JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
PIKfyve regulates the endosomal localization of CpG oligodeoxynucleotides to elicit TLR9-dependent cellular responses.
PUBLISHED: 01-01-2013
TLR9 is a receptor for oligodeoxynucleotides that contain unmethylated CpG motifs (CpG). Because TLR9 resides in the endoplasmic reticulum during the quiescence state, CpG binding to TLR9 requires membrane trafficking, which includes the maturation of the CpG-containing endosome. In the present study, we examined the role of PIKfyve, a phosphatidylinositol 3-phosphate 5-kinase, in the regulation of TLR9 signaling. The PIKfyve inhibitor YM201636 inhibited co-localization of the CpG-containing endosome with LysoTracker, which stains acidic organelle, and with TLR9. YM201636 increased the co-localization of CpG with the early endosome marker EEA1 but decreased co-localization with the late endosome marker LAMP1. Similar results were obtained in Raw264.7 cells containing shRNA that targets PIKfyve. CpG-mediated phosphorylation but not lipopolysaccharide (LPS)-mediated phosphorylation of IKK, p38 MAPK, JNK and Stat3 was severely impaired by the loss of PIKfyve function. CpG-mediated expression of cytokine mRNA was also decreased in the absence of PIKfyve. These findings demonstrate a novel role of PIKfyve in TLR9 signaling.
Authors: Pål Johansen, Thomas M. Kündig.
Published: 02-02-2014
Vaccines are typically injected subcutaneously or intramuscularly for stimulation of immune responses. The success of this requires efficient drainage of vaccine to lymph nodes where antigen presenting cells can interact with lymphocytes for generation of the wanted immune responses. The strength and the type of immune responses induced also depend on the density or frequency of interactions as well as the microenvironment, especially the content of cytokines. As only a minute fraction of peripherally injected vaccines reaches the lymph nodes, vaccinations of mice and humans were performed by direct injection of vaccine into inguinal lymph nodes, i.e. intralymphatic injection. In man, the procedure is guided by ultrasound. In mice, a small (5-10 mm) incision is made in the inguinal region of anesthetized animals, the lymph node is localized and immobilized with forceps, and a volume of 10-20 μl of the vaccine is injected under visual control. The incision is closed with a single stitch using surgical sutures. Mice were vaccinated with plasmid DNA, RNA, peptide, protein, particles, and bacteria as well as adjuvants, and strong improvement of immune responses against all type of vaccines was observed. The intralymphatic method of vaccination is especially appropriate in situations where conventional vaccination produces insufficient immunity or where the amount of available vaccine is limited.
23 Related JoVE Articles!
Play Button
A High-content Imaging Workflow to Study Grb2 Signaling Complexes by Expression Cloning
Authors: Jamie Freeman, Janos Kriston-Vizi, Brian Seed, Robin Ketteler.
Institutions: University College London, Massachusetts General Hospital.
Signal transduction by growth factor receptors is essential for cells to maintain proliferation and differentiation and requires tight control. Signal transduction is initiated by binding of an external ligand to a transmembrane receptor and activation of downstream signaling cascades. A key regulator of mitogenic signaling is Grb2, a modular protein composed of an internal SH2 (Src Homology 2) domain flanked by two SH3 domains that lacks enzymatic activity. Grb2 is constitutively associated with the GTPase Son-Of-Sevenless (SOS) via its N-terminal SH3 domain. The SH2 domain of Grb2 binds to growth factor receptors at phosphorylated tyrosine residues thus coupling receptor activation to the SOS-Ras-MAP kinase signaling cascade. In addition, other roles for Grb2 as a positive or negative regulator of signaling and receptor endocytosis have been described. The modular composition of Grb2 suggests that it can dock to a variety of receptors and transduce signals along a multitude of different pathways1-3. Described here is a simple microscopy assay that monitors recruitment of Grb2 to the plasma membrane. It is adapted from an assay that measures changes in sub-cellular localization of green-fluorescent protein (GFP)-tagged Grb2 in response to a stimulus4-6. Plasma membrane receptors that bind Grb2 such as activated Epidermal Growth Factor Receptor (EGFR) recruit GFP-Grb2 to the plasma membrane upon cDNA expression and subsequently relocate to endosomal compartments in the cell. In order to identify in vivo protein complexes of Grb2, this technique can be used to perform a genome-wide high-content screen based on changes in Grb2 sub-cellular localization. The preparation of cDNA expression clones, transfection and image acquisition are described in detail below. Compared to other genomic methods used to identify protein interaction partners, such as yeast-two-hybrid, this technique allows the visualization of protein complexes in mammalian cells at the sub-cellular site of interaction by a simple microscopy-based assay. Hence both qualitative features, such as patterns of localization can be assessed, as well as the quantitative strength of the interaction.
Molecular Biology, Issue 68, Grb2, cDNA preparation, high-throughput, high-content screening, signal transduction, expression cloning, 96-well
Play Button
High Sensitivity 5-hydroxymethylcytosine Detection in Balb/C Brain Tissue
Authors: Theodore Davis, Romualdas Vaisvila.
Institutions: New England Biolabs.
DNA hydroxymethylation is a long known modification of DNA, but has recently become a focus in epigenetic research. Mammalian DNA is enzymatically modified at the 5th carbon position of cytosine (C) residues to 5-mC, predominately in the context of CpG dinucleotides. 5-mC is amenable to enzymatic oxidation to 5-hmC by the Tet family of enzymes, which are believed to be involved in development and disease. Currently, the biological role of 5-hmC is not fully understood, but is generating a lot of interest due to its potential as a biomarker. This is due to several groundbreaking studies identifying 5-hydroxymethylcytosine in mouse embryonic stem (ES) and neuronal cells. Research techniques, including bisulfite sequencing methods, are unable to easily distinguish between 5-mC and 5-hmC . A few protocols exist that can measure global amounts of 5-hydroxymethylcytosine in the genome, including liquid chromatography coupled with mass spectrometry analysis or thin layer chromatography of single nucleosides digested from genomic DNA. Antibodies that target 5-hydroxymethylcytosine also exist, which can be used for dot blot analysis, immunofluorescence, or precipitation of hydroxymethylated DNA, but these antibodies do not have single base resolution.In addition, resolution depends on the size of the immunoprecipitated DNA and for microarray experiments, depends on probe design. Since it is unknown exactly where 5-hydroxymethylcytosine exists in the genome or its role in epigenetic regulation, new techniques are required that can identify locus specific hydroxymethylation. The EpiMark 5-hmC and 5-mC Analysis Kit provides a solution for distinguishing between these two modifications at specific loci. The EpiMark 5-hmC and 5-mC Analysis Kit is a simple and robust method for the identification and quantitation of 5-methylcytosine and 5-hydroxymethylcytosine within a specific DNA locus. This enzymatic approach utilizes the differential methylation sensitivity of the isoschizomers MspI and HpaII in a simple 3-step protocol. Genomic DNA of interest is treated with T4-BGT, adding a glucose moeity to 5-hydroxymethylcytosine. This reaction is sequence-independent, therefore all 5-hmC will be glucosylated; unmodified or 5-mC containing DNA will not be affected. This glucosylation is then followed by restriction endonuclease digestion. MspI and HpaII recognize the same sequence (CCGG) but are sensitive to different methylation states. HpaII cleaves only a completely unmodified site: any modification (5-mC, 5-hmC or 5-ghmC) at either cytosine blocks cleavage. MspI recognizes and cleaves 5-mC and 5-hmC, but not 5-ghmC. The third part of the protocol is interrogation of the locus by PCR. As little as 20 ng of input DNA can be used. Amplification of the experimental (glucosylated and digested) and control (mock glucosylated and digested) target DNA with primers flanking a CCGG site of interest (100-200 bp) is performed. If the CpG site contains 5-hydroxymethylcytosine, a band is detected after glucosylation and digestion, but not in the non-glucosylated control reaction. Real time PCR will give an approximation of how much hydroxymethylcytosine is in this particular site. In this experiment, we will analyze the 5-hydroxymethylcytosine amount in a mouse Babl/C brain sample by end point PCR.
Neuroscience, Issue 48, EpiMark, Epigenetics, 5-hydroxymethylcytosine, 5-methylcytosine, methylation, hydroxymethylation
Play Button
Simultaneous pH Measurement in Endocytic and Cytosolic Compartments in Living Cells using Confocal Microscopy
Authors: Fabrice Lucien, Kelly Harper, Pierre-Paul Pelletier, Leonid Volkov, Claire M. Dubois.
Institutions: Université de Sherbrooke, Centre de Recherche Clinique Etienne-Le Bel.
Intracellular pH is tightly regulated and differences in pH between the cytoplasm and organelles have been reported1. Regulation of cellular pH is crucial for homeostatic control of physiological processes that include: protein, DNA and RNA synthesis, vesicular trafficking, cell growth and cell division. Alterations in cellular pH homeostasis can lead to detrimental functional changes and promote progression of various diseases2. Various methods are available for measuring intracellular pH but very few of these allow simultaneous measurement of pH in the cytoplasm and in organelles. Here, we describe in detail a rapid and accurate method for the simultaneous measurement of cytoplasmic and organellar pH by using confocal microscopy on living cells3. This goal is achieved with the use of two pH-sensing ratiometric dyes that possess selective cellular compartment partitioning. For instance, SNARF-1 is compartmentalized inside the cytoplasm whereas HPTS is compartmentalized inside endosomal/lysosomal organelles. Although HPTS is commonly used as a cytoplasmic pH indicator, this dye can specifically label vesicles along the endosomal-lysosomal pathway after being taken up by pinocytosis3,4. Using these pH-sensing probes, it is possible to simultaneously measure pH within the endocytic and cytoplasmic compartments. The optimal excitation wavelength of HPTS varies depending on the pH while for SNARF-1, it is the optimal emission wavelength that varies. Following loading with SNARF-1 and HPTS, cells are cultured in different pH-calibrated solutions to construct a pH standard curve for each probe. Cell imaging by confocal microscopy allows elimination of artifacts and background noise. Because of the spectral properties of HPTS, this probe is better suited for measurement of the mildly acidic endosomal compartment or to demonstrate alkalinization of the endosomal/lysosomal organelles. This method simplifies data analysis, improves accuracy of pH measurements and can be used to address fundamental questions related to pH modulation during cell responses to external challenges.
Biochemistry, Issue 86, Confocal microscopy, pH measurement, live cell imaging, ratiometric pH probes, fluorescence, intravesicular pH, cytosolic pH, endosomes, lysosomes
Play Button
Nanogold Labeling of the Yeast Endosomal System for Ultrastructural Analyses
Authors: Muriel Mari, Janice Griffith, Fulvio Reggiori.
Institutions: University Medical Center Utrecht.
Endosomes are one of the major membrane sorting checkpoints in eukaryotic cells and they regulate recycling or destruction of proteins mostly from the plasma membrane and the Golgi. As a result the endosomal system plays a central role in maintaining cell homeostasis, and mutations in genes belonging to this network of organelles interconnected by vesicular transport, cause severe pathologies including cancer and neurobiological disorders. It is therefore of prime relevance to understand the mechanisms underlying the biogenesis and organization of the endosomal system. The yeast Saccharomyces cerevisiae has been pivotal in this task. To specifically label and analyze at the ultrastructural level the endosomal system of this model organism, we present here a detailed protocol for the positively charged nanogold uptake by spheroplasts followed by the visualization of these particles through a silver enhancement reaction. This method is also a valuable tool for the morphological examination of mutants with defects in endosomal trafficking. Moreover, it is not only applicable for ultrastructural examinations but it can also be combined with immunogold labelings for protein localization investigations.
Cellular Biology, Issue 89, positively charged nanogold, silver enhancement, Tokuyasu procedure, electron microscopy, immunogold labeling, yeast
Play Button
Measurement of Vacuolar and Cytosolic pH In Vivo in Yeast Cell Suspensions
Authors: Theodore T. Diakov, Maureen Tarsio, Patricia M. Kane.
Institutions: SUNY Upstate Medical University.
Vacuolar and cytosolic pH are highly regulated in yeast cells and occupy a central role in overall pH homeostasis. We describe protocols for ratiometric measurement of pH in vivo using pH-sensitive fluorophores localized to the vacuole or cytosol. Vacuolar pH is measured using BCECF, which localizes to the vacuole in yeast when introduced into cells in its acetoxymethyl ester form. Cytosolic pH is measured with a pH-sensitive GFP expressed under control of a yeast promoter, yeast pHluorin. Methods for measurement of fluorescence ratios in yeast cell suspensions in a fluorimeter are described. Through these protocols, single time point measurements of pH under different conditions or in different yeast mutants have been compared and changes in pH over time have been monitored. These methods have also been adapted to a fluorescence plate reader format for high-throughput experiments. Advantages of ratiometric pH measurements over other approaches currently in use, potential experimental problems and solutions, and prospects for future use of these techniques are also described.
Molecular Biology, Issue 74, Biochemistry, Microbiology, Cellular Biology, Biophysics, Physiology, Proteins, Vacuoles, Cytosol, Yeasts, Membrane Transport Proteins, Ion Pumps, Fluorometry, yeast, intracellular pH, vacuole, fluorescence, ratiometric, cells
Play Button
Using Caenorhabditis elegans as a Model System to Study Protein Homeostasis in a Multicellular Organism
Authors: Ido Karady, Anna Frumkin, Shiran Dror, Netta Shemesh, Nadav Shai, Anat Ben-Zvi.
Institutions: Ben-Gurion University of the Negev.
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.
Biochemistry, Issue 82, aging, Caenorhabditis elegans, heat shock response, neurodegenerative diseases, protein folding homeostasis, proteostasis, stress, temperature-sensitive
Play Button
siRNA Screening to Identify Ubiquitin and Ubiquitin-like System Regulators of Biological Pathways in Cultured Mammalian Cells
Authors: John S. Bett, Adel F. M. Ibrahim, Amit K. Garg, Sonia Rocha, Ronald T. Hay.
Institutions: University of Dundee, University of Dundee.
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) is emerging as a dynamic cellular signaling network that regulates diverse biological pathways including the hypoxia response, proteostasis, the DNA damage response and transcription.  To better understand how UBLs regulate pathways relevant to human disease, we have compiled a human siRNA “ubiquitome” library consisting of 1,186 siRNA duplex pools targeting all known and predicted components of UBL system pathways. This library can be screened against a range of cell lines expressing reporters of diverse biological pathways to determine which UBL components act as positive or negative regulators of the pathway in question.  Here, we describe a protocol utilizing this library to identify ubiquitome-regulators of the HIF1A-mediated cellular response to hypoxia using a transcription-based luciferase reporter.  An initial assay development stage is performed to establish suitable screening parameters of the cell line before performing the screen in three stages: primary, secondary and tertiary/deconvolution screening.  The use of targeted over whole genome siRNA libraries is becoming increasingly popular as it offers the advantage of reporting only on members of the pathway with which the investigators are most interested.  Despite inherent limitations of siRNA screening, in particular false-positives caused by siRNA off-target effects, the identification of genuine novel regulators of the pathways in question outweigh these shortcomings, which can be overcome by performing a series of carefully undertaken control experiments.
Biochemistry, Issue 87, siRNA screening, ubiquitin, UBL, ubiquitome, hypoxia, HIF1A, High-throughput, mammalian cells, luciferase reporter
Play Button
Localization and Relative Quantification of Carbon Nanotubes in Cells with Multispectral Imaging Flow Cytometry
Authors: Iris Marangon, Nicole Boggetto, Cécilia Ménard-Moyon, Nathalie Luciani, Claire Wilhelm, Alberto Bianco, Florence Gazeau.
Institutions: CNRS/Université Paris Diderot, CNRS/Université Paris Diderot, CNRS/Institut de Biologie Moléculaire et Cellulaire.
Carbon-based nanomaterials, like carbon nanotubes (CNTs), belong to this type of nanoparticles which are very difficult to discriminate from carbon-rich cell structures and de facto there is still no quantitative method to assess their distribution at cell and tissue levels. What we propose here is an innovative method allowing the detection and quantification of CNTs in cells using a multispectral imaging flow cytometer (ImageStream, Amnis). This newly developed device integrates both a high-throughput of cells and high resolution imaging, providing thus images for each cell directly in flow and therefore statistically relevant image analysis. Each cell image is acquired on bright-field (BF), dark-field (DF), and fluorescent channels, giving access respectively to the level and the distribution of light absorption, light scattered and fluorescence for each cell. The analysis consists then in a pixel-by-pixel comparison of each image, of the 7,000-10,000 cells acquired for each condition of the experiment. Localization and quantification of CNTs is made possible thanks to some particular intrinsic properties of CNTs: strong light absorbance and scattering; indeed CNTs appear as strongly absorbed dark spots on BF and bright spots on DF with a precise colocalization. This methodology could have a considerable impact on studies about interactions between nanomaterials and cells given that this protocol is applicable for a large range of nanomaterials, insofar as they are capable of absorbing (and/or scattering) strongly enough the light.
Bioengineering, Issue 82, bioengineering, imaging flow cytometry, Carbon Nanotubes, bio-nano-interactions, cellular uptake, cell trafficking
Play Button
Detection of Viral RNA by Fluorescence in situ Hybridization (FISH)
Authors: Kishanda Vyboh, Lara Ajamian, Andrew J. Mouland.
Institutions: Sir Mortimer B. Davis Jewish General Hospital, McGill University , McGill University .
Viruses that infect cells elicit specific changes to normal cell functions which serve to divert energy and resources for viral replication. Many aspects of host cell function are commandeered by viruses, usually by the expression of viral gene products that recruit host cell proteins and machineries. Moreover, viruses engineer specific membrane organelles or tag on to mobile vesicles and motor proteins to target regions of the cell (during de novo infection, viruses co-opt molecular motor proteins to target the nucleus; later, during virus assembly, they will hijack cellular machineries that will help in the assembly of viruses). Less is understood on how viruses, in particular those with RNA genomes, coordinate the intracellular trafficking of both protein and RNA components and how they achieve assembly of infectious particles at specific loci in the cell. The study of RNA localization began in earlier work. Developing lower eukaryotic embryos and neuronal cells provided important biological information, and also underscored the importance of RNA localization in the programming of gene expression cascades. The study in other organisms and cell systems has yielded similar important information. Viruses are obligate parasites and must utilise their host cells to replicate. Thus, it is critical to understand how RNA viruses direct their RNA genomes from the nucleus, through the nuclear pore, through the cytoplasm and on to one of its final destinations, into progeny virus particles 1. FISH serves as a useful tool to identify changes in steady-state localization of viral RNA. When combined with immunofluorescence (IF) analysis 22, FISH/IF co-analyses will provide information on the co-localization of proteins with the viral RNA3. This analysis therefore provides a good starting point to test for RNA-protein interactions by other biochemical or biophysical tests 4,5, since co-localization by itself is not enough evidence to be certain of an interaction. In studying viral RNA localization using a method like this, abundant information has been gained on both viral and cellular RNA trafficking events 6. For instance, HIV-1 produces RNA in the nucleus of infected cells but the RNA is only translated in the cytoplasm. When one key viral protein is missing (Rev) 7, FISH of the viral RNA has revealed that the block to viral replication is due to the retention of the HIV-1 genomic RNA in the nucleus 8. Here, we present the method for visual analysis of viral genomic RNA in situ. The method makes use of a labelled RNA probe. This probe is designed to be complementary to the viral genomic RNA. During the in vitro synthesis of the antisense RNA probe, the ribonucleotide that is modified with digoxigenin (DIG) is included in an in vitro transcription reaction. Once the probe has hybridized to the target mRNA in cells, subsequent antibody labelling steps (Figure 1) will reveal the localization of the mRNA as well as proteins of interest when performing FISH/IF.
Genetics, Issue 63, Viral genomic RNA, Fluorescence in situ Hybridization, FISH, imaging, genomics
Play Button
Optimized Analysis of DNA Methylation and Gene Expression from Small, Anatomically-defined Areas of the Brain
Authors: Marc Bettscheider, Arleta Kuczynska, Osborne Almeida, Dietmar Spengler.
Institutions: Max Planck Institute of Psychiatry.
Exposure to diet, drugs and early life adversity during sensitive windows of life 1,2 can lead to lasting changes in gene expression that contribute to the display of physiological and behavioural phenotypes. Such environmental programming is likely to increase the susceptibility to metabolic, cardiovascular and mental diseases 3,4. DNA methylation and histone modifications are considered key processes in the mediation of the gene-environment dialogue and appear also to underlay environmental programming 5. In mammals, DNA methylation typically comprises the covalent addition of a methyl group at the 5-position of cytosine within the context of CpG dinucleotides. CpG methylation occurs in a highly tissue- and cell-specific manner making it a challenge to study discrete, small regions of the brain where cellular heterogeneity is high and tissue quantity limited. Moreover, because gene expression and methylation are closely linked events, increased value can be gained by comparing both parameters in the same sample. Here, a step-by-step protocol (Figure 1) for the investigation of epigenetic programming in the brain is presented using the 'maternal separation' paradigm of early life adversity for illustrative purposes. The protocol describes the preparation of micropunches from differentially-aged mouse brains from which DNA and RNA can be simultaneously isolated, thus allowing DNA methylation and gene expression analyses in the same sample.
Neuroscience, Issue 65, Genetics, Physiology, Epigenetics, DNA methylation, early-life stress, maternal separation, bisulfite sequencing
Play Button
Isolation of Lymphocytes from Mouse Genital Tract Mucosa
Authors: Janina Jiang, Kathleen A. Kelly.
Institutions: University of California, Los Angeles , California NanoSystems.
Mucosal surfaces, including in the gastrointestinal, urogenital, and respiratory tracts, provide portals of entry for pathogens, such as viruses and bacteria 1. Mucosae are also inductive sites in the host to generate immunity against pathogens, such as the Peyers patches in the intestinal tract and the nasal-associated lymphoreticular tissue in the respiratory tract. This unique feature brings mucosal immunity as a crucial player of the host defense system. Many studies have been focused on gastrointestinal and respiratory mucosal sites. However, there has been little investigation of reproductive mucosal sites. The genital tract mucosa is the primary infection site for sexually transmitted diseases (STD), including bacterial and viral infections. STDs are one of the most critical health challenges facing the world today. Centers for Disease Control and Prevention estimates that there are 19 million new infectious every year in the United States. STDs cost the U.S. health care system $17 billion every year 2, and cost individuals even more in immediate and life-long health consequences. In order to confront this challenge, a greater understanding of reproductive mucosal immunity is needed and isolating lymphocytes is an essential component of these studies. Here, we present a method to reproducibly isolate lymphocytes from murine female genital tracts for immunological studies that can be modified for adaption to other species. The method described below is based on one mouse. 
Immunology, Issue 67, Mucosal immunity, sexually transmitted diseases, genital tract lymphocytes, lymphocyte isolation, flow cytometry, FACS
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
DNA Methylation: Bisulphite Modification and Analysis
Authors: Kate Patterson, Laura Molloy, Wenjia Qu, Susan Clark.
Institutions: Garvan Institute of Medical Research, University of NSW.
Epigenetics describes the heritable changes in gene function that occur independently to the DNA sequence. The molecular basis of epigenetic gene regulation is complex, but essentially involves modifications to the DNA itself or the proteins with which DNA associates. The predominant epigenetic modification of DNA in mammalian genomes is methylation of cytosine nucleotides (5-MeC). DNA methylation provides instruction to gene expression machinery as to where and when the gene should be expressed. The primary target sequence for DNA methylation in mammals is 5'-CpG-3' dinucleotides (Figure 1). CpG dinucleotides are not uniformly distributed throughout the genome, but are concentrated in regions of repetitive genomic sequences and CpG "islands" commonly associated with gene promoters (Figure 1). DNA methylation patterns are established early in development, modulated during tissue specific differentiation and disrupted in many disease states including cancer. To understand the biological role of DNA methylation and its role in human disease, precise, efficient and reproducible methods are required to detect and quantify individual 5-MeCs. This protocol for bisulphite conversion is the "gold standard" for DNA methylation analysis and facilitates identification and quantification of DNA methylation at single nucleotide resolution. The chemistry of cytosine deamination by sodium bisulphite involves three steps (Figure 2). (1) Sulphonation: The addition of bisulphite to the 5-6 double bond of cytosine (2) Hydrolic Deamination: hydrolytic deamination of the resulting cytosine-bisulphite derivative to give a uracil-bisulphite derivative (3) Alkali Desulphonation: Removal of the sulphonate group by an alkali treatment, to give uracil. Bisulphite preferentially deaminates cytosine to uracil in single stranded DNA, whereas 5-MeC, is refractory to bisulphite-mediated deamination. Upon PCR amplification, uracil is amplified as thymine while 5-MeC residues remain as cytosines, allowing methylated CpGs to be distinguished from unmethylated CpGs by presence of a cytosine "C" versus thymine "T" residue during sequencing. DNA modification by bisulphite conversion is a well-established protocol that can be exploited for many methods of DNA methylation analysis. Since the detection of 5-MeC by bisulphite conversion was first demonstrated by Frommer et al.1 and Clark et al.2, methods based around bisulphite conversion of genomic DNA account for the majority of new data on DNA methylation. Different methods of post PCR analysis may be utilized, depending on the degree of specificity and resolution of methylation required. Cloning and sequencing is still the most readily available method that can give single nucleotide resolution for methylation across the DNA molecule.
Genetics, Issue 56, epigenetics, DNA methylation, Bisulphite, 5-methylcytosine (5-MeC), PCR
Play Button
Stimulation of Cytoplasmic DNA Sensing Pathways In Vitro and In Vivo
Authors: Chih Hung Ku, Brian J. Ferguson.
Institutions: University of Cambridge.
In order to efficiently stimulate an innate immune response, DNA must be of sufficient length and purity. We present a method where double stranded DNA (dsDNA) which has the requisite characteristics to stimulate the cytoplasmic DNA sensing pathways can be generated cheaply and with ease. By the concatemerization of short, synthetic oligonucleotides (which lack CpG motifs), dsDNA can be generated to be of sufficient length to activate the cytosolic DNA sensing pathway. This protocol involves blunt end ligation of the oligonucleotides in the presence of polyethylene glycol (PEG), which provides an environment for efficient ligation to occur. The dsDNA concatemers can be used, following purification by phenol/chloroform extraction, to simulate the innate immune response in vitro by standard transfection protocols. This DNA can also be used to stimulate innate immunity in vivo by intradermal injection into the ear pinna of a mouse, for example. By standardizing the concatemerization process and the subsequent stimulation protocols, a reliable and reproducible activation of the innate immune system can be produced.
Cellular Biology, Issue 91, innate immunity, DNA, double stranded DNA (dsDNA), concatemer, signaling, transfection, stimulation, ligation
Play Button
Single Oocyte Bisulfite Mutagenesis
Authors: Michelle M. Denomme, Liyue Zhang, Mellissa R.W. Mann.
Institutions: Schulich School of Medicine and Dentistry, University of Western Ontario, Schulich School of Medicine and Dentistry, University of Western Ontario, Children's Health Research Institute.
Epigenetics encompasses all heritable and reversible modifications to chromatin that alter gene accessibility, and thus are the primary mechanisms for regulating gene transcription1. DNA methylation is an epigenetic modification that acts predominantly as a repressive mark. Through the covalent addition of a methyl group onto cytosines in CpG dinucleotides, it can recruit additional repressive proteins and histone modifications to initiate processes involved in condensing chromatin and silencing genes2. DNA methylation is essential for normal development as it plays a critical role in developmental programming, cell differentiation, repression of retroviral elements, X-chromosome inactivation and genomic imprinting. One of the most powerful methods for DNA methylation analysis is bisulfite mutagenesis. Sodium bisulfite is a DNA mutagen that deaminates cytosines into uracils. Following PCR amplification and sequencing, these conversion events are detected as thymines. Methylated cytosines are protected from deamination and thus remain as cytosines, enabling identification of DNA methylation at the individual nucleotide level3. Development of the bisulfite mutagenesis assay has advanced from those originally reported4-6 towards ones that are more sensitive and reproducible7. One key advancement was embedding smaller amounts of DNA in an agarose bead, thereby protecting DNA from the harsh bisulfite treatment8. This enabled methylation analysis to be performed on pools of oocytes and blastocyst-stage embryos9. The most sophisticated bisulfite mutagenesis protocol to date is for individual blastocyst-stage embryos10. However, since blastocysts have on average 64 cells (containing 120-720 pg of genomic DNA), this method is not efficacious for methylation studies on individual oocytes or cleavage-stage embryos. Taking clues from agarose embedding of minute DNA amounts including oocytes11, here we present a method whereby oocytes are directly embedded in an agarose and lysis solution bead immediately following retrieval and removal of the zona pellucida from the oocyte. This enables us to bypass the two main challenges of single oocyte bisulfite mutagenesis: protecting a minute amount of DNA from degradation, and subsequent loss during the numerous protocol steps. Importantly, as data are obtained from single oocytes, the issue of PCR bias within pools is eliminated. Furthermore, inadvertent cumulus cell contamination is detectable by this method since any sample with more than one methylation pattern may be excluded from analysis12. This protocol provides an improved method for successful and reproducible analyses of DNA methylation at the single-cell level and is ideally suited for individual oocytes as well as cleavage-stage embryos.
Genetics, Issue 64, Developmental Biology, Biochemistry, Bisulfite mutagenesis, DNA methylation, individual oocyte, individual embryo, mouse model, PCR, epigenetics
Play Button
Study of Phagolysosome Biogenesis in Live Macrophages
Authors: Marc Bronietzki, Bahram Kasmapour, Maximiliano Gabriel Gutierrez.
Institutions: Helmholtz Centre for Infection Research, National Institute for Medical Research.
Phagocytic cells play a major role in the innate immune system by removing and eliminating invading microorganisms in their phagosomes. Phagosome maturation is the complex and tightly regulated process during which a nascent phagosome undergoes drastic transformation through well-orchestrated interactions with various cellular organelles and compartments in the cytoplasm. This process, which is essential for the physiological function of phagocytic cells by endowing phagosomes with their lytic and bactericidal properties, culminates in fusion of phagosomes with lysosomes and biogenesis of phagolysosomes which is considered to be the last and critical stage of maturation for phagosomes. In this report, we describe a live cell imaging based method for qualitative and quantitative analysis of the dynamic process of lysosome to phagosome content delivery, which is a hallmark of phagolysosome biogenesis. This approach uses IgG-coated microbeads as a model for phagocytosis and fluorophore-conjugated dextran molecules as a luminal lysosomal cargo probe, in order to follow the dynamic delivery of lysosmal content to the phagosomes in real time in live macrophages using time-lapse imaging and confocal laser scanning microscopy. Here we describe in detail the background, the preparation steps and the step-by-step experimental setup to enable easy and precise deployment of this method in other labs. Our described method is simple, robust, and most importantly, can be easily adapted to study phagosomal interactions and maturation in different systems and under various experimental settings such as use of various phagocytic cells types, loss-of-function experiments, different probes, and phagocytic particles.
Immunology, Issue 85, Lysosome, Phagosome, phagolysosome, live-cell imaging, phagocytes, macrophages
Play Button
Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?
Authors: Julia Y. Ljubimova, Hui Ding, Jose Portilla-Arias, Rameshwar Patil, Pallavi R. Gangalum, Alexandra Chesnokova, Satoshi Inoue, Arthur Rekechenetskiy, Tala Nassoura, Keith L. Black, Eggehard Holler.
Institutions: Cedars-Sinai Medical Center.
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
Chemistry, Issue 88, Cancer treatment, personalized medicine, polymalic acid, nanodrug, biopolymer, targeting, host compatibility, biodegradability
Play Button
Strategies for Study of Neuroprotection from Cold-preconditioning
Authors: Heidi M. Mitchell, David M. White, Richard P. Kraig.
Institutions: The University of Chicago Medical Center.
Neurological injury is a frequent cause of morbidity and mortality from general anesthesia and related surgical procedures that could be alleviated by development of effective, easy to administer and safe preconditioning treatments. We seek to define the neural immune signaling responsible for cold-preconditioning as means to identify novel targets for therapeutics development to protect brain before injury onset. Low-level pro-inflammatory mediator signaling changes over time are essential for cold-preconditioning neuroprotection. This signaling is consistent with the basic tenets of physiological conditioning hormesis, which require that irritative stimuli reach a threshold magnitude with sufficient time for adaptation to the stimuli for protection to become evident. Accordingly, delineation of the immune signaling involved in cold-preconditioning neuroprotection requires that biological systems and experimental manipulations plus technical capacities are highly reproducible and sensitive. Our approach is to use hippocampal slice cultures as an in vitro model that closely reflects their in vivo counterparts with multi-synaptic neural networks influenced by mature and quiescent macroglia / microglia. This glial state is particularly important for microglia since they are the principal source of cytokines, which are operative in the femtomolar range. Also, slice cultures can be maintained in vitro for several weeks, which is sufficient time to evoke activating stimuli and assess adaptive responses. Finally, environmental conditions can be accurately controlled using slice cultures so that cytokine signaling of cold-preconditioning can be measured, mimicked, and modulated to dissect the critical node aspects. Cytokine signaling system analyses require the use of sensitive and reproducible multiplexed techniques. We use quantitative PCR for TNF-α to screen for microglial activation followed by quantitative real-time qPCR array screening to assess tissue-wide cytokine changes. The latter is a most sensitive and reproducible means to measure multiple cytokine system signaling changes simultaneously. Significant changes are confirmed with targeted qPCR and then protein detection. We probe for tissue-based cytokine protein changes using multiplexed microsphere flow cytometric assays using Luminex technology. Cell-specific cytokine production is determined with double-label immunohistochemistry. Taken together, this brain tissue preparation and style of use, coupled to the suggested investigative strategies, may be an optimal approach for identifying potential targets for the development of novel therapeutics that could mimic the advantages of cold-preconditioning.
Neuroscience, Issue 43, innate immunity, hormesis, microglia, hippocampus, slice culture, immunohistochemistry, neural-immune, gene expression, real-time PCR
Play Button
Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale
Authors: Valentina Gandin, Kristina Sikström, Tommy Alain, Masahiro Morita, Shannon McLaughlan, Ola Larsson, Ivan Topisirovic.
Institutions: McGill University, Karolinska Institutet, McGill University.
mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed “anota” algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.
Biochemistry, Issue 87, Cells, Eukaryota, Nutritional and Metabolic Diseases, Neoplasms, Metabolic Phenomena, Cell Physiological Phenomena, mRNA translation, ribosomes, protein synthesis, genome-wide analysis, translatome, mTOR, eIF4E, 4E-BP1
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Identification of Post-translational Modifications of Plant Protein Complexes
Authors: Sophie J. M. Piquerez, Alexi L. Balmuth, Jan Sklenář, Alexandra M.E. Jones, John P. Rathjen, Vardis Ntoukakis.
Institutions: University of Warwick, Norwich Research Park, The Australian National University.
Plants adapt quickly to changing environments due to elaborate perception and signaling systems. During pathogen attack, plants rapidly respond to infection via the recruitment and activation of immune complexes. Activation of immune complexes is associated with post-translational modifications (PTMs) of proteins, such as phosphorylation, glycosylation, or ubiquitination. Understanding how these PTMs are choreographed will lead to a better understanding of how resistance is achieved. Here we describe a protein purification method for nucleotide-binding leucine-rich repeat (NB-LRR)-interacting proteins and the subsequent identification of their post-translational modifications (PTMs). With small modifications, the protocol can be applied for the purification of other plant protein complexes. The method is based on the expression of an epitope-tagged version of the protein of interest, which is subsequently partially purified by immunoprecipitation and subjected to mass spectrometry for identification of interacting proteins and PTMs. This protocol demonstrates that: i). Dynamic changes in PTMs such as phosphorylation can be detected by mass spectrometry; ii). It is important to have sufficient quantities of the protein of interest, and this can compensate for the lack of purity of the immunoprecipitate; iii). In order to detect PTMs of a protein of interest, this protein has to be immunoprecipitated to get a sufficient quantity of protein.
Plant Biology, Issue 84, plant-microbe interactions, protein complex purification, mass spectrometry, protein phosphorylation, Prf, Pto, AvrPto, AvrPtoB
Play Button
Spinal Cord Electrophysiology II: Extracellular Suction Electrode Fabrication
Authors: Suresh Garudadri, Benjamin Gallarda, Samuel Pfaff, William Alaynick.
Institutions: The Salk Institute for Biological Studies.
Development of neural circuitries and locomotion can be studied using neonatal rodent spinal cord central pattern generator (CPG) behavior. We demonstrate a method to fabricate suction electrodes that are used to examine CPG activity, or fictive locomotion, in dissected rodent spinal cords. The rodent spinal cords are placed in artificial cerebrospinal fluid and the ventral roots are drawn into the suction electrode. The electrode is constructed by modifying a commercially available suction electrode. A heavier silver wire is used instead of the standard wire given by the commercially available electrode. The glass tip on the commercial electrode is replaced with a plastic tip for increased durability. We prepare hand drawn electrodes and electrodes made from specific sizes of tubing, allowing consistency and reproducibility. Data is collected using an amplifier and neurogram acquisition software. Recordings are performed on an air table within a Faraday cage to prevent mechanical and electrical interference, respectively.
Neuroscience, Issue 48, Electrophysiology, spinal cord, fictive locomotion, extracellular electrode
Play Button
Culture of myeloid dendritic cells from bone marrow precursors
Authors: Jeanette Boudreau, Sandeep Koshy, Derek Cummings, Yonghong Wan.
Institutions: McMaster University, McMaster University, University of Waterloo.
Myeloid dendritic cells (DCs) are frequently used to study the interactions between innate and adaptive immune mechanisms and the early response to infection. Because these are the most potent antigen presenting cells, DCs are being increasingly used as a vaccine vector to study the induction of antigen-specific immune responses. In this video, we demonstrate the procedure for harvesting tibias and femurs from a donor mouse, processing the bone marrow and differentiating DCs in vitro. The properties of DCs change following stimulation: immature dendritic cells are potent phagocytes, whereas mature DCs are capable of antigen presentation and interaction with CD4+ and CD8+ T cells. This change in functional activity corresponds with the upregulation of cell surface markers and cytokine production. Many agents can be used to mature DCs, including cytokines and toll-like receptor ligands. In this video, we demonstrate flow cytometric comparisons of expression of two co-stimulatory molecules, CD86 and CD40, and the cytokine, IL-12, following overnight stimulation with CpG or mock treatment. After differentiation, DCs can be further manipulated for use as a vaccine vector or to generate antigen-specific immune responses by in vitro pulsing using peptides or proteins, or transduced using recombinant viral vectors.
Immunology, Issue 17, dendritic cells, GM-CSF, culture, bone marrow
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.