JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Regulation of hippocampal cGMP levels as a candidate to treat cognitive deficits in Huntingtons disease.
PUBLISHED: 01-01-2013
Huntingtons disease (HD) patients and mouse models show learning and memory impairment associated with hippocampal dysfunction. The neuronal nitric oxide synthase/3,5-cyclic guanosine monophosphate (nNOS/cGMP) pathway is implicated in synaptic plasticity, and in learning and memory processes. Here, we examined the nNOS/cGMP pathway in the hippocampus of HD mice to determine whether it can be a good therapeutic target for cognitive improvement in HD. We analyzed hippocampal nNOS and phosphodiesterase (PDE) 5 and 9 levels in R6/1 mice, and cGMP levels in the hippocampus of R6/1, R6/2 and Hdh(Q7/Q111) mice, and of HD patients. We also investigated whether sildenafil, a PDE5 inhibitor, could improve cognitive deficits in R6/1 mice. We found that hippocampal cGMP levels were 3-fold lower in 12-week-old R6/1 mice, when they show deficits in object recognition memory and in passive avoidance learning. Consistent with hippocampal cGMP levels, nNOS levels were down-regulated, while there were no changes in the levels of PDE5 and PDE9 in R6/1 mice. A single intraperitoneal injection of sildenafil (3 mg/Kg) immediately after training increased cGMP levels, and improved memory in R6/1 mice, as assessed by using the novel object recognition and the passive avoidance test. Importantly, cGMP levels were also reduced in R6/2 mouse and human HD hippocampus. Therefore, the regulation of hippocampal cGMP levels can be a suitable treatment for cognitive impairment in HD.
Authors: Keng Jin Lee, Lyubov Czech, Gregory B. Waypa, Kathryn N. Farrow.
Published: 10-19-2013
Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al.26 that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.
21 Related JoVE Articles!
Play Button
Getting to Compliance in Forced Exercise in Rodents: A Critical Standard to Evaluate Exercise Impact in Aging-related Disorders and Disease
Authors: Jennifer C. Arnold, Michael F. Salvatore.
Institutions: Louisiana State University Health Sciences Center.
There is a major increase in the awareness of the positive impact of exercise on improving several disease states with neurobiological basis; these include improving cognitive function and physical performance. As a result, there is an increase in the number of animal studies employing exercise. It is argued that one intrinsic value of forced exercise is that the investigator has control over the factors that can influence the impact of exercise on behavioral outcomes, notably exercise frequency, duration, and intensity of the exercise regimen. However, compliance in forced exercise regimens may be an issue, particularly if potential confounds of employing foot-shock are to be avoided. It is also important to consider that since most cognitive and locomotor impairments strike in the aged individual, determining impact of exercise on these impairments should consider using aged rodents with a highest possible level of compliance to ensure minimal need for test subjects. Here, the pertinent steps and considerations necessary to achieve nearly 100% compliance to treadmill exercise in an aged rodent model will be presented and discussed. Notwithstanding the particular exercise regimen being employed by the investigator, our protocol should be of use to investigators that are particularly interested in the potential impact of forced exercise on aging-related impairments, including aging-related Parkinsonism and Parkinson’s disease.
Behavior, Issue 90, Exercise, locomotor, Parkinson’s disease, aging, treadmill, bradykinesia, Parkinsonism
Play Button
The 5-Choice Serial Reaction Time Task: A Task of Attention and Impulse Control for Rodents
Authors: Samuel K. Asinof, Tracie A. Paine.
Institutions: Oberlin College.
This protocol describes the 5-choice serial reaction time task, which is an operant based task used to study attention and impulse control in rodents. Test day challenges, modifications to the standard task, can be used to systematically tax the neural systems controlling either attention or impulse control. Importantly, these challenges have consistent effects on behavior across laboratories in intact animals and can reveal either enhancements or deficits in cognitive function that are not apparent when rats are only tested on the standard task. The variety of behavioral measures that are collected can be used to determine if other factors (i.e., sedation, motivation deficits, locomotor impairments) are contributing to changes in performance. The versatility of the 5CSRTT is further enhanced because it is amenable to combination with pharmacological, molecular, and genetic techniques.
Neuroscience, Issue 90, attention, impulse control, neuroscience, cognition, rodent
Play Button
The Dig Task: A Simple Scent Discrimination Reveals Deficits Following Frontal Brain Damage
Authors: Kris M. Martens, Cole Vonder Haar, Blake A. Hutsell, Michael R. Hoane.
Institutions: Southern Illinois University at Carbondale.
Cognitive impairment is the most frequent cause of disability in humans following brain damage, yet the behavioral tasks used to assess cognition in rodent models of brain injury is lacking. Borrowing from the operant literature our laboratory utilized a basic scent discrimination paradigm1-4 in order to assess deficits in frontally-injured rats. Previously we have briefly described the Dig task and demonstrated that rats with frontal brain damage show severe deficits across multiple tests within the task5. Here we present a more detailed protocol for this task. Rats are placed into a chamber and allowed to discriminate between two scented sands, one of which contains a reinforcer. The trial ends after the rat either correctly discriminates (defined as digging in the correct scented sand), incorrectly discriminates, or 30 sec elapses. Rats that correctly discriminate are allowed to recover and consume the reinforcer. Rats that discriminate incorrectly are immediately removed from the chamber. This can continue through a variety of reversals and novel scents. The primary analysis is the accuracy for each scent pairing (cumulative proportion correct for each scent). The general findings from the Dig task suggest that it is a simple experimental preparation that can assess deficits in rats with bilateral frontal cortical damage compared to rats with unilateral parietal damage. The Dig task can also be easily incorporated into an existing cognitive test battery. The use of more tasks such as this one can lead to more accurate testing of frontal function following injury, which may lead to therapeutic options for treatment. All animal use was conducted in accordance with protocols approved by the Institutional Animal Care and Use Committee.
Neuroscience, Issue 71, Medicine, Neurobiology, Anatomy, Physiology, Psychology, Behavior, cognitive assessment, dig task, scent discrimination, olfactory, brain injury, traumatic brain injury, TBI, brain damage, rats, animal model
Play Button
DiI-Labeling of DRG Neurons to Study Axonal Branching in a Whole Mount Preparation of Mouse Embryonic Spinal Cord
Authors: Hannes Schmidt, Fritz G. Rathjen.
Institutions: Max Delbrück Center for Molecular Medicine.
Here we present a technique to label the trajectories of small groups of DRG neurons into the embryonic spinal cord by diffusive staining using the lipophilic tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI)1. The comparison of axonal pathways of wild-type with those of mouse lines in which genes are mutated allows testing for a functional role of candidate proteins in the control of axonal branching which is an essential mechanism in the wiring of the nervous system. Axonal branching enables an individual neuron to connect with multiple targets, thereby providing the physical basis for the parallel processing of information. Ramifications at intermediate target regions of axonal growth may be distinguished from terminal arborization. Furthermore, different modes of axonal branch formation may be classified depending on whether branching results from the activities of the growth cone (splitting or delayed branching) or from the budding of collaterals from the axon shaft in a process called interstitial branching2 (Fig. 1). The central projections of neurons from the DRG offer a useful experimental system to study both types of axonal branching: when their afferent axons reach the dorsal root entry zone (DREZ) of the spinal cord between embryonic days 10 to 13 (E10 - E13) they display a stereotyped pattern of T- or Y-shaped bifurcation. The two resulting daughter axons then proceed in rostral or caudal directions, respectively, at the dorsolateral margin of the cord and only after a waiting period collaterals sprout from these stem axons to penetrate the gray matter (interstitial branching) and project to relay neurons in specific laminae of the spinal cord where they further arborize (terminal branching)3. DiI tracings have revealed growth cones at the dorsal root entry zone of the spinal cord that appeared to be in the process of splitting suggesting that bifurcation is caused by splitting of the growth cone itself4 (Fig. 2), however, other options have been discussed as well5. This video demonstrates first how to dissect the spinal cord of E12.5 mice leaving the DRG attached. Following fixation of the specimen tiny amounts of DiI are applied to DRG using glass needles pulled from capillary tubes. After an incubation step, the labeled spinal cord is mounted as an inverted open-book preparation to analyze individual axons using fluorescence microscopy.
Neuroscience, Issue 58, neurons, axonal branching, DRG, Spinal cord, DiI labeling, cGMP signaling
Play Button
Investigations on Alterations of Hippocampal Circuit Function Following Mild Traumatic Brain Injury
Authors: Colin J. Smith, Brian N. Johnson, Jaclynn A. Elkind, Jill M. See, Guoxiang Xiong, Akiva S. Cohen.
Institutions: Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Perelman School of Medicine at the University of Pennsylvania.
Traumatic Brain Injury (TBI) afflicts more than 1.7 million people in the United States each year and even mild TBI can lead to persistent neurological impairments 1. Two pervasive and disabling symptoms experienced by TBI survivors, memory deficits and a reduction in seizure threshold, are thought to be mediated by TBI-induced hippocampal dysfunction 2,3. In order to demonstrate how altered hippocampal circuit function adversely affects behavior after TBI in mice, we employ lateral fluid percussion injury, a commonly used animal model of TBI that recreates many features of human TBI including neuronal cell loss, gliosis, and ionic perturbation 4-6. Here we demonstrate a combinatorial method for investigating TBI-induced hippocampal dysfunction. Our approach incorporates multiple ex vivo physiological techniques together with animal behavior and biochemical analysis, in order to analyze post-TBI changes in the hippocampus. We begin with the experimental injury paradigm along with behavioral analysis to assess cognitive disability following TBI. Next, we feature three distinct ex vivo recording techniques: extracellular field potential recording, visualized whole-cell patch-clamping, and voltage sensitive dye recording. Finally, we demonstrate a method for regionally dissecting subregions of the hippocampus that can be useful for detailed analysis of neurochemical and metabolic alterations post-TBI. These methods have been used to examine the alterations in hippocampal circuitry following TBI and to probe the opposing changes in network circuit function that occur in the dentate gyrus and CA1 subregions of the hippocampus (see Figure 1). The ability to analyze the post-TBI changes in each subregion is essential to understanding the underlying mechanisms contributing to TBI-induced behavioral and cognitive deficits. The multi-faceted system outlined here allows investigators to push past characterization of phenomenology induced by a disease state (in this case TBI) and determine the mechanisms responsible for the observed pathology associated with TBI.
Neuroscience, Issue 69, Medicine, Anatomy, Physiology, hippocampus, traumatic brain injury, electrophysiology, patch clamp, voltage sensitive dye, extracellular recording, high-performance liquid chromatography, gas chromatography-mass spectrometry
Play Button
Preparation of Oligomeric β-amyloid1-42 and Induction of Synaptic Plasticity Impairment on Hippocampal Slices
Authors: Mauro Fa, Ian J. Orozco, Yitshak I. Francis, Faisal Saeed, Yimin Gong, Ottavio Arancio.
Institutions: Columbia University.
Impairment of synaptic connections is likely to underlie the subtle amnesic changes occurring at the early stages of Alzheimer s Disease (AD). β-amyloid (Aβ), a peptide produced in high amounts in AD, is known to reduce Long-Term Potentiation (LTP), a cellular correlate of learning and memory. Indeed, LTP impairment caused by Aβ is a useful experimental paradigm for studying synaptic dysfunctions in AD models and for screening drugs capable of mitigating or reverting such synaptic impairments. Studies have shown that Aβ produces the LTP disruption preferentially via its oligomeric form. Here we provide a detailed protocol for impairing LTP by perfusion of oligomerized synthetic Aβ1-42 peptide onto acute hippocampal slices. In this video, we outline a step-by-step procedure for the preparation of oligomeric Aβ1-42. Then, we follow an individual experiment in which LTP is reduced in hippocampal slices exposed to oligomerized Aβ1-42 compared to slices in a control experiment where no Aβ1-42 exposure had occurred.
JoVE Neuroscience, Issue 41, brain, mouse, hippocampus, plasticity, LTP, amyloid
Play Button
Morris Water Maze Test for Learning and Memory Deficits in Alzheimer's Disease Model Mice
Authors: Kelley Bromley-Brits, Yu Deng, Weihong Song.
Institutions: University of British Columbia.
The Morris Water Maze (MWM) was first established by neuroscientist Richard G. Morris in 1981 in order to test hippocampal-dependent learning, including acquisition of spatial memoryand long-term spatial memory 1. The MWM is a relatively simple procedure typically consisting of six day trials, the main advantage being the differentiation between the spatial (hidden-platform) and non-spatial (visible platform) conditions 2-4. In addition, the MWM testing environment reduces odor trail interference 5. This has led the task to be used extensively in the study of the neurobiology and neuropharmacology of spatial learning and memory. The MWM plays an important role in the validation of rodent models for neurocognitive disorders such as Alzheimer’s Disease 6, 7. In this protocol we discussed the typical procedure of MWM for testing learning and memory and data analysis commonly used in Alzheimer’s disease transgenic model mice.
Neuroscience, Issue 53, Morris Water Maze, spatial memory testing, hippocampal dependent learning, Alzheimer's Disease
Play Button
A Video Demonstration of Preserved Piloting by Scent Tracking but Impaired Dead Reckoning After Fimbria-Fornix Lesions in the Rat
Authors: Ian Q. Whishaw, Boguslaw P. Gorny.
Institutions: Canadian Centre for Behavioural Neuroscience, University of Lethbridge.
Piloting and dead reckoning navigation strategies use very different cue constellations and computational processes (Darwin, 1873; Barlow, 1964; O’Keefe and Nadel, 1978; Mittelstaedt and Mittelstaedt, 1980; Landeau et al., 1984; Etienne, 1987; Gallistel, 1990; Maurer and Séguinot, 1995). Piloting requires the use of the relationships between relatively stable external (visual, olfactory, auditory) cues, whereas dead reckoning requires the integration of cues generated by self-movement. Animals obtain self-movement information from vestibular receptors, and possibly muscle and joint receptors, and efference copy of commands that generate movement. An animal may also use the flows of visual, auditory, and olfactory stimuli caused by its movements. Using a piloting strategy an animal can use geometrical calculations to determine directions and distances to places in its environment, whereas using an dead reckoning strategy it can integrate cues generated by its previous movements to return to a just left location. Dead reckoning is colloquially called "sense of direction" and "sense of distance." Although there is considerable evidence that the hippocampus is involved in piloting (O’Keefe and Nadel, 1978; O’Keefe and Speakman, 1987), there is also evidence from behavioral (Whishaw et al., 1997; Whishaw and Maaswinkel, 1998; Maaswinkel and Whishaw, 1999), modeling (Samsonovich and McNaughton, 1997), and electrophysiological (O’Mare et al., 1994; Sharp et al., 1995; Taube and Burton, 1995; Blair and Sharp, 1996; McNaughton et al., 1996; Wiener, 1996; Golob and Taube, 1997) studies that the hippocampal formation is involved in dead reckoning. The relative contribution of the hippocampus to the two forms of navigation is still uncertain, however. Ordinarily, it is difficult to be certain that an animal is using a piloting versus a dead reckoning strategy because animals are very flexible in their use of strategies and cues (Etienne et al., 1996; Dudchenko et al., 1997; Martin et al., 1997; Maaswinkel and Whishaw, 1999). The objective of the present video demonstrations was to solve the problem of cue specification in order to examine the relative contribution of the hippocampus in the use of these strategies. The rats were trained in a new task in which they followed linear or polygon scented trails to obtain a large food pellet hidden on an open field. Because rats have a proclivity to carry the food back to the refuge, accuracy and the cues used to return to the home base were dependent variables (Whishaw and Tomie, 1997). To force an animal to use a a dead reckoning strategy to reach its refuge with the food, the rats were tested when blindfolded or under infrared light, a spectral wavelength in which they cannot see, and in some experiments the scent trail was additionally removed once an animal reached the food. To examine the relative contribution of the hippocampus, fimbria–fornix (FF) lesions, which disrupt information flow in the hippocampal formation (Bland, 1986), impair memory (Gaffan and Gaffan, 1991), and produce spatial deficits (Whishaw and Jarrard, 1995), were used.
Neuroscience, Issue 26, Dead reckoning, fimbria-fornix, hippocampus, odor tracking, path integration, spatial learning, spatial navigation, piloting, rat, Canadian Centre for Behavioural Neuroscience
Play Button
Contextual and Cued Fear Conditioning Test Using a Video Analyzing System in Mice
Authors: Hirotaka Shoji, Keizo Takao, Satoko Hattori, Tsuyoshi Miyakawa.
Institutions: Fujita Health University, Core Research for Evolutionary Science and Technology (CREST), National Institutes of Natural Sciences.
The contextual and cued fear conditioning test is one of the behavioral tests that assesses the ability of mice to learn and remember an association between environmental cues and aversive experiences. In this test, mice are placed into a conditioning chamber and are given parings of a conditioned stimulus (an auditory cue) and an aversive unconditioned stimulus (an electric footshock). After a delay time, the mice are exposed to the same conditioning chamber and a differently shaped chamber with presentation of the auditory cue. Freezing behavior during the test is measured as an index of fear memory. To analyze the behavior automatically, we have developed a video analyzing system using the ImageFZ application software program, which is available as a free download at Here, to show the details of our protocol, we demonstrate our procedure for the contextual and cued fear conditioning test in C57BL/6J mice using the ImageFZ system. In addition, we validated our protocol and the video analyzing system performance by comparing freezing time measured by the ImageFZ system or a photobeam-based computer measurement system with that scored by a human observer. As shown in our representative results, the data obtained by ImageFZ were similar to those analyzed by a human observer, indicating that the behavioral analysis using the ImageFZ system is highly reliable. The present movie article provides detailed information regarding the test procedures and will promote understanding of the experimental situation.
Behavior, Issue 85, Fear, Learning, Memory, ImageFZ program, Mouse, contextual fear, cued fear
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
A cGMP-applicable Expansion Method for Aggregates of Human Neural Stem and Progenitor Cells Derived From Pluripotent Stem Cells or Fetal Brain Tissue
Authors: Brandon C. Shelley, Geneviève Gowing, Clive N. Svendsen.
Institutions: Cedars-Sinai Medical Center.
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.
Neuroscience, Issue 88, neural progenitor cell, neural precursor cell, neural stem cell, passaging, neurosphere, chopping, stem cell, neuroscience, suspension culture, good manufacturing practice, GMP
Play Button
Construction of Vapor Chambers Used to Expose Mice to Alcohol During the Equivalent of all Three Trimesters of Human Development
Authors: Russell A. Morton, Marvin R. Diaz, Lauren A. Topper, C. Fernando Valenzuela.
Institutions: University of New Mexico Health Sciences Center.
Exposure to alcohol during development can result in a constellation of morphological and behavioral abnormalities that are collectively known as Fetal Alcohol Spectrum Disorders (FASDs). At the most severe end of the spectrum is Fetal Alcohol Syndrome (FAS), characterized by growth retardation, craniofacial dysmorphology, and neurobehavioral deficits. Studies with animal models, including rodents, have elucidated many molecular and cellular mechanisms involved in the pathophysiology of FASDs. Ethanol administration to pregnant rodents has been used to model human exposure during the first and second trimesters of pregnancy. Third trimester ethanol consumption in humans has been modeled using neonatal rodents. However, few rodent studies have characterized the effect of ethanol exposure during the equivalent to all three trimesters of human pregnancy, a pattern of exposure that is common in pregnant women. Here, we show how to build vapor chambers from readily obtainable materials that can each accommodate up to six standard mouse cages. We describe a vapor chamber paradigm that can be used to model exposure to ethanol, with minimal handling, during all three trimesters. Our studies demonstrate that pregnant dams developed significant metabolic tolerance to ethanol. However, neonatal mice did not develop metabolic tolerance and the number of fetuses, fetus weight, placenta weight, number of pups/litter, number of dead pups/litter, and pup weight were not significantly affected by ethanol exposure. An important advantage of this paradigm is its applicability to studies with genetically-modified mice. Additionally, this paradigm minimizes handling of animals, a major confound in fetal alcohol research.
Medicine, Issue 89, fetal, ethanol, exposure, paradigm, vapor, development, alcoholism, teratogenic, animal, mouse, model
Play Button
Trace Fear Conditioning in Mice
Authors: Joaquin N. Lugo, Gregory D. Smith, Andrew J. Holley.
Institutions: Baylor University, Baylor University.
In this experiment we present a technique to measure learning and memory. In the trace fear conditioning protocol presented here there are five pairings between a neutral stimulus and an unconditioned stimulus. There is a 20 sec trace period that separates each conditioning trial. On the following day freezing is measured during presentation of the conditioned stimulus (CS) and trace period. On the third day there is an 8 min test to measure contextual memory. The representative results are from mice that were presented with the aversive unconditioned stimulus (shock) compared to mice that received the tone presentations without the unconditioned stimulus. Trace fear conditioning has been successfully used to detect subtle learning and memory deficits and enhancements in mice that are not found with other fear conditioning methods. This type of fear conditioning is believed to be dependent upon connections between the medial prefrontal cortex and the hippocampus. One current controversy is whether this method is believed to be amygdala-independent. Therefore, other fear conditioning testing is needed to examine amygdala-dependent learning and memory effects, such as through the delay fear conditioning.
Behavior, Issue 85, fear conditioning, learning, trace conditioning, memory, conditioned and unconditioned stimulus, neutral stimulus, amygdala-dependent learning
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
Preparation of Acute Hippocampal Slices from Rats and Transgenic Mice for the Study of Synaptic Alterations during Aging and Amyloid Pathology
Authors: Diana M. Mathis, Jennifer L. Furman, Christopher M. Norris.
Institutions: University of Kentucky College of Public Health, University of Kentucky College of Medicine, University of Kentucky College of Medicine.
The rodent hippocampal slice preparation is perhaps the most broadly used tool for investigating mammalian synaptic function and plasticity. The hippocampus can be extracted quickly and easily from rats and mice and slices remain viable for hours in oxygenated artificial cerebrospinal fluid. Moreover, basic electrophysisologic techniques are easily applied to the investigation of synaptic function in hippocampal slices and have provided some of the best biomarkers for cognitive impairments. The hippocampal slice is especially popular for the study of synaptic plasticity mechanisms involved in learning and memory. Changes in the induction of long-term potentiation and depression (LTP and LTD) of synaptic efficacy in hippocampal slices (or lack thereof) are frequently used to describe the neurologic phenotype of cognitively-impaired animals and/or to evaluate the mechanism of action of nootropic compounds. This article outlines the procedures we use for preparing hippocampal slices from rats and transgenic mice for the study of synaptic alterations associated with brain aging and Alzheimer's disease (AD)1-3. Use of aged rats and AD model mice can present a unique set of challenges to researchers accustomed to using younger rats and/or mice in their research. Aged rats have thicker skulls and tougher connective tissue than younger rats and mice, which can delay brain extraction and/or dissection and consequently negate or exaggerate real age-differences in synaptic function and plasticity. Aging and amyloid pathology may also exacerbate hippocampal damage sustained during the dissection procedure, again complicating any inferences drawn from physiologic assessment. Here, we discuss the steps taken during the dissection procedure to minimize these problems. Examples of synaptic responses acquired in "healthy" and "unhealthy" slices from rats and mice are provided, as well as representative synaptic plasticity experiments. The possible impact of other methodological factors on synaptic function in these animal models (e.g. recording solution components, stimulation parameters) are also discussed. While the focus of this article is on the use of aged rats and transgenic mice, novices to slice physiology should find enough detail here to get started on their own studies, using a variety of rodent models.
Neuroscience, Issue 49, aging, amyloid, hippocampal slice, synaptic plasticity, Ca2+, CA1, electrophysiology
Play Button
Methods for the Modulation and Analysis of NF-κB-dependent Adult Neurogenesis
Authors: Darius Widera, Janine Müller, Yvonne Imielski, Peter Heimann, Christian Kaltschmidt, Barbara Kaltschmidt.
Institutions: University of Bielefeld, University of Bielefeld.
The hippocampus plays a pivotal role in the formation and consolidation of episodic memories, and in spatial orientation. Historically, the adult hippocampus has been viewed as a very static anatomical region of the mammalian brain. However, recent findings have demonstrated that the dentate gyrus of the hippocampus is an area of tremendous plasticity in adults, involving not only modifications of existing neuronal circuits, but also adult neurogenesis. This plasticity is regulated by complex transcriptional networks, in which the transcription factor NF-κB plays a prominent role. To study and manipulate adult neurogenesis, a transgenic mouse model for forebrain-specific neuronal inhibition of NF-κB activity can be used. In this study, methods are described for the analysis of NF-κB-dependent neurogenesis, including its structural aspects, neuronal apoptosis and progenitor proliferation, and cognitive significance, which was specifically assessed via a dentate gyrus (DG)-dependent behavioral test, the spatial pattern separation-Barnes maze (SPS-BM). The SPS-BM protocol could be simply adapted for use with other transgenic animal models designed to assess the influence of particular genes on adult hippocampal neurogenesis. Furthermore, SPS-BM could be used in other experimental settings aimed at investigating and manipulating DG-dependent learning, for example, using pharmacological agents.
Neuroscience, Issue 84, NF-κB, hippocampus, Adult neurogenesis, spatial pattern separation-Barnes maze, dentate gyrus, p65 knock-out mice
Play Button
Morris Water Maze Experiment
Authors: Joseph Nunez.
Institutions: Michigan State University (MSU).
The Morris water maze is widely used to study spatial memory and learning. Animals are placed in a pool of water that is colored opaque with powdered non-fat milk or non-toxic tempera paint, where they must swim to a hidden escape platform. Because they are in opaque water, the animals cannot see the platform, and cannot rely on scent to find the escape route. Instead, they must rely on external/extra-maze cues. As the animals become more familiar with the task, they are able to find the platform more quickly. Developed by Richard G. Morris in 1984, this paradigm has become one of the "gold standards" of behavioral neuroscience.
Behavior, Issue 19, Declarative, Hippocampus, Memory, Procedural, Rodent, Spatial Learning
Play Button
Quantifying Cognitive Decrements Caused by Cranial Radiotherapy
Authors: Lori- Ann Christie, Munjal M. Acharya, Charles L. Limoli.
Institutions: University of California Irvine .
With the exception of survival, cognitive impairment stemming from the clinical management of cancer is a major factor dictating therapeutic outcome. For many patients afflicted with CNS and non-CNS malignancies, radiotherapy and chemotherapy offer the best options for disease control. These treatments however come at a cost, and nearly all cancer survivors (~11 million in the US alone as of 2006) incur some risk for developing cognitive dysfunction, with the most severe cases found in patients subjected to cranial radiotherapy (~200,000/yr) for the control of primary and metastatic brain tumors1. Particularly problematic are pediatric cases, whose long-term survival plagued with marked cognitive decrements results in significant socioeconomic burdens2. To date, there are still no satisfactory solutions to this significant clinical problem. We have addressed this serious health concern using transplanted stem cells to combat radiation-induced cognitive decline in athymic rats subjected to cranial irradiation3. Details of the stereotaxic irradiation and the in vitro culturing and transplantation of human neural stem cells (hNSCs) can be found in our companion paper (Acharya et al., JoVE reference). Following irradiation and transplantation surgery, rats are then assessed for changes in cognition, grafted cell survival and expression of differentiation-specific markers 1 and 4-months after irradiation. To critically evaluate the success or failure of any potential intervention designed to ameliorate radiation-induced cognitive sequelae, a rigorous series of quantitative cognitive tasks must be performed. To accomplish this, we subject our animals to a suite of cognitive testing paradigms including novel place recognition, water maze, elevated plus maze and fear conditioning, in order to quantify hippocampal and non-hippocampal learning and memory. We have demonstrated the utility of these tests for quantifying specific types of cognitive decrements in irradiated animals, and used them to show that animals engrafted with hNSCs exhibit significant improvements in cognitive function3. The cognitive benefits derived from engrafted human stem cells suggest that similar strategies may one day provide much needed clinical recourse to cancer survivors suffering from impaired cognition. Accordingly, we have provided written and visual documentation of the critical steps used in our cognitive testing paradigms to facilitate the translation of our promising results into the clinic.
Medicine, Issue 56, neuroscience, radiotherapy, cognitive dysfunction, hippocampus, novel place recognition, elevated plus maze, fear conditioning, water maze
Play Button
Assessing Burrowing, Nest Construction, and Hoarding in Mice
Authors: Robert Deacon.
Institutions: University of Oxford .
Deterioration in the ability to perform "Activities of daily living" (ADL) is an early sign of Alzheimer's disease (AD). Preclinical behavioural screening of possible treatments for AD currently largely focuses on cognitive testing, which frequently demands expensive equipment and lots of experimenter time. However, human episodic memory (the most severely affected aspect of memory in AD) is different to rodent memory, which seems to be largely non-episodic. Therefore the present ways of screening for new AD treatments for AD in rodents are intrinsically unlikely to succeed. A new approach to preclinical screening would be to characterise the ADL of mice. Fortuitously, several such assays have recently been developed at Oxford, and here the three most sensitive and well-characterised are presented. Burrowing was first developed in Oxford13. It evolved from a need to develop a mouse hoarding paradigm. Most published rodent hoarding paradigms required a distant food source to be linked to the home cage by a connecting passage. This would involve modifying the home cage as well as making a mouse-proof connecting passage and food source. So it was considered whether it would be possible to put the food source inside the cage. It was found that if a container was placed on the floor it was emptied by the next morning., The food pellets were, however, simply deposited in a heap at the container entrance, rather than placed in a discrete place away from the container, as might be expected if the mice were truly hoarding them. Close inspection showed that the mice were performing digging ("burrowing") movements, not carrying the pellets in their mouths to a selected place as they would if truly hoarding them.6 Food pellets are not an essential substrate for burrowing; mice will empty tubes filled with sand, gravel, even soiled bedding from their own cage. Moreover, they will empty a full tube even if an empty one is placed next to it8. Several nesting protocols exist in the literature. The present Oxford one simplifies the procedure and has a well-defined scoring system for nest quality5. A hoarding paradigm was later developed in which the mice, rather than hoarding back to the real home cage, were adapted to living in the "home base" of a hoarding apparatus. This home base was connected to a tube made of wire mesh, the distal end of which contained the food source. This arrangement proved to yield good hoarding behaviour, as long as the mice were adapted to living in the "home base" during the day and only allowed to enter the hoarding tube at night.
Neuroscience, Issue 59, Mice, murine, burrowing, nesting, hoarding, hippocampus, Alzheimer’s, prion, species-typical, welfare, 3Rs
Play Button
Assessment of Motor Balance and Coordination in Mice using the Balance Beam
Authors: Tinh N. Luong, Holly J. Carlisle, Amber Southwell, Paul H. Patterson.
Institutions: California Institute of Technology.
Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod.
Neuroscience, Issue 49, motor skills, coordination, balance beam test, mouse behavior
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.