JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Systematic mutational analysis of the putative hydrolase PqsE: toward a deeper molecular understanding of virulence acquisition in Pseudomonas aeruginosa.
PUBLISHED: 01-01-2013
Pseudomonas aeruginosa is an important opportunistic human pathogen that can establish bacterial communication by synchronizing the behavior of individual cells in a molecular phenomenon known as "quorum sensing". Through an elusive mechanism involving gene products of the pqs operon, the PqsE enzyme is absolutely required for the synthesis of extracellular phenazines, including the toxic blue pigment pyocyanin, effectively allowing cells to achieve full-fledged virulence. Despite several functional and structural attempts at deciphering the role of this relevant enzymatic drug target, no molecular function has yet been ascribed to PqsE. In the present study, we report a series of alanine scanning experiments aimed at altering the biological function of PqsE, allowing us to uncover key amino acid positions involved in the molecular function of this enzyme. We use sequence analysis and structural overlays with members of homologous folds to pinpoint critical positions located in the vicinity of the ligand binding cleft and surrounding environment, revealing the importance of a unique C-terminal ?-helical motif in the molecular function of PqsE. Our results suggest that the active site of the enzyme involves residues that extend further into the hydrophobic core of the protein, advocating for a lid-like movement of the two terminal helices. This information should help design virtual libraries of PqsE inhibitors, providing means to counter P. aeruginosa virulence acquisition and helping to reduce nosocomial infections.
Authors: Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang.
Published: 11-03-2011
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.
21 Related JoVE Articles!
Play Button
Specificity Analysis of Protein Lysine Methyltransferases Using SPOT Peptide Arrays
Authors: Srikanth Kudithipudi, Denis Kusevic, Sara Weirich, Albert Jeltsch.
Institutions: Stuttgart University.
Lysine methylation is an emerging post-translation modification and it has been identified on several histone and non-histone proteins, where it plays crucial roles in cell development and many diseases. Approximately 5,000 lysine methylation sites were identified on different proteins, which are set by few dozens of protein lysine methyltransferases. This suggests that each PKMT methylates multiple proteins, however till now only one or two substrates have been identified for several of these enzymes. To approach this problem, we have introduced peptide array based substrate specificity analyses of PKMTs. Peptide arrays are powerful tools to characterize the specificity of PKMTs because methylation of several substrates with different sequences can be tested on one array. We synthesized peptide arrays on cellulose membrane using an Intavis SPOT synthesizer and analyzed the specificity of various PKMTs. Based on the results, for several of these enzymes, novel substrates could be identified. For example, for NSD1 by employing peptide arrays, we showed that it methylates K44 of H4 instead of the reported H4K20 and in addition H1.5K168 is the highly preferred substrate over the previously known H3K36. Hence, peptide arrays are powerful tools to biochemically characterize the PKMTs.
Biochemistry, Issue 93, Peptide arrays, solid phase peptide synthesis, SPOT synthesis, protein lysine methyltransferases, substrate specificity profile analysis, lysine methylation
Play Button
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in E. coli
Authors: Natalie J. Saez, Hervé Nozach, Marilyne Blemont, Renaud Vincentelli.
Institutions: Aix-Marseille Université, Commissariat à l'énergie atomique et aux énergies alternatives (CEA) Saclay, France.
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (, our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Bioengineering, Issue 89, E. coli, expression, recombinant, high throughput (HTP), purification, auto-induction, immobilized metal affinity chromatography (IMAC), tobacco etch virus protease (TEV) cleavage, disulfide bond isomerase C (DsbC) fusion, disulfide bonds, animal venom proteins/peptides
Play Button
Genetic Manipulation in Δku80 Strains for Functional Genomic Analysis of Toxoplasma gondii
Authors: Leah M. Rommereim, Miryam A. Hortua Triana, Alejandra Falla, Kiah L. Sanders, Rebekah B. Guevara, David J. Bzik, Barbara A. Fox.
Institutions: The Geisel School of Medicine at Dartmouth.
Targeted genetic manipulation using homologous recombination is the method of choice for functional genomic analysis to obtain a detailed view of gene function and phenotype(s). The development of mutant strains with targeted gene deletions, targeted mutations, complemented gene function, and/or tagged genes provides powerful strategies to address gene function, particularly if these genetic manipulations can be efficiently targeted to the gene locus of interest using integration mediated by double cross over homologous recombination. Due to very high rates of nonhomologous recombination, functional genomic analysis of Toxoplasma gondii has been previously limited by the absence of efficient methods for targeting gene deletions and gene replacements to specific genetic loci. Recently, we abolished the major pathway of nonhomologous recombination in type I and type II strains of T. gondii by deleting the gene encoding the KU80 protein1,2. The Δku80 strains behave normally during tachyzoite (acute) and bradyzoite (chronic) stages in vitro and in vivo and exhibit essentially a 100% frequency of homologous recombination. The Δku80 strains make functional genomic studies feasible on the single gene as well as on the genome scale1-4. Here, we report methods for using type I and type II Δku80Δhxgprt strains to advance gene targeting approaches in T. gondii. We outline efficient methods for generating gene deletions, gene replacements, and tagged genes by targeted insertion or deletion of the hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) selectable marker. The described gene targeting protocol can be used in a variety of ways in Δku80 strains to advance functional analysis of the parasite genome and to develop single strains that carry multiple targeted genetic manipulations. The application of this genetic method and subsequent phenotypic assays will reveal fundamental and unique aspects of the biology of T. gondii and related significant human pathogens that cause malaria (Plasmodium sp.) and cryptosporidiosis (Cryptosporidium).
Infectious Diseases, Issue 77, Genetics, Microbiology, Infection, Medicine, Immunology, Molecular Biology, Cellular Biology, Biomedical Engineering, Bioengineering, Genomics, Parasitology, Pathology, Apicomplexa, Coccidia, Toxoplasma, Genetic Techniques, Gene Targeting, Eukaryota, Toxoplasma gondii, genetic manipulation, gene targeting, gene deletion, gene replacement, gene tagging, homologous recombination, DNA, sequencing
Play Button
Measuring Cation Transport by Na,K- and H,K-ATPase in Xenopus Oocytes by Atomic Absorption Spectrophotometry: An Alternative to Radioisotope Assays
Authors: Katharina L. Dürr, Neslihan N. Tavraz, Susan Spiller, Thomas Friedrich.
Institutions: Technical University of Berlin, Oregon Health & Science University.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.
Biochemistry, Issue 72, Chemistry, Biophysics, Bioengineering, Physiology, Molecular Biology, electrochemical processes, physical chemistry, spectrophotometry (application), spectroscopic chemical analysis (application), life sciences, temperature effects (biological, animal and plant), Life Sciences (General), Na+,K+-ATPase, H+,K+-ATPase, Cation Uptake, P-type ATPases, Atomic Absorption Spectrophotometry (AAS), Two-Electrode Voltage-Clamp, Xenopus Oocytes, Rb+ Flux, Transversely Heated Graphite Atomizer (THGA) Furnace, electrophysiology, animal model
Play Button
Expression, Detergent Solubilization, and Purification of a Membrane Transporter, the MexB Multidrug Resistance Protein
Authors: Forum H. Bhatt, Constance J. Jeffery.
Institutions: University of Illinois Chicago - UIC.
Multidrug resistance (MDR), the ability of a cancer cell or pathogen to be resistant to a wide range of structurally and functionally unrelated anti-cancer drugs or antibiotics, is a current serious problem in public health. This multidrug resistance is largely due to energy-dependent drug efflux pumps. The pumps expel anti-cancer drugs or antibiotics into the external medium, lowering their intracellular concentration below a toxic threshold. We are studying multidrug resistance in Pseudomonas aeruginosa, an opportunistic bacterial pathogen that causes infections in patients with many types of injuries or illness, for example, burns or cystic fibrosis, and also in immuno-compromised cancer, dialysis, and transplantation patients. The major MDR efflux pumps in P. aeruginosa are tripartite complexes comprised of an inner membrane proton-drug antiporter (RND), an outer membrane channel (OMF), and a periplasmic linker protein (MFP) 1-8. The RND and OMF proteins are transmembrane proteins. Transmembrane proteins make up more than 30% of all proteins and are 65% of current drug targets. The hydrophobic transmembrane domains make the proteins insoluble in aqueous buffer. Before a transmembrane protein can be purified, it is necessary to find buffer conditions containing a mild detergent that enable the protein to be solubilized as a protein detergent complex (PDC) 9-11. In this example, we use an RND protein, the P. aeruginosa MexB transmembrane transporter, to demonstrate how to express a recombinant form of a transmembrane protein, solubilize it using detergents, and then purify the protein detergent complexes. This general method can be applied to the expression, purification, and solubilization of many other recombinantly expressed membrane proteins. The protein detergent complexes can later be used for biochemical or biophysical characterization including X-ray crystal structure determination or crosslinking studies.
Cellular Biology, Issue 46, multidrug resistance, membrane protein, purification, transmembrane transport, MexB, detergent solubilization, protein detergent complex
Play Button
Purification and Visualization of Lipopolysaccharide from Gram-negative Bacteria by Hot Aqueous-phenol Extraction
Authors: Michael R. Davis, Jr., Joanna B. Goldberg.
Institutions: University of Virginia Health System.
Lipopolysaccharide (LPS) is a major component of Gram-negative bacterial outer membranes. It is a tripartite molecule consisting of lipid A, which is embedded in the outer membrane, a core oligosaccharide and repeating O-antigen units that extend outward from the surface of the cell1, 2. LPS is an immunodominant molecule that is important for the virulence and pathogenesis of many bacterial species, including Pseudomonas aeruginosa, Salmonella species, and Escherichia coli3-5, and differences in LPS O-antigen composition form the basis for serotyping of strains. LPS is involved in attachment to host cells at the initiation of infection and provides protection from complement-mediated killing; strains that lack LPS can be attenuated for virulence6-8. For these reasons, it is important to visualize LPS, particularly from clinical isolates. Visualizing LPS banding patterns and recognition by specific antibodies can be useful tools to identify strain lineages and to characterize various mutants. In this report, we describe a hot aqueous-phenol method for the isolation and purification of LPS from Gram-negative bacterial cells. This protocol allows for the extraction of LPS away from nucleic acids and proteins that can interfere with visualization of LPS that occurs with shorter, less intensive extraction methods9. LPS prepared this way can be separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and directly stained using carbohydrate/glycoprotein stains or standard silver staining methods. Many anti-sera to LPS contain antibodies that cross-react with outer membrane proteins or other antigenic targets that can hinder reactivity observed following Western immunoblot of SDS-PAGE-separated crude cell lysates. Protease treatment of crude cell lysates alone is not always an effective way of removing this background using this or other visualization methods. Further, extensive protease treatment in an attempt to remove this background can lead to poor quality LPS that is not well resolved by any of the aforementioned methods. For these reasons, we believe that the following protocol, adapted from Westpahl and Jann10, is ideal for LPS extraction.
Immunology, Issue 63, Microbiology, Gram-negative, LPS, extraction, polysaccharide staining, Western immunoblot
Play Button
Long Term Chronic Pseudomonas aeruginosa Airway Infection in Mice
Authors: Marcella Facchini, Ida De Fino, Camilla Riva, Alessandra Bragonzi.
Institutions: San Raffaele Scientific Institute, Italian Cystic Fibrosis Research Foundation.
A mouse model of chronic airway infection is a key asset in cystic fibrosis (CF) research, although there are a number of concerns regarding the model itself. Early phases of inflammation and infection have been widely studied by using the Pseudomonas aeruginosa agar-beads mouse model, while only few reports have focused on the long-term chronic infection in vivo. The main challenge for long term chronic infection remains the low bacterial burden by P. aeruginosa and the low percentage of infected mice weeks after challenge, indicating that bacterial cells are progressively cleared by the host. This paper presents a method for obtaining efficient long-term chronic infection in mice. This method is based on the embedding of the P. aeruginosa clinical strains in the agar-beads in vitro, followed by intratracheal instillation in C57Bl/6NCrl mice. Bilateral lung infection is associated with several measurable read-outs including weight loss, mortality, chronic infection, and inflammatory response. The P. aeruginosa RP73 clinical strain was preferred over the PAO1 reference laboratory strain since it resulted in a comparatively lower mortality, more severe lesions, and higher chronic infection. P. aeruginosa colonization may persist in the lung for over three months. Murine lung pathology resembles that of CF patients with advanced chronic pulmonary disease. This murine model most closely mimics the course of the human disease and can be used both for studies on the pathogenesis and for the evaluation of novel therapies.
Infection, Issue 85, Opportunistic Infections, Respiratory Tract Infections, Inflammation, Lung Diseases, Cystic Fibrosis, Pseudomonas aeruginosa
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
Play Button
Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry
Authors: Mirella Vivoli, Halina R. Novak, Jennifer A. Littlechild, Nicholas J. Harmer.
Institutions: University of Exeter.
A wide range of methods are currently available for determining the dissociation constant between a protein and interacting small molecules. However, most of these require access to specialist equipment, and often require a degree of expertise to effectively establish reliable experiments and analyze data. Differential scanning fluorimetry (DSF) is being increasingly used as a robust method for initial screening of proteins for interacting small molecules, either for identifying physiological partners or for hit discovery. This technique has the advantage that it requires only a PCR machine suitable for quantitative PCR, and so suitable instrumentation is available in most institutions; an excellent range of protocols are already available; and there are strong precedents in the literature for multiple uses of the method. Past work has proposed several means of calculating dissociation constants from DSF data, but these are mathematically demanding. Here, we demonstrate a method for estimating dissociation constants from a moderate amount of DSF experimental data. These data can typically be collected and analyzed within a single day. We demonstrate how different models can be used to fit data collected from simple binding events, and where cooperative binding or independent binding sites are present. Finally, we present an example of data analysis in a case where standard models do not apply. These methods are illustrated with data collected on commercially available control proteins, and two proteins from our research program. Overall, our method provides a straightforward way for researchers to rapidly gain further insight into protein-ligand interactions using DSF.
Biophysics, Issue 91, differential scanning fluorimetry, dissociation constant, protein-ligand interactions, StepOne, cooperativity, WcbI.
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
Use of Artificial Sputum Medium to Test Antibiotic Efficacy Against Pseudomonas aeruginosa in Conditions More Relevant to the Cystic Fibrosis Lung
Authors: Sebastian Kirchner, Joanne L Fothergill, Elli A. Wright, Chloe E. James, Eilidh Mowat, Craig Winstanley.
Institutions: University of Liverpool , University of Liverpool .
There is growing concern about the relevance of in vitro antimicrobial susceptibility tests when applied to isolates of P. aeruginosa from cystic fibrosis (CF) patients. Existing methods rely on single or a few isolates grown aerobically and planktonically. Predetermined cut-offs are used to define whether the bacteria are sensitive or resistant to any given antibiotic1. However, during chronic lung infections in CF, P. aeruginosa populations exist in biofilms and there is evidence that the environment is largely microaerophilic2. The stark difference in conditions between bacteria in the lung and those during diagnostic testing has called into question the reliability and even relevance of these tests3. Artificial sputum medium (ASM) is a culture medium containing the components of CF patient sputum, including amino acids, mucin and free DNA. P. aeruginosa growth in ASM mimics growth during CF infections, with the formation of self-aggregating biofilm structures and population divergence4,5,6. The aim of this study was to develop a microtitre-plate assay to study antimicrobial susceptibility of P. aeruginosa based on growth in ASM, which is applicable to both microaerophilic and aerobic conditions. An ASM assay was developed in a microtitre plate format. P. aeruginosa biofilms were allowed to develop for 3 days prior to incubation with antimicrobial agents at different concentrations for 24 hours. After biofilm disruption, cell viability was measured by staining with resazurin. This assay was used to ascertain the sessile cell minimum inhibitory concentration (SMIC) of tobramycin for 15 different P. aeruginosa isolates under aerobic and microaerophilic conditions and SMIC values were compared to those obtained with standard broth growth. Whilst there was some evidence for increased MIC values for isolates grown in ASM when compared to their planktonic counterparts, the biggest differences were found with bacteria tested in microaerophilic conditions, which showed a much increased resistance up to a >128 fold, towards tobramycin in the ASM system when compared to assays carried out in aerobic conditions. The lack of association between current susceptibility testing methods and clinical outcome has questioned the validity of current methods3. Several in vitro models have been used previously to study P. aeruginosa biofilms7, 8. However, these methods rely on surface attached biofilms, whereas the ASM biofilms resemble those observed in the CF lung9 . In addition, reduced oxygen concentration in the mucus has been shown to alter the behavior of P. aeruginosa2 and affect antibiotic susceptibility10. Therefore using ASM under microaerophilic conditions may provide a more realistic environment in which to study antimicrobial susceptibility.
Immunology, Issue 64, Microbiology, Pseudomonas aeruginosa, antimicrobial susceptibility, artificial sputum media, lung infection, cystic fibrosis, diagnostics, plankton
Play Button
A Visual Assay to Monitor T6SS-mediated Bacterial Competition
Authors: Abderrahman Hachani, Nadine S. Lossi, Alain Filloux.
Institutions: Imperial College London .
Type VI secretion systems (T6SSs) are molecular nanomachines allowing Gram-negative bacteria to transport and inject proteins into a wide variety of target cells1,2. The T6SS is composed of 13 core components and displays structural similarities with the tail-tube of bacteriophages3. The phage uses a tube and a puncturing device to penetrate the cell envelope of target bacteria and inject DNA. It is proposed that the T6SS is an inverted bacteriophage device creating a specific path in the bacterial cell envelope to drive effectors and toxins to the surface. The process could be taken further and the T6SS device could perforate other cells with which the bacterium is in contact, thus injecting the effectors into these targets. The tail tube and puncturing device parts of the T6SS are made with Hcp and VgrG proteins, respectively4,5. The versatility of the T6SS has been demonstrated through studies using various bacterial pathogens. The Vibrio cholerae T6SS can remodel the cytoskeleton of eukaryotic host cells by injecting an "evolved" VgrG carrying a C-terminal actin cross-linking domain6,7. Another striking example was recently documented using Pseudomonas aeruginosa which is able to target and kill bacteria in a T6SS-dependent manner, therefore promoting the establishment of bacteria in specific microbial niches and competitive environment8,9,10. In the latter case, three T6SS-secreted proteins, namely Tse1, Tse2 and Tse3 have been identified as the toxins injected in the target bacteria (Figure 1). The donor cell is protected from the deleterious effect of these effectors via an anti-toxin mechanism, mediated by the Tsi1, Tsi2 and Tsi3 immunity proteins8,9,10. This antimicrobial activity can be monitored when T6SS-proficient bacteria are co-cultivated on solid surfaces in competition with other bacterial species or with T6SS-inactive bacteria of the same species8,11,12,13. The data available emphasized a numerical approach to the bacterial competition assay, including time-consuming CFU counting that depends greatly on antibiotic makers. In the case of antibiotic resistant strains like P. aeruginosa, these methods can be inappropriate. Moreover, with the identification of about 200 different T6SS loci in more than 100 bacterial genomes14, a convenient screening tool is highly desirable. We developed an assay that is easy to use and requires standard laboratory material and reagents. The method offers a rapid and qualitative technique to monitor the T6SS-dependent bactericidal/bacteriostasis activity by using a reporter strain as a prey (in this case Escherichia coli DH5α) allowing a-complementation of the lacZ gene. Overall, this method is graphic and allows rapid identification of T6SS-related phenotypes on agar plates. This experimental protocol may be adapted to other strains or bacterial species taking into account specific conditions such as growth media, temperature or time of contact.
Infection, Issue 73, Microbiology, Immunology, Infectious Diseases, Molecular Biology, Genetics, Biochemistry, Cellular Biology, Bacteriology, Bacteria, Type Six Secretion System, T6SS, Bacterial Competition, Killing Assay, Pseudomonas aeruginosa, E. coli, lacZ, CFU, bacterial screen, pathogens, assay
Play Button
Identification of Novel Genes Associated with Alginate Production in Pseudomonas aeruginosa Using Mini-himar1 Mariner Transposon-mediated Mutagenesis
Authors: T. Ryan Withers, Yeshi Yin, Hongwei D. Yu.
Institutions: Marshall University.
Pseudomonas aeruginosa is a Gram-negative, environmental bacterium with versatile metabolic capabilities. P. aeruginosa is an opportunistic bacterial pathogen which establishes chronic pulmonary infections in patients with cystic fibrosis (CF). The overproduction of a capsular polysaccharide called alginate, also known as mucoidy, promotes the formation of mucoid biofilms which are more resistant than planktonic cells to antibiotic chemotherapy and host defenses. Additionally, the conversion from the nonmucoid to mucoid phenotype is a clinical marker for the onset of chronic infection in CF. Alginate overproduction by P. aeruginosa is an endergonic process which heavily taxes cellular energy. Therefore, alginate production is highly regulated in P. aeruginosa. To better understand alginate regulation, we describe a protocol using the mini-himar1 transposon mutagenesis for the identification of novel alginate regulators in a prototypic strain PAO1. The procedure consists of two basic steps. First, we transferred the mini-himar1 transposon (pFAC) from host E. coli SM10/λpir into recipient P. aeruginosa PAO1 via biparental conjugation to create a high-density insertion mutant library, which were selected on Pseudomonas isolation agar plates supplemented with gentamycin. Secondly, we screened and isolated the mucoid colonies to map the insertion site through inverse PCR using DNA primers pointing outward from the gentamycin cassette and DNA sequencing. Using this protocol, we have identified two novel alginate regulators, mucE (PA4033) and kinB (PA5484), in strain PAO1 with a wild-type mucA encoding the anti-sigma factor MucA for the master alginate regulator AlgU (AlgT, σ22). This high-throughput mutagenesis protocol can be modified for the identification of other virulence-related genes causing change in colony morphology.
Immunology, Issue 85, Pseudomonas aeruginosa, alginate, mucoidy, mutagenesis, mini-himar1 mariner transposon, pFAC
Play Button
Co-culture Models of Pseudomonas aeruginosa Biofilms Grown on Live Human Airway Cells
Authors: Sophie Moreau-Marquis, Carly V. Redelman, Bruce A. Stanton, Gregory G. Anderson.
Institutions: Dartmouth College, Indiana University Purdue University Indianapolis.
Bacterial biofilms have been associated with a number of different human diseases, but biofilm development has generally been studied on non-living surfaces. In this paper, we describe protocols for forming Pseudomonas aeruginosa biofilms on human airway epithelial cells (CFBE cells) grown in culture. In the first method (termed the Static Co-culture Biofilm Model), P. aeruginosa is incubated with CFBE cells grown as confluent monolayers on standard tissue culture plates. Although the bacterium is quite toxic to epithelial cells, the addition of arginine delays the destruction of the monolayer long enough for biofilms to form on the CFBE cells. The second method (termed the Flow Cell Co-culture Biofilm Model), involves adaptation of a biofilm flow cell apparatus, which is often used in biofilm research, to accommodate a glass coverslip supporting a confluent monolayer of CFBE cells. This monolayer is inoculated with P. aeruginosa and a peristaltic pump then flows fresh medium across the cells. In both systems, bacterial biofilms form within 6-8 hours after inoculation. Visualization of the biofilm is enhanced by the use of P. aeruginosa strains constitutively expressing green fluorescent protein (GFP). The Static and Flow Cell Co-culture Biofilm assays are model systems for early P. aeruginosa infection of the Cystic Fibrosis (CF) lung, and these techniques allow different aspects of P. aeruginosa biofilm formation and virulence to be studied, including biofilm cytotoxicity, measurement of biofilm CFU, and staining and visualizing the biofilm.
Cellular Biology, Issue 44, biofilm, Pseudomonas aeruginosa, airway, epithelial cells, co-culture, cytotoxicity, Cystic Fibrosis, virulence
Play Button
Pseudomonas aeruginosa Induced Lung Injury Model
Authors: Varsha Suresh Kumar, Ruxana T. Sadikot, Jeanette E. Purcell, Asrar B. Malik, Yuru Liu.
Institutions: University of Illinois at Chicago, Emory University, University of Illinois at Chicago.
In order to study human acute lung injury and pneumonia, it is important to develop animal models to mimic various pathological features of this disease. Here we have developed a mouse lung injury model by intra-tracheal injection of bacteria Pseudomonas aeruginosa (P. aeruginosa or PA). Using this model, we were able to show lung inflammation at the early phase of injury. In addition, alveolar epithelial barrier leakiness was observed by analyzing bronchoalveolar lavage (BAL); and alveolar cell death was observed by Tunel assay using tissue prepared from injured lungs. At a later phase following injury, we observed cell proliferation required for the repair process. The injury was resolved 7 days from the initiation of P. aeruginosa injection. This model mimics the sequential course of lung inflammation, injury and repair during pneumonia. This clinically relevant animal model is suitable for studying pathology, mechanism of repair, following acute lung injury, and also can be used to test potential therapeutic agents for this disease.
Immunology, Issue 92, Lung, injury, pseudomonas, pneumonia, mouse model, alveoli
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
The Insect Galleria mellonella as a Powerful Infection Model to Investigate Bacterial Pathogenesis
Authors: Nalini Ramarao, Christina Nielsen-Leroux, Didier Lereclus.
Institutions: INRA, Micalis UMR1319, France.
The study of bacterial virulence often requires a suitable animal model. Mammalian models of infection are costly and may raise ethical issues. The use of insects as infection models provides a valuable alternative. Compared to other non-vertebrate model hosts such as nematodes, insects have a relatively advanced system of antimicrobial defenses and are thus more likely to produce information relevant to the mammalian infection process. Like mammals, insects possess a complex innate immune system1. Cells in the hemolymph are capable of phagocytosing or encapsulating microbial invaders, and humoral responses include the inducible production of lysozyme and small antibacterial peptides2,3. In addition, analogies are found between the epithelial cells of insect larval midguts and intestinal cells of mammalian digestive systems. Finally, several basic components essential for the bacterial infection process such as cell adhesion, resistance to antimicrobial peptides, tissue degradation and adaptation to oxidative stress are likely to be important in both insects and mammals1. Thus, insects are polyvalent tools for the identification and characterization of microbial virulence factors involved in mammalian infections. Larvae of the greater wax moth Galleria mellonella have been shown to provide a useful insight into the pathogenesis of a wide range of microbial infections including mammalian fungal (Fusarium oxysporum, Aspergillus fumigatus, Candida albicans) and bacterial pathogens, such as Staphylococcus aureus, Proteus vulgaris, Serratia marcescens Pseudomonas aeruginosa, Listeria monocytogenes or Enterococcus faecalis4-7. Regardless of the bacterial species, results obtained with Galleria larvae infected by direct injection through the cuticle consistently correlate with those of similar mammalian studies: bacterial strains that are attenuated in mammalian models demonstrate lower virulence in Galleria, and strains causing severe human infections are also highly virulent in the Galleria model8-11. Oral infection of Galleria is much less used and additional compounds, like specific toxins, are needed to reach mortality. G. mellonella larvae present several technical advantages: they are relatively large (last instar larvae before pupation are about 2 cm long and weight 250 mg), thus enabling the injection of defined doses of bacteria; they can be reared at various temperatures (20 °C to 30 °C) and infection studies can be conducted between 15 °C to above 37 °C12,13, allowing experiments that mimic a mammalian environment. In addition, insect rearing is easy and relatively cheap. Infection of the larvae allows monitoring bacterial virulence by several means, including calculation of LD5014, measurement of bacterial survival15,16 and examination of the infection process17. Here, we describe the rearing of the insects, covering all life stages of G. mellonella. We provide a detailed protocol of infection by two routes of inoculation: oral and intra haemocoelic. The bacterial model used in this protocol is Bacillus cereus, a Gram positive pathogen implicated in gastrointestinal as well as in other severe local or systemic opportunistic infections18,19.
Infection, Issue 70, Microbiology, Immunology, Molecular Biology, Bacteriology, Entomology, Bacteria, Galleria mellonella, greater wax moth, insect larvae, intra haemocoelic injection, ingestion, animal model, host pathogen interactions
Play Button
Principles of Site-Specific Recombinase (SSR) Technology
Authors: Frank Bucholtz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Site-specific recombinase (SSR) technology allows the manipulation of gene structure to explore gene function and has become an integral tool of molecular biology. Site-specific recombinases are proteins that bind to distinct DNA target sequences. The Cre/lox system was first described in bacteriophages during the 1980's. Cre recombinase is a Type I topoisomerase that catalyzes site-specific recombination of DNA between two loxP (locus of X-over P1) sites. The Cre/lox system does not require any cofactors. LoxP sequences contain distinct binding sites for Cre recombinases that surround a directional core sequence where recombination and rearrangement takes place. When cells contain loxP sites and express the Cre recombinase, a recombination event occurs. Double-stranded DNA is cut at both loxP sites by the Cre recombinase, rearranged, and ligated ("scissors and glue"). Products of the recombination event depend on the relative orientation of the asymmetric sequences. SSR technology is frequently used as a tool to explore gene function. Here the gene of interest is flanked with Cre target sites loxP ("floxed"). Animals are then crossed with animals expressing the Cre recombinase under the control of a tissue-specific promoter. In tissues that express the Cre recombinase it binds to target sequences and excises the floxed gene. Controlled gene deletion allows the investigation of gene function in specific tissues and at distinct time points. Analysis of gene function employing SSR technology --- conditional mutagenesis -- has significant advantages over traditional knock-outs where gene deletion is frequently lethal.
Cellular Biology, Issue 15, Molecular Biology, Site-Specific Recombinase, Cre recombinase, Cre/lox system, transgenic animals, transgenic technology
Play Button
Molecular Evolution of the Tre Recombinase
Authors: Frank Buchholz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Here we report the generation of Tre recombinase through directed, molecular evolution. Tre recombinase recognizes a pre-defined target sequence within the LTR sequences of the HIV-1 provirus, resulting in the excision and eradication of the provirus from infected human cells. We started with Cre, a 38-kDa recombinase, that recognizes a 34-bp double-stranded DNA sequence known as loxP. Because Cre can effectively eliminate genomic sequences, we set out to tailor a recombinase that could remove the sequence between the 5'-LTR and 3'-LTR of an integrated HIV-1 provirus. As a first step we identified sequences within the LTR sites that were similar to loxP and tested for recombination activity. Initially Cre and mutagenized Cre libraries failed to recombine the chosen loxLTR sites of the HIV-1 provirus. As the start of any directed molecular evolution process requires at least residual activity, the original asymmetric loxLTR sequences were split into subsets and tested again for recombination activity. Acting as intermediates, recombination activity was shown with the subsets. Next, recombinase libraries were enriched through reiterative evolution cycles. Subsequently, enriched libraries were shuffled and recombined. The combination of different mutations proved synergistic and recombinases were created that were able to recombine loxLTR1 and loxLTR2. This was evidence that an evolutionary strategy through intermediates can be successful. After a total of 126 evolution cycles individual recombinases were functionally and structurally analyzed. The most active recombinase -- Tre -- had 19 amino acid changes as compared to Cre. Tre recombinase was able to excise the HIV-1 provirus from the genome HIV-1 infected HeLa cells (see "HIV-1 Proviral DNA Excision Using an Evolved Recombinase", Hauber J., Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany). While still in its infancy, directed molecular evolution will allow the creation of custom enzymes that will serve as tools of "molecular surgery" and molecular medicine.
Cell Biology, Issue 15, HIV-1, Tre recombinase, Site-specific recombination, molecular evolution
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.