophysiology, flow cytometry (FACS), or biochemistry. If the technique is performed under sterile conditions (using sterile instruments in a tissue culture hood) the cells can also be grown in tissue culture medium. A given cell population can be further purified using either magnetic separation procedures or a FACS.
Neuroscience, Issue 10, Immunology, brain, spinal cord, lymphocyte, infiltrate, experimental autoimmune encephalomyelitis, CNS, inflammation, mouse
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.