JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Lipopolysaccharide-induced neuronal activation in the paraventricular and dorsomedial hypothalamus depends on ambient temperature.
PUBLISHED: 01-01-2013
Systemic inflammatory response syndrome is associated with either fever or hypothermia, but the mechanisms responsible for switching from one to the other are unknown. In experimental animals, systemic inflammation is often induced by bacterial lipopolysaccharide (LPS). To identify the diencephalic and brainstem structures involved in the fever-hypothermia switch, we studied the expression of c-Fos protein, a marker of neuronal activation, in rats treated with the same high dose of LPS (0.5 mg/kg, intravenously) either in a thermoneutral (30 °C) or cool (24 °C) environment. At 30 °C, LPS caused fever; at 24 °C, the same dose caused profound hypothermia. Both fever and hypothermia were associated with the induction of c-Fos in many brain areas, including several structures of the anterior preoptic, paraventricular, lateral, and dorsal hypothalamus, the bed nucleus of the stria terminalis, the posterior pretectal nucleus, ventrolateral periaqueductal gray, lateral parabrachial nucleus, area postrema, and nucleus of the solitary tract. Every brain area studied showed a comparable response to LPS at the two different ambient temperatures used, with the exception of two areas: the dorsomedial hypothalamic nucleus (DMH), which we studied together with the adjacent dorsal hypothalamic area (DA), and the paraventricular hypothalamic nucleus (PVH). Both structures had much stronger c-Fos expression during LPS hypothermia than during fever. We propose that PVH and DMH/DA neurons are involved in a circuit, which - depending on the ambient temperature - determines whether the thermoregulatory response to bacterial LPS will be fever or hypothermia.
Underwater submergence produces autonomic changes that are observed in virtually all diving animals. This reflexly-induced response consists of apnea, a parasympathetically-induced bradycardia and a sympathetically-induced alteration of vascular resistance that maintains blood flow to the heart, brain and exercising muscles. While many of the metabolic and cardiorespiratory aspects of the diving response have been studied in marine animals, investigations of the central integrative aspects of this brainstem reflex have been relatively lacking. Because the physiology and neuroanatomy of the rat are well characterized, the rat can be used to help ascertain the central pathways of the mammalian diving response. Detailed instructions are provided on how to train rats to swim and voluntarily dive underwater through a 5 m long Plexiglas maze. Considerations regarding tank design and procedure room requirements are also given. The behavioral training is conducted in such a way as to reduce the stressfulness that could otherwise be associated with forced underwater submergence, thus minimizing activation of central stress pathways. The training procedures are not technically difficult, but they can be time-consuming. Since behavioral training of animals can only provide a model to be used with other experimental techniques, examples of how voluntarily diving rats have been used in conjunction with other physiological and neuroanatomical research techniques, and how the basic training procedures may need to be modified to accommodate these techniques, are also provided. These experiments show that voluntarily diving rats exhibit the same cardiorespiratory changes typically seen in other diving animals. The ease with which rats can be trained to voluntarily dive underwater, and the already available data from rats collected in other neurophysiological studies, makes voluntarily diving rats a good behavioral model to be used in studies investigating the central aspects of the mammalian diving response.
23 Related JoVE Articles!
Play Button
Accurate and Simple Measurement of the Pro-inflammatory Cytokine IL-1β using a Whole Blood Stimulation Assay
Authors: Barbara Yang, Tuyet-Hang Pham, Raphaela Goldbach-Mansky, Massimo Gadina.
Institutions: National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Arthritis and Musculoskeletal and Skin Diseases.
Inflammatory processes resulting from the secretion of soluble mediators by immune cells, lead to various manifestations in skin, joints and other tissues as well as altered cytokine homeostasis. The innate immune system plays a crucial role in recognizing pathogens and other endogenous danger stimuli. One of the major cytokines released by innate immune cells is Interleukin (IL)-1. Therefore, we utilize a whole blood stimulation assay in order to measure the secretion of inflammatory cytokines and specifically of the pro-inflammatory cytokine IL-1β 1, 2, 3. Patients with genetic dysfunctions of the innate immune system causing autoinflammatory syndromes show an exaggerated release of mature IL-1β upon stimulation with LPS alone. In order to evaluate the innate immune component of patients who present with inflammatory-associated pathologies, we use a specific immunoassay to detect cellular immune responses to pathogen-associated molecular patterns (PAMPs), such as the gram-negative bacterial endotoxin, lipopolysaccharide (LPS). These PAMPs are recognized by pathogen recognition receptors (PRRs), which are found on the cells of the innate immune system 4, 5, 6, 7. A primary signal, LPS, in conjunction with a secondary signal, ATP, is necessary for the activation of the inflammasome, a multiprotein complex that processes pro-IL-1β to its mature, bioactive form 4, 5, 6, 8, 9, 10. The whole blood assay requires minimal sample manipulation to assess cytokine production when compared to other methods that require labor intensive isolation and culturing of specific cell populations. This method differs from other whole blood stimulation assays; rather than diluting samples with a ratio of RPMI media, we perform a white blood cell count directly from diluted whole blood and therefore, stimulate a known number of white blood cells in culture 2. The results of this particular whole blood assay demonstrate a novel technique useful in elucidating patient cohorts presenting with autoinflammatory pathophysiologies.
Immunology, Issue 49, Interleukin-1 beta, autoinflammatory, whole blood stimulation, lipopolysaccharide, ATP, cytokine production, pattern-recognition receptors, pathogen-associated molecular patterns
Play Button
Mouse Models of Periventricular Leukomalacia
Authors: Yan Shen, Jennifer M. Plane, Wenbin Deng.
Institutions: University of California, Davis.
We describe a protocol for establishing mouse models of periventricular leukomalacia (PVL). PVL is the predominant form of brain injury in premature infants and the most common antecedent of cerebral palsy. PVL is characterized by periventricular white matter damage with prominent oligodendroglial injury. Hypoxia/ischemia with or without systemic infection/inflammation are the primary causes of PVL. We use P6 mice to create models of neonatal brain injury by the induction of hypoxia/ischemia with or without systemic infection/inflammation with unilateral carotid ligation followed by exposure to hypoxia with or without injection of the endotoxin lipopolysaccharide (LPS). Immunohistochemistry of myelin basic protein (MBP) or O1 and electron microscopic examination show prominent myelin loss in cerebral white matter with additional damage to the hippocampus and thalamus. Establishment of mouse models of PVL will greatly facilitate the study of disease pathogenesis using available transgenic mouse strains, conduction of drug trials in a relatively high throughput manner to identify candidate therapeutic agents, and testing of stem cell transplantation using immunodeficiency mouse strains.
JoVE Neuroscience, Issue 39, brain, mouse, white matter injury, oligodendrocyte, periventricular leukomalacia
Play Button
Induction and Assessment of Class Switch Recombination in Purified Murine B Cells
Authors: Ahmad Zaheen, Alberto Martin.
Institutions: University of Toronto.
Humoral immunity is the branch of the immune system maintained by B cells and mediated through the secretion of antibodies. Upon B cell activation, the immunoglobulin locus undergoes a series of genetic modifications to alter the binding capacity and effector function of secreted antibodies. This process is highlighted by a genomic recombination event known as class switch recombination (CSR) in which the default IgM antibody isotype is substituted for one of IgG, IgA, or IgE. Each isotype possesses distinct effector functions thereby making CSR crucial to the maintenance of immunity. Diversification of the immunoglobulin locus is mediated by the enzyme activation-induced cytidine deaminase (AID). A schematic video describing this process in detail is available online ( AID's activity and the CSR pathway are commonly studied in the assessment of B cell function and humoral immunity in mice. The protocol outlined in this report presents a method of B cell isolation from murine spleens and subsequent stimulation with bacterial lipopolysaccharide (LPS) to induce class switching to IgG3 (for other antibody isotypes see Table 1). In addition, the fluorescent cell staining dye Carboxyfluorescein succinimidyl ester (CFSE) is used to monitor cell division of stimulated cells, a process crucial to isotype switching 1, 2. The regulation of AID and the mechanism by which CSR occurs are still unclear and thus in vitro class switch assays provide a reliable method for testing these processes in various mouse models. These assays have been previously used in the context of gene deficiency using knockout mice 3. Furthermore, in vitro switching of B cells can be preceded by viral transduction to modulate gene expression by RNA knockdown or transgene expression 4-6. The data from these types of experiments have impacted our understanding of AID activity, resolution of the CSR reaction, and antibody-mediated immunity in the mouse.
Immunology, Issue 42, Activation-induced Cytidine Deaminase, B cell, Antibody, Class Switch Recombination, Humoral Immunity, Proliferation, Lipopolysaccharide, CFSE
Play Button
Protocol for Long Duration Whole Body Hyperthermia in Mice
Authors: Vikas Duhan, Neha Joshi, P. Nagarajan, Pramod Upadhyay.
Institutions: National Institute of Immunology, National Institute of Immunology.
Hyperthermia is a general term used to define the increase in core body temperature above normal. It is often used to describe the increased core body temperature that is observed during fever. The use of hyperthermia as an adjuvant has emerged as a promising procedure for tumor regression in the field of cancer biology. For this purpose, the most important requirement is to have reliable and uniform heating protocols. We have developed a protocol for hyperthermia (whole body) in mice. In this protocol, animals are exposed to cycles of hyperthermia for 90 min followed by a rest period of 15 min. During this period mice have easy access to food and water. High body temperature spikes in the mice during first few hyperthermia exposure cycles are prevented by immobilizing the animal. Additionally, normal saline is administered in first few cycles to minimize the effects of dehydration. This protocol can simulate fever like conditions in mice up to 12-24 hr. We have used 8-12 weeks old BALB/Cj female mice to demonstrate the protocol.
Medicine, Issue 66, Anatomy, Physiology, Mouse, Fever, Whole Body Hyperthermia, Temperature Spikes, core body temperature
Play Button
In vivo Imaging Method to Distinguish Acute and Chronic Inflammation
Authors: Jen-Chieh Tseng, Andrew L. Kung.
Institutions: Harvard Medical School, Columbia University Medical Center.
Inflammation is a fundamental aspect of many human diseases. In this video report, we demonstrate non-invasive bioluminescence imaging techniques that distinguish acute and chronic inflammation in mouse models. With tissue damage or pathogen invasion, neutrophils are the first line of defense, playing a major role in mediating the acute inflammatory response. As the inflammatory reaction progresses, circulating monocytes gradually migrate into the site of injury and differentiate into mature macrophages, which mediate chronic inflammation and promote tissue repair by removing tissue debris and producing anti-inflammatory cytokines. Intraperitoneal injection of luminol (5-amino-2,3-dihydro-1,4-phthalazinedione, sodium salt) enables detection of acute inflammation largely mediated by tissue-infiltrating neutrophils. Luminol specifically reacts with the superoxide generated within the phagosomes of neutrophils since bioluminescence results from a myeloperoxidase (MPO) mediated reaction. Lucigenin (bis-N-methylacridinium nitrate) also reacts with superoxide in order to generate bioluminescence. However, lucigenin bioluminescence is independent of MPO and it solely relies on phagocyte NADPH oxidase (Phox) in macrophages during chronic inflammation. Together, luminol and lucigenin allow non-invasive visualization and longitudinal assessment of different phagocyte populations across both acute and chronic inflammatory phases. Given the important role of inflammation in a variety of human diseases, we believe this non-invasive imaging method can help investigate the differential roles of neutrophils and macrophages in a variety of pathological conditions.
Immunology, Issue 78, Infection, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Cancer Biology, Stem Cell Biology, Inflammation, Phagocytes, Phagocyte, Superoxides, Molecular Imaging, chemiluminescence, in vivo imaging, superoxide, bioluminescence, chronic inflammation, acute inflammation, phagocytes, cells, imaging, animal model
Play Button
Imaging Calcium Responses in GFP-tagged Neurons of Hypothalamic Mouse Brain Slices
Authors: Christian Schauer, Trese Leinders-Zufall.
Institutions: University of Saarland, Homburg, Germany.
Despite an enormous increase in our knowledge about the mechanisms underlying the encoding of information in the brain, a central question concerning the precise molecular steps as well as the activity of specific neurons in multi-functional nuclei of brain areas such as the hypothalamus remain. This problem includes identification of the molecular components involved in the regulation of various neurohormone signal transduction cascades. Elevations of intracellular Ca2+ play an important role in regulating the sensitivity of neurons, both at the level of signal transduction and at synaptic sites. New tools have emerged to help identify neurons in the myriad of brain neurons by expressing green fluorescent protein (GFP) under the control of a particular promoter. To monitor both spatially and temporally stimulus-induced Ca2+ responses in GFP-tagged neurons, a non-green fluorescent Ca2+ indicator dye needs to be used. In addition, confocal microscopy is a favorite method of imaging individual neurons in tissue slices due to its ability to visualize neurons in distinct planes of depth within the tissue and to limit out-of-focus fluorescence. The ratiometric Ca2+ indicator fura-2 has been used in combination with GFP-tagged neurons1. However, the dye is excited by ultraviolet (UV) light. The cost of the laser and the limited optical penetration depth of UV light hindered its use in many laboratories. Moreover, GFP fluorescence may interfere with the fura-2 signals2. Therefore, we decided to use a red fluorescent Ca2+ indicator dye. The huge Stokes shift of fura-red permits multicolor analysis of the red fluorescence in combination with GFP using a single excitation wavelength. We had previously good results using fura-red in combination with GFP-tagged olfactory neurons3. The protocols for olfactory tissue slices seemed to work equally well in hypothalamic neurons4. Fura-red based Ca2+ imaging was also successfully combined with GFP-tagged pancreatic β-cells and GFP-tagged receptors expressed in HEK cells5,6. A little quirk of fura-red is that its fluorescence intensity at 650 nm decreases once the indicator binds calcium7. Therefore, the fluorescence of resting neurons with low Ca2+ concentration has relatively high intensity. It should be noted, that other red Ca2+-indicator dyes exist or are currently being developed, that might give better or improved results in different neurons and brain areas.
Neuroscience, Issue 66, Molecular Biology, Medicine, GFP, fura-red, calcium, confocal imaging, neuron, hypothalamus, brain, olfaction, mouse, slice preparation
Play Button
Simultaneous Electrophysiological Recording and Calcium Imaging of Suprachiasmatic Nucleus Neurons
Authors: Robert P. Irwin, Charles N. Allen.
Institutions: Oregon Health & Science University, Oregon Health & Science University.
Simultaneous electrophysiological and fluorescent imaging recording methods were used to study the role of changes of membrane potential or current in regulating the intracellular calcium concentration. Changing environmental conditions, such as the light-dark cycle, can modify neuronal and neural network activity and the expression of a family of circadian clock genes within the suprachiasmatic nucleus (SCN), the location of the master circadian clock in the mammalian brain. Excitatory synaptic transmission leads to an increase in the postsynaptic Ca2+ concentration that is believed to activate the signaling pathways that shifts the rhythmic expression of circadian clock genes. Hypothalamic slices containing the SCN were patch clamped using microelectrodes filled with an internal solution containing the calcium indicator bis-fura-2. After a seal was formed between the microelectrode and the SCN neuronal membrane, the membrane was ruptured using gentle suction and the calcium probe diffused into the neuron filling both the soma and dendrites. Quantitative ratiometric measurements of the intracellular calcium concentration were recorded simultaneously with membrane potential or current. Using these methods it is possible to study the role of changes of the intracellular calcium concentration produced by synaptic activity and action potential firing of individual neurons. In this presentation we demonstrate the methods to simultaneously record electrophysiological activity along with intracellular calcium from individual SCN neurons maintained in brain slices.
Neuroscience, Issue 82, Synaptic Transmission, Action Potentials, Circadian Rhythm, Excitatory Postsynaptic Potentials, Life Sciences (General), circadian rhythm, suprachiasmatic nucleus, membrane potential, patch clamp recording, fluorescent probe, intracellular calcium
Play Button
Strategies for Study of Neuroprotection from Cold-preconditioning
Authors: Heidi M. Mitchell, David M. White, Richard P. Kraig.
Institutions: The University of Chicago Medical Center.
Neurological injury is a frequent cause of morbidity and mortality from general anesthesia and related surgical procedures that could be alleviated by development of effective, easy to administer and safe preconditioning treatments. We seek to define the neural immune signaling responsible for cold-preconditioning as means to identify novel targets for therapeutics development to protect brain before injury onset. Low-level pro-inflammatory mediator signaling changes over time are essential for cold-preconditioning neuroprotection. This signaling is consistent with the basic tenets of physiological conditioning hormesis, which require that irritative stimuli reach a threshold magnitude with sufficient time for adaptation to the stimuli for protection to become evident. Accordingly, delineation of the immune signaling involved in cold-preconditioning neuroprotection requires that biological systems and experimental manipulations plus technical capacities are highly reproducible and sensitive. Our approach is to use hippocampal slice cultures as an in vitro model that closely reflects their in vivo counterparts with multi-synaptic neural networks influenced by mature and quiescent macroglia / microglia. This glial state is particularly important for microglia since they are the principal source of cytokines, which are operative in the femtomolar range. Also, slice cultures can be maintained in vitro for several weeks, which is sufficient time to evoke activating stimuli and assess adaptive responses. Finally, environmental conditions can be accurately controlled using slice cultures so that cytokine signaling of cold-preconditioning can be measured, mimicked, and modulated to dissect the critical node aspects. Cytokine signaling system analyses require the use of sensitive and reproducible multiplexed techniques. We use quantitative PCR for TNF-α to screen for microglial activation followed by quantitative real-time qPCR array screening to assess tissue-wide cytokine changes. The latter is a most sensitive and reproducible means to measure multiple cytokine system signaling changes simultaneously. Significant changes are confirmed with targeted qPCR and then protein detection. We probe for tissue-based cytokine protein changes using multiplexed microsphere flow cytometric assays using Luminex technology. Cell-specific cytokine production is determined with double-label immunohistochemistry. Taken together, this brain tissue preparation and style of use, coupled to the suggested investigative strategies, may be an optimal approach for identifying potential targets for the development of novel therapeutics that could mimic the advantages of cold-preconditioning.
Neuroscience, Issue 43, innate immunity, hormesis, microglia, hippocampus, slice culture, immunohistochemistry, neural-immune, gene expression, real-time PCR
Play Button
Isolation and Chemical Characterization of Lipid A from Gram-negative Bacteria
Authors: Jeremy C. Henderson, John P. O'Brien, Jennifer S. Brodbelt, M. Stephen Trent.
Institutions: The University of Texas at Austin, The University of Texas at Austin, The University of Texas at Austin.
Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate immune response, and have provided many new targets in the development of antibacterial compounds.
Chemistry, Issue 79, Membrane Lipids, Toll-Like Receptors, Endotoxins, Glycolipids, Lipopolysaccharides, Lipid A, Microbiology, Lipids, lipid A, Bligh-Dyer, thin layer chromatography (TLC), lipopolysaccharide, mass spectrometry, Collision Induced Dissociation (CID), Photodissociation (PD)
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Purification and Visualization of Lipopolysaccharide from Gram-negative Bacteria by Hot Aqueous-phenol Extraction
Authors: Michael R. Davis, Jr., Joanna B. Goldberg.
Institutions: University of Virginia Health System.
Lipopolysaccharide (LPS) is a major component of Gram-negative bacterial outer membranes. It is a tripartite molecule consisting of lipid A, which is embedded in the outer membrane, a core oligosaccharide and repeating O-antigen units that extend outward from the surface of the cell1, 2. LPS is an immunodominant molecule that is important for the virulence and pathogenesis of many bacterial species, including Pseudomonas aeruginosa, Salmonella species, and Escherichia coli3-5, and differences in LPS O-antigen composition form the basis for serotyping of strains. LPS is involved in attachment to host cells at the initiation of infection and provides protection from complement-mediated killing; strains that lack LPS can be attenuated for virulence6-8. For these reasons, it is important to visualize LPS, particularly from clinical isolates. Visualizing LPS banding patterns and recognition by specific antibodies can be useful tools to identify strain lineages and to characterize various mutants. In this report, we describe a hot aqueous-phenol method for the isolation and purification of LPS from Gram-negative bacterial cells. This protocol allows for the extraction of LPS away from nucleic acids and proteins that can interfere with visualization of LPS that occurs with shorter, less intensive extraction methods9. LPS prepared this way can be separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and directly stained using carbohydrate/glycoprotein stains or standard silver staining methods. Many anti-sera to LPS contain antibodies that cross-react with outer membrane proteins or other antigenic targets that can hinder reactivity observed following Western immunoblot of SDS-PAGE-separated crude cell lysates. Protease treatment of crude cell lysates alone is not always an effective way of removing this background using this or other visualization methods. Further, extensive protease treatment in an attempt to remove this background can lead to poor quality LPS that is not well resolved by any of the aforementioned methods. For these reasons, we believe that the following protocol, adapted from Westpahl and Jann10, is ideal for LPS extraction.
Immunology, Issue 63, Microbiology, Gram-negative, LPS, extraction, polysaccharide staining, Western immunoblot
Play Button
An In vitro Model to Study Immune Responses of Human Peripheral Blood Mononuclear Cells to Human Respiratory Syncytial Virus Infection
Authors: Marloes Vissers, Marrit N. Habets, Inge M. L. Ahout, Jop Jans, Marien I. de Jonge, Dimitri A. Diavatopoulos, Gerben Ferwerda.
Institutions: Radboud university medical center.
Human respiratory syncytial virus (HRSV) infections present a broad spectrum of disease severity, ranging from mild infections to life-threatening bronchiolitis. An important part of the pathogenesis of severe disease is an enhanced immune response leading to immunopathology. Here, we describe a protocol used to investigate the immune response of human immune cells to an HRSV infection. First, we describe methods used for culturing, purification and quantification of HRSV. Subsequently, we describe a human in vitro model in which peripheral blood mononuclear cells (PBMCs) are stimulated with live HRSV. This model system can be used to study multiple parameters that may contribute to disease severity, including the innate and adaptive immune response. These responses can be measured at the transcriptional and translational level. Moreover, viral infection of cells can easily be measured using flow cytometry. Taken together, stimulation of PBMC with live HRSV provides a fast and reproducible model system to examine mechanisms involved in HRSV-induced disease.
Immunology, Issue 82, Blood Cells, Respiratory Syncytial Virus, Human, Respiratory Tract Infections, Paramyxoviridae Infections, Models, Immunological, Immunity, HRSV culture, purification, quantification, PBMC isolation, stimulation, inflammatory pathways
Play Button
Functional Interrogation of Adult Hypothalamic Neurogenesis with Focal Radiological Inhibition
Authors: Daniel A. Lee, Juan Salvatierra, Esteban Velarde, John Wong, Eric C. Ford, Seth Blackshaw.
Institutions: California Institute of Technology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, University Of Washington Medical Center, Johns Hopkins University School of Medicine.
The functional characterization of adult-born neurons remains a significant challenge. Approaches to inhibit adult neurogenesis via invasive viral delivery or transgenic animals have potential confounds that make interpretation of results from these studies difficult. New radiological tools are emerging, however, that allow one to noninvasively investigate the function of select groups of adult-born neurons through accurate and precise anatomical targeting in small animals. Focal ionizing radiation inhibits the birth and differentiation of new neurons, and allows targeting of specific neural progenitor regions. In order to illuminate the potential functional role that adult hypothalamic neurogenesis plays in the regulation of physiological processes, we developed a noninvasive focal irradiation technique to selectively inhibit the birth of adult-born neurons in the hypothalamic median eminence. We describe a method for Computer tomography-guided focal irradiation (CFIR) delivery to enable precise and accurate anatomical targeting in small animals. CFIR uses three-dimensional volumetric image guidance for localization and targeting of the radiation dose, minimizes radiation exposure to nontargeted brain regions, and allows for conformal dose distribution with sharp beam boundaries. This protocol allows one to ask questions regarding the function of adult-born neurons, but also opens areas to questions in areas of radiobiology, tumor biology, and immunology. These radiological tools will facilitate the translation of discoveries at the bench to the bedside.
Neuroscience, Issue 81, Neural Stem Cells (NSCs), Body Weight, Radiotherapy, Image-Guided, Metabolism, Energy Metabolism, Neurogenesis, Cell Proliferation, Neurosciences, Irradiation, Radiological treatment, Computer-tomography (CT) imaging, Hypothalamus, Hypothalamic Proliferative Zone (HPZ), Median Eminence (ME), Small Animal Radiation Research Platform (SARRP)
Play Button
Genetic Manipulation of the Mouse Developing Hypothalamus through In utero Electroporation
Authors: Roberta Haddad-Tóvolli, Nora-Emöke Szabó, Xunlei Zhou, Gonzalo Alvarez-Bolado.
Institutions: University of Heidelberg , Institut de recherches cliniques de Montreal.
Genetic modification of specific regions of the developing mammalian brain is a very powerful experimental approach. However, generating novel mouse mutants is often frustratingly slow. It has been shown that access to the mouse brain developing in utero with reasonable post-operatory survival is possible. Still, results with this procedure have been reported almost exclusively for the most superficial and easily accessible part of the developing brain, i.e. the cortex. The thalamus, a narrower and more medial region, has proven more difficult to target. Transfection into deeper nuclei, especially those of the hypothalamus, is perhaps the most challenging and therefore very few results have been reported. Here we demonstrate a procedure to target the entire hypothalamic neuroepithelium or part of it (hypothalamic regions) for transfection through electroporation. The keys to our approach are longer narcosis times, injection in the third ventricle, and appropriate kind and positioning of the electrodes. Additionally, we show results of targeting and subsequent histological analysis of the most recessed hypothalamic nucleus, the mammillary body.
Neuroscience, Issue 77, Neurobiology, Genetics, Cellular Biology, Molecular Biology, Biomedical Engineering, Developmental Biology, Anatomy, Physiology, Embryo, Mammalian, Brain, Diencephalon, Hypothalamus, Genetic Techniques, Transfection, anesthesia, development, electrodes, electroporation, in utero, mammillary body, mouse, animal model
Play Button
Membrane Potential Dye Imaging of Ventromedial Hypothalamus Neurons From Adult Mice to Study Glucose Sensing
Authors: Reema P. Vazirani, Xavier Fioramonti, Vanessa H. Routh.
Institutions: Rutgers New Jersey Medical School, Universite de Bourgogne.
Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.
Neuroscience, Issue 81, membrane potential dye, ventromedial hypothalamus, adult neurons, glucose sensing, fluorescence imaging, arcuate nucleus
Play Button
Isolation of Cortical Microglia with Preserved Immunophenotype and Functionality From Murine Neonates
Authors: Stefano G. Daniele, Amanda A. Edwards, Kathleen A. Maguire-Zeiss.
Institutions: Georgetown University Medical Center.
Isolation of microglia from CNS tissue is a powerful investigative tool used to study microglial biology ex vivo. The present method details a procedure for isolation of microglia from neonatal murine cortices by mechanical agitation with a rotary shaker. This microglia isolation method yields highly pure cortical microglia that exhibit morphological and functional characteristics indicative of quiescent microglia in normal, nonpathological conditions in vivo. This procedure also preserves the microglial immunophenotype and biochemical functionality as demonstrated by the induction of morphological changes, nuclear translocation of the p65 subunit of NF-κB (p65), and secretion of the hallmark proinflammatory cytokine, tumor necrosis factor-α (TNF-α), upon lipopolysaccharide (LPS) and Pam3CSK4 (Pam) challenges. Therefore, the present isolation procedure preserves the immunophenotype of both quiescent and activated microglia, providing an experimental method of investigating microglia biology in ex vivo conditions.
Immunology, Issue 83, neuroinflammation, Cytokines, neurodegeneration, LPS, Pam3CSK4, TLRs, PAMPs, DAMPs
Play Button
Non-Laser Capture Microscopy Approach for the Microdissection of Discrete Mouse Brain Regions for Total RNA Isolation and Downstream Next-Generation Sequencing and Gene Expression Profiling
Authors: Norman Atkins, Charlie M. Miller, Joseph R. Owens, Fred W. Turek.
Institutions: Northwestern University.
As technological platforms, approaches such as next-generation sequencing, microarray, and qRT-PCR have great promise for expanding our understanding of the breadth of molecular regulation. Newer approaches such as high-resolution RNA sequencing (RNA-Seq)1 provides new and expansive information about tissue- or state-specific expression such as relative transcript levels, alternative splicing, and micro RNAs2-4. Prospects for employing the RNA-Seq method in comparative whole transcriptome profiling5 within discrete tissues or between phenotypically distinct groups of individuals affords new avenues for elucidating molecular mechanisms involved in both normal and abnormal physiological states. Recently, whole transcriptome profiling has been performed on human brain tissue, identifying gene expression differences associated with disease progression6. However, the use of next-generation sequencing has yet to be more widely integrated into mammalian studies. Gene expression studies in mouse models have reported distinct profiles within various brain nuclei using laser capture microscopy (LCM) for sample excision7,8. While LCM affords sample collection with single-cell and discrete brain region precision, the relatively low total RNA yields from the LCM approach can be prohibitive to RNA-Seq and other profiling approaches in mouse brain tissues and may require sub-optimal sample amplification steps. Here, a protocol is presented for microdissection and total RNA extraction from discrete mouse brain regions. Set-diameter tissue corers are used to isolate 13 tissues from 750-μm serial coronal sections of an individual mouse brain. Tissue micropunch samples are immediately frozen and archived. Total RNA is obtained from the samples using magnetic bead-enabled total RNA isolation technology. Resulting RNA samples have adequate yield and quality for use in downstream expression profiling. This microdissection strategy provides a viable option to existing sample collection strategies for obtaining total RNA from discrete brain regions, opening possibilities for new gene expression discoveries.
Neuroscience, Issue 57, transcriptome, RNA-Seq, microdissection, total RNA, brain, mouse, microarray, RNA, RT-qPCR, gene, expression
Play Button
Assessing Changes in Volatile General Anesthetic Sensitivity of Mice after Local or Systemic Pharmacological Intervention
Authors: Hilary S. McCarren, Jason T. Moore, Max B. Kelz.
Institutions: Perelman School of Medicine, University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania.
One desirable endpoint of general anesthesia is the state of unconsciousness, also known as hypnosis. Defining the hypnotic state in animals is less straightforward than it is in human patients. A widely used behavioral surrogate for hypnosis in rodents is the loss of righting reflex (LORR), or the point at which the animal no longer responds to their innate instinct to avoid the vulnerability of dorsal recumbency. We have developed a system to assess LORR in 24 mice simultaneously while carefully controlling for potential confounds, including temperature fluctuations and varying gas flows. These chambers permit reliable assessment of anesthetic sensitivity as measured by latency to return of the righting reflex (RORR) following a fixed anesthetic exposure. Alternatively, using stepwise increases (or decreases) in anesthetic concentration, the chambers also enable determination of a population's sensitivity to induction (or emergence) as measured by EC50 and Hill slope. Finally, the controlled environmental chambers described here can be adapted for a variety of alternative uses, including inhaled delivery of other drugs, toxicology studies, and simultaneous real-time monitoring of vital signs.
Medicine, Issue 80, Anatomy, Physiology, Pharmacology, Anesthesia, Inhalation, Behavioral Research, General anesthesia, loss of righting reflex, isoflurane, anesthetic sensitivity, animal model
Play Button
The Utilization of Oropharyngeal Intratracheal PAMP Administration and Bronchoalveolar Lavage to Evaluate the Host Immune Response in Mice
Authors: Irving C. Allen.
Institutions: Virginia Polytechnic Institute and State University.
The host immune response to pathogens is a complex biological process. The majority of in vivo studies classically employed to characterize host-pathogen interactions take advantage of intraperitoneal injections of select bacteria or pathogen associated molecular patterns (PAMPs) in mice. While these techniques have yielded tremendous data associated with infectious disease pathobiology, intraperitoneal injection models are not always appropriate for host-pathogen interaction studies in the lung. Utilizing an acute lung inflammation model in mice, it is possible to conduct a high resolution analysis of the host innate immune response utilizing lipopolysaccharide (LPS). Here, we describe the methods to administer LPS using nonsurgical oropharyngeal intratracheal administration, monitor clinical parameters associated with disease pathogenesis, and utilize bronchoalveolar lavage fluid to evaluate the host immune response. The techniques that are described are widely applicable for studying the host innate immune response to a diverse range of PAMPs and pathogens. Likewise, with minor modifications, these techniques can also be applied in studies evaluating allergic airway inflammation and in pharmacological applications.
Infection, Issue 86, LPS, Lipopolysaccharide, mouse, pneumonia, gram negative bacteria, inflammation, acute lung inflammation, innate immunity, host pathogen interaction, lung, respiratory disease
Play Button
Comprehensive Analysis of Transcription Dynamics from Brain Samples Following Behavioral Experience
Authors: Hagit Turm, Diptendu Mukherjee, Doron Haritan, Maayan Tahor, Ami Citri.
Institutions: The Hebrew University of Jerusalem.
The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied1,2. In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies.
Behavior, Issue 90, Brain, behavior, RNA, transcription, nucleus accumbens, cocaine, high-throughput qPCR, experience-dependent plasticity, gene regulatory networks, microdissection
Play Button
A Method to Make a Craniotomy on the Ventral Skull of Neonate Rodents
Authors: Adrián Rodríguez-Contreras, Lingyan Shi, Bingmei M. Fu.
Institutions: The City University of New York, City College, The City University of New York, City College.
The use of a craniotomy for in vivo experiments provides an opportunity to investigate the dynamics of diverse cellular processes in the mammalian brain in adulthood and during development. Although most in vivo approaches use a craniotomy to study brain regions located on the dorsal side, brainstem regions such as the pons, located on the ventral side remain relatively understudied. The main goal of this protocol is to facilitate access to ventral brainstem structures so that they can be studied in vivo using electrophysiological and imaging methods. This approach allows study of structural changes in long-range axons, patterns of electrical activity in single and ensembles of cells, and changes in blood brain barrier permeability in neonate animals. Although this protocol has been used mostly to study the auditory brainstem in neonate rats, it can easily be adapted for studies in other rodent species such as neonate mice, adult rodents and other brainstem regions.
Neuroscience, Issue 87, auditory system; blood brain barrier permeability; development; neurophysiology; two-photon microscopy, electrophysiology,
Play Button
Building a Better Mosquito: Identifying the Genes Enabling Malaria and Dengue Fever Resistance in A. gambiae and A. aegypti Mosquitoes
Authors: George Dimopoulos.
Institutions: Johns Hopkins University.
In this interview, George Dimopoulos focuses on the physiological mechanisms used by mosquitoes to combat Plasmodium falciparum and dengue virus infections. Explanation is given for how key refractory genes, those genes conferring resistance to vector pathogens, are identified in the mosquito and how this knowledge can be used to generate transgenic mosquitoes that are unable to carry the malaria parasite or dengue virus.
Cellular Biology, Issue 5, Translational Research, mosquito, malaria, virus, dengue, genetics, injection, RNAi, transgenesis, transgenic
Play Button
Preventing the Spread of Malaria and Dengue Fever Using Genetically Modified Mosquitoes
Authors: Anthony A. James.
Institutions: University of California, Irvine (UCI).
In this candid interview, Anthony A. James explains how mosquito genetics can be exploited to control malaria and dengue transmission. Population replacement strategy, the idea that transgenic mosquitoes can be released into the wild to control disease transmission, is introduced, as well as the concept of genetic drive and the design criterion for an effective genetic drive system. The ethical considerations of releasing genetically-modified organisms into the wild are also discussed.
Cellular Biology, Issue 5, mosquito, malaria, dengue fever, genetics, infectious disease, Translational Research
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.