JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Regulation of PTEN/Akt Pathway Enhances Cardiomyogenesis and Attenuates Adverse Left Ventricular Remodeling following Thymosin ?4 Overexpressing Embryonic Stem Cell Transplantation in the Infarcted Heart.
PLoS ONE
PUBLISHED: 01-01-2013
Thymosin ?4 (T?4), a small G-actin sequestering peptide, mediates cell proliferation, migration, and angiogenesis. Whether embryonic stem (ES) cells, overexpressing T?4, readily differentiate into cardiac myocytes in vitro and in vivo and enhance cardioprotection following transplantation post myocardial infarction (MI) remains unknown. Accordingly, we established stable mouse ES cell lines, RFP-ESCs and T?4-ESCs, expressing RFP and an RFP-T?4 fusion protein, respectively. In vitro, the number of spontaneously beating embryoid bodies (EBs) was significantly increased in T?4-ESCs at day 9, 12 and 15, compared with RFP-ESCs. Enhanced expression of cardiac transcriptional factors GATA-4, Mef2c and Txb6 in T?4-EBs, as confirmed with real time-PCR analysis, was accompanied by the increased number of EB areas stained positive for sarcomeric ?-actin in T?4-EBs, compared with the RFP control, suggesting a significant increase in functional cardiac myocytes. Furthermore, we transplanted T?4-ESCs into the infarcted mouse heart and performed morphological and functional analysis 2 weeks after MI. There was a significant increase in newly formed cardiac myocytes associated with the Notch pathway, a decrease in apoptotic nuclei mediated by an increase in Akt and a decrease in levels of PTEN. Cardiac fibrosis was significantly reduced, and left ventricular function was significantly augmented in the T?4-ESC transplanted group, compared with controls. It is concluded that genetically modified T?4-ESCs, potentiates their ability to turn into cardiac myocytes in vitro as well as in vivo. Moreover, we also demonstrate that there was a significant decrease in both cardiac apoptosis and fibrosis, thus improving cardiac function in the infarcted heart.
Authors: Elisa Di Pasquale, Belle Song, Gianluigi Condorelli.
Published: 06-28-2013
ABSTRACT
In order to investigate the events driving heart development and to determine the molecular mechanisms leading to myocardial diseases in humans, it is essential first to generate functional human cardiomyocytes (CMs). The use of these cells in drug discovery and toxicology studies would also be highly beneficial, allowing new pharmacological molecules for the treatment of cardiac disorders to be validated pre-clinically on cells of human origin. Of the possible sources of CMs, induced pluripotent stem (iPS) cells are among the most promising, as they can be derived directly from readily accessible patient tissue and possess an intrinsic capacity to give rise to all cell types of the body 1. Several methods have been proposed for differentiating iPS cells into CMs, ranging from the classical embryoid bodies (EBs) aggregation approach to chemically defined protocols 2,3. In this article we propose an EBs-based protocol and show how this method can be employed to efficiently generate functional CM-like cells from feeder-free iPS cells.
22 Related JoVE Articles!
Play Button
Differentiation of Embryonic Stem Cells into Oligodendrocyte Precursors
Authors: Peng Jiang, Vimal Selvaraj, Wenbin Deng.
Institutions: School of Medicine, University of California, Davis.
Oligodendrocytes are the myelinating cells of the central nervous system. For regenerative cell therapy in demyelinating diseases, there is significant interest in deriving a pure population of lineage-committed oligodendrocyte precursor cells (OPCs) for transplantation. OPCs are characterized by the activity of the transcription factor Olig2 and surface expression of a proteoglycan NG2. Using the GFP-Olig2 (G-Olig2) mouse embryonic stem cell (mESC) reporter line, we optimized conditions for the differentiation of mESCs into GFP+Olig2+NG2+ OPCs. In our protocol, we first describe the generation of embryoid bodies (EBs) from mESCs. Second, we describe treatment of mESC-derived EBs with small molecules: (1) retinoic acid (RA) and (2) a sonic hedgehog (Shh) agonist purmorphamine (Pur) under defined culture conditions to direct EB differentiation into the oligodendroglial lineage. By this approach, OPCs can be obtained with high efficiency (>80%) in a time period of 30 days. Cells derived from mESCs in this protocol are phenotypically similar to OPCs derived from primary tissue culture. The mESC-derived OPCs do not show the spiking property described for a subpopulation of brain OPCs in situ. To study this electrophysiological property, we describe the generation of spiking mESC-derived OPCs by ectopically expressing NaV1.2 subunit. The spiking and nonspiking cells obtained from this protocol will help advance functional studies on the two subpopulations of OPCs.
Neurobiology, Issue 39, pluripotent stem cell, oligodendrocyte precursor cells, differentiation, myelin, neuroscience, brain
1960
Play Button
Efficient Derivation of Human Cardiac Precursors and Cardiomyocytes from Pluripotent Human Embryonic Stem Cells with Small Molecule Induction
Authors: Xuejun H. Parsons, Yang D. Teng, James F. Parsons, Evan Y. Snyder, David B. Smotrich, Dennis A. Moore.
Institutions: San Diego Regenerative Medicine Institute, Xcelthera, Harvard Medical School, VA Boston Healthcare System, Sanford-Burnham Medical Research Institute, La Jolla IVF.
To date, the lack of a suitable human cardiac cell source has been the major setback in regenerating the human myocardium, either by cell-based transplantation or by cardiac tissue engineering1-3. Cardiomyocytes become terminally-differentiated soon after birth and lose their ability to proliferate. There is no evidence that stem/progenitor cells derived from other sources, such as the bone marrow or the cord blood, are able to give rise to the contractile heart muscle cells following transplantation into the heart1-3. The need to regenerate or repair the damaged heart muscle has not been met by adult stem cell therapy, either endogenous or via cell delivery1-3. The genetically stable human embryonic stem cells (hESCs) have unlimited expansion ability and unrestricted plasticity, proffering a pluripotent reservoir for in vitro derivation of large supplies of human somatic cells that are restricted to the lineage in need of repair and regeneration4,5. Due to the prevalence of cardiovascular disease worldwide and acute shortage of donor organs, there is intense interest in developing hESC-based therapies as an alternative approach. However, how to channel the wide differentiation potential of pluripotent hESCs efficiently and predictably to a desired phenotype has been a major challenge for both developmental study and clinical translation. Conventional approaches rely on multi-lineage inclination of pluripotent cells through spontaneous germ layer differentiation, resulting in inefficient and uncontrollable lineage-commitment that is often followed by phenotypic heterogeneity and instability, hence, a high risk of tumorigenicity6-8 (see a schematic in Fig. 1A). In addition, undefined foreign/animal biological supplements and/or feeders that have typically been used for the isolation, expansion, and differentiation of hESCs may make direct use of such cell-specialized grafts in patients problematic9-11. To overcome these obstacles, we have resolved the elements of a defined culture system necessary and sufficient for sustaining the epiblast pluripotence of hESCs, serving as a platform for de novo derivation of clinically-suitable hESCs and effectively directing such hESCs uniformly towards clinically-relevant lineages by small molecules12 (see a schematic in Fig. 1B). After screening a variety of small molecules and growth factors, we found that such defined conditions rendered nicotinamide (NAM) sufficient to induce the specification of cardiomesoderm direct from pluripotent hESCs that further progressed to cardioblasts that generated human beating cardiomyocytes with high efficiency (Fig. 2). We defined conditions for induction of cardioblasts direct from pluripotent hESCs without an intervening multi-lineage embryoid body stage, enabling well-controlled efficient derivation of a large supply of human cardiac cells across the spectrum of developmental stages for cell-based therapeutics.
Developmental Biology, Issue 57, human embryonic stem cell, human, cardiac progenitor, cardiomyocytes, human pluripotent cell, cardiac differentiation, small molecule induction, cell culture, cell therapy
3274
Play Button
Isolating Primary Melanocyte-like Cells from the Mouse Heart
Authors: Hayoung Hwang, Fang Liu, Mark D. Levin, Vickas V. Patel.
Institutions: University of Pennsylvania .
We identified a novel population of melanocyte-like cells (also known as cardiac melanocytes) in the hearts of mice and humans that contribute to atrial arrhythmia triggers in mice. To investigate the electrical and biological properties of cardiac melanocytes we developed a procedure to isolate them from mouse hearts that we derived from those designed to isolate neonatal murine cardiomyocytes. In order to obtain healthier cardiac melanocytes suitable for more extensive patch clamp or biochemical studies, we developed a refined procedure for isolating and plating cardiac melanocytes based on those originally designed to isolate cutaneous melanocytes. The refined procedure is demonstrated in this review and produces larger numbers of healthy melanocyte-like cells that can be plated as a pure population or with cardiomyocytes.
Cellular Biology, Issue 91, melanocyte-like cells, heart, mouse, atrial myocytes, primary isolation
4357
Play Button
Permanent Ligation of the Left Anterior Descending Coronary Artery in Mice: A Model of Post-myocardial Infarction Remodelling and Heart Failure
Authors: Ilayaraja Muthuramu, Marleen Lox, Frank Jacobs, Bart De Geest.
Institutions: Catholic University of Leuven.
Heart failure is a syndrome in which the heart fails to pump blood at a rate commensurate with cellular oxygen requirements at rest or during stress. It is characterized by fluid retention, shortness of breath, and fatigue, in particular on exertion. Heart failure is a growing public health problem, the leading cause of hospitalization, and a major cause of mortality. Ischemic heart disease is the main cause of heart failure. Ventricular remodelling refers to changes in structure, size, and shape of the left ventricle. This architectural remodelling of the left ventricle is induced by injury (e.g., myocardial infarction), by pressure overload (e.g., systemic arterial hypertension or aortic stenosis), or by volume overload. Since ventricular remodelling affects wall stress, it has a profound impact on cardiac function and on the development of heart failure. A model of permanent ligation of the left anterior descending coronary artery in mice is used to investigate ventricular remodelling and cardiac function post-myocardial infarction. This model is fundamentally different in terms of objectives and pathophysiological relevance compared to the model of transient ligation of the left anterior descending coronary artery. In this latter model of ischemia/reperfusion injury, the initial extent of the infarct may be modulated by factors that affect myocardial salvage following reperfusion. In contrast, the infarct area at 24 hr after permanent ligation of the left anterior descending coronary artery is fixed. Cardiac function in this model will be affected by 1) the process of infarct expansion, infarct healing, and scar formation; and 2) the concomitant development of left ventricular dilatation, cardiac hypertrophy, and ventricular remodelling. Besides the model of permanent ligation of the left anterior descending coronary artery, the technique of invasive hemodynamic measurements in mice is presented in detail.
Medicine, Issue 94, Myocardial infarction, cardiac remodelling, infarct expansion, heart failure, cardiac function, invasive hemodynamic measurements
52206
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
Programming Stem Cells for Therapeutic Angiogenesis Using Biodegradable Polymeric Nanoparticles
Authors: Michael Keeney, Lorenzo Deveza, Fan Yang.
Institutions: Stanford University , Stanford University .
Controlled vascular growth is critical for successful tissue regeneration and wound healing, as well as for treating ischemic diseases such as stroke, heart attack or peripheral arterial diseases. Direct delivery of angiogenic growth factors has the potential to stimulate new blood vessel growth, but is often associated with limitations such as lack of targeting and short half-life in vivo. Gene therapy offers an alternative approach by delivering genes encoding angiogenic factors, but often requires using virus, and is limited by safety concerns. Here we describe a recently developed strategy for stimulating vascular growth by programming stem cells to overexpress angiogenic factors in situ using biodegradable polymeric nanoparticles. Specifically our strategy utilized stem cells as delivery vehicles by taking advantage of their ability to migrate toward ischemic tissues in vivo. Using the optimized polymeric vectors, adipose-derived stem cells were modified to overexpress an angiogenic gene encoding vascular endothelial growth factor (VEGF). We described the processes for polymer synthesis, nanoparticle formation, transfecting stem cells in vitro, as well as methods for validating the efficacy of VEGF-expressing stem cells for promoting angiogenesis in a murine hindlimb ischemia model.
Empty Value, Issue 79, Stem Cells, animal models, bioengineering (general), angiogenesis, biodegradable, non-viral, gene therapy
50736
Play Button
Myocardial Infarction and Functional Outcome Assessment in Pigs
Authors: Stefan Koudstaal, Sanne J. Jansen of Lorkeers, Johannes M.I.H. Gho, Gerardus P.J van Hout, Marlijn S. Jansen, Paul F. Gründeman, Gerard Pasterkamp, Pieter A. Doevendans, Imo E. Hoefer, Steven A.J. Chamuleau.
Institutions: University Medical Center Utrecht, Interuniversity Cardiology Institute of the Netherlands.
Introduction of newly discovered cardiovascular therapeutics into first-in-man trials depends on a strictly regulated ethical and legal roadmap. One important prerequisite is a good understanding of all safety and efficacy aspects obtained in a large animal model that validly reflect the human scenario of myocardial infarction (MI). Pigs are widely used in this regard since their cardiac size, hemodynamics, and coronary anatomy are close to that of humans. Here, we present an effective protocol for using the porcine MI model using a closed-chest coronary balloon occlusion of the left anterior descending artery (LAD), followed by reperfusion. This approach is based on 90 min of myocardial ischemia, inducing large left ventricle infarction of the anterior, septal and inferoseptal walls. Furthermore, we present protocols for various measures of outcome that provide a wide range of information on the heart, such as cardiac systolic and diastolic function, hemodynamics, coronary flow velocity, microvascular resistance, and infarct size. This protocol can be easily tailored to meet study specific requirements for the validation of novel cardioregenerative biologics at different stages (i.e. directly after the acute ischemic insult, in the subacute setting or even in the chronic MI once scar formation has been completed). This model therefore provides a useful translational tool to study MI, subsequent adverse remodeling, and the potential of novel cardioregenerative agents.
Medicine, Issue 86, myocardial infarction (MI), AMI, large animal model, pig, translational medicine, ischemic heart disease
51269
Play Button
Coronary Artery Ligation and Intramyocardial Injection in a Murine Model of Infarction
Authors: Jitka A.I. Virag, Robert M. Lust.
Institutions: East Carolina University.
Mouse models are a valuable tool for studying acute injury and chronic remodeling of the myocardium in vivo. With the advent of genetic modifications to the whole organism or the myocardium and an array of biological and/or synthetic materials, there is great potential for any combination of these to assuage the extent of acute ischemic injury and impede the onset of heart failure pursuant to myocardial remodeling. Here we present the methods and materials used to reliably perform this microsurgery and the modifications involved for temporary (with reperfusion) or permanent coronary artery occlusion studies as well as intramyocardial injections. The effects on the heart that can be seen during the procedure and at the termination of the experiment in addition to histological evaluation will verify efficacy. Briefly, surgical preparation involves anesthetizing the mice, removing the fur on the chest, and then disinfecting the surgical area. Intratracheal intubation is achieved by transesophageal illumination using a fiber optic light. The tubing is then connected to a ventilator. An incision made on the chest exposes the pectoral muscles which will be cut to view the ribs. For ischemia/reperfusion studies, a 1 cm piece of PE tubing placed over the heart is used to tie the ligature to so that occlusion/reperfusion can be customized. For intramyocardial injections, a Hamilton syringe with sterile 30gauge beveled needle is used. When the myocardial manipulations are complete, the rib cage, the pectoral muscles, and the skin are closed sequentially. Line block analgesia is effected by 0.25% marcaine in sterile saline which is applied to muscle layer prior to closure of the skin. The mice are given a subcutaneous injection of saline and placed in a warming chamber until they are sternally recumbent. They are then returned to the vivarium and housed under standard conditions until the time of tissue collection. At the time of sacrifice, the mice are anesthetized, the heart is arrested in diastole with KCl or BDM, rinsed with saline, and immersed in fixative. Subsequently, routine procedures for processing, embedding, sectioning, and histological staining are performed. Nonsurgical intubation of a mouse and the microsurgical manipulations described make this a technically challenging model to learn and achieve reproducibility. These procedures, combined with the difficulty in performing consistent manipulations of the ligature for timed occlusion(s) and reperfusion or intramyocardial injections, can also affect the survival rate so optimization and consistency are critical.
Medicine, Issue 52, infarct, ischemia/reperfusion, mice, intramyocardial injection, coronary artery, heart, grafting
2581
Play Button
Right Ventricular Systolic Pressure Measurements in Combination with Harvest of Lung and Immune Tissue Samples in Mice
Authors: Wen-Chi Chen, Sung-Hyun Park, Carol Hoffman, Cecil Philip, Linda Robinson, James West, Gabriele Grunig.
Institutions: New York University School of Medicine, Tuxedo, Vanderbilt University Medical Center, New York University School of Medicine.
The function of the right heart is to pump blood through the lungs, thus linking right heart physiology and pulmonary vascular physiology. Inflammation is a common modifier of heart and lung function, by elaborating cellular infiltration, production of cytokines and growth factors, and by initiating remodeling processes 1. Compared to the left ventricle, the right ventricle is a low-pressure pump that operates in a relatively narrow zone of pressure changes. Increased pulmonary artery pressures are associated with increased pressure in the lung vascular bed and pulmonary hypertension 2. Pulmonary hypertension is often associated with inflammatory lung diseases, for example chronic obstructive pulmonary disease, or autoimmune diseases 3. Because pulmonary hypertension confers a bad prognosis for quality of life and life expectancy, much research is directed towards understanding the mechanisms that might be targets for pharmaceutical intervention 4. The main challenge for the development of effective management tools for pulmonary hypertension remains the complexity of the simultaneous understanding of molecular and cellular changes in the right heart, the lungs and the immune system. Here, we present a procedural workflow for the rapid and precise measurement of pressure changes in the right heart of mice and the simultaneous harvest of samples from heart, lungs and immune tissues. The method is based on the direct catheterization of the right ventricle via the jugular vein in close-chested mice, first developed in the late 1990s as surrogate measure of pressures in the pulmonary artery5-13. The organized team-approach facilitates a very rapid right heart catheterization technique. This makes it possible to perform the measurements in mice that spontaneously breathe room air. The organization of the work-flow in distinct work-areas reduces time delay and opens the possibility to simultaneously perform physiology experiments and harvest immune, heart and lung tissues. The procedural workflow outlined here can be adapted for a wide variety of laboratory settings and study designs, from small, targeted experiments, to large drug screening assays. The simultaneous acquisition of cardiac physiology data that can be expanded to include echocardiography5,14-17 and harvest of heart, lung and immune tissues reduces the number of animals needed to obtain data that move the scientific knowledge basis forward. The procedural workflow presented here also provides an ideal basis for gaining knowledge of the networks that link immune, lung and heart function. The same principles outlined here can be adapted to study other or additional organs as needed.
Immunology, Issue 71, Medicine, Anatomy, Physiology, Cardiology, Surgery, Cardiovascular Abnormalities, Inflammation, Respiration Disorders, Immune System Diseases, Cardiac physiology, mouse, pulmonary hypertension, right heart function, lung immune response, lung inflammation, lung remodeling, catheterization, mice, tissue, animal model
50023
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Intramyocardial Cell Delivery: Observations in Murine Hearts
Authors: Tommaso Poggioli, Padmini Sarathchandra, Nadia Rosenthal, Maria P. Santini.
Institutions: Imperial College London, Imperial College London, Monash University.
Previous studies showed that cell delivery promotes cardiac function amelioration by release of cytokines and factors that increase cardiac tissue revascularization and cell survival. In addition, further observations revealed that specific stem cells, such as cardiac stem cells, mesenchymal stem cells and cardiospheres have the ability to integrate within the surrounding myocardium by differentiating into cardiomyocytes, smooth muscle cells and endothelial cells. Here, we present the materials and methods to reliably deliver noncontractile cells into the left ventricular wall of immunodepleted mice. The salient steps of this microsurgical procedure involve anesthesia and analgesia injection, intratracheal intubation, incision to open the chest and expose the heart and delivery of cells by a sterile 30-gauge needle and a precision microliter syringe. Tissue processing consisting of heart harvesting, embedding, sectioning and histological staining showed that intramyocardial cell injection produced a small damage in the epicardial area, as well as in the ventricular wall. Noncontractile cells were retained into the myocardial wall of immunocompromised mice and were surrounded by a layer of fibrotic tissue, likely to protect from cardiac pressure and mechanical load.
Medicine, Issue 83, intramyocardial cell injection, heart, grafting, cell therapy, stem cells, fibrotic tissue
51064
Play Button
Isolation and Functional Characterization of Human Ventricular Cardiomyocytes from Fresh Surgical Samples
Authors: Raffaele Coppini, Cecila Ferrantini, Alessandro Aiazzi, Luca Mazzoni, Laura Sartiani, Alessandro Mugelli, Corrado Poggesi, Elisabetta Cerbai.
Institutions: University of Florence, University of Florence.
Cardiomyocytes from diseased hearts are subjected to complex remodeling processes involving changes in cell structure, excitation contraction coupling and membrane ion currents. Those changes are likely to be responsible for the increased arrhythmogenic risk and the contractile alterations leading to systolic and diastolic dysfunction in cardiac patients. However, most information on the alterations of myocyte function in cardiac diseases has come from animal models. Here we describe and validate a protocol to isolate viable myocytes from small surgical samples of ventricular myocardium from patients undergoing cardiac surgery operations. The protocol is described in detail. Electrophysiological and intracellular calcium measurements are reported to demonstrate the feasibility of a number of single cell measurements in human ventricular cardiomyocytes obtained with this method. The protocol reported here can be useful for future investigations of the cellular and molecular basis of functional alterations of the human heart in the presence of different cardiac diseases. Further, this method can be used to identify novel therapeutic targets at cellular level and to test the effectiveness of new compounds on human cardiomyocytes, with direct translational value.
Medicine, Issue 86, cardiology, cardiac cells, electrophysiology, excitation-contraction coupling, action potential, calcium, myocardium, hypertrophic cardiomyopathy, cardiac patients, cardiac disease
51116
Play Button
Retroviral Infection of Murine Embryonic Stem Cell Derived Embryoid Body Cells for Analysis of Hematopoietic Differentiation
Authors: Emmanuel Bikorimana, Danica Lapid, Hyewon Choi, Richard Dahl.
Institutions: Harper Cancer Research Institute, Indiana University School of Medicine, University of Notre Dame.
Embryonic stem cells (ESCs) are an outstanding model for elucidating the molecular mechanisms of cellular differentiation. They are especially useful for investigating the development of early hematopoietic progenitor cells (HPCs). Gene expression in ESCs can be manipulated by several techniques that allow the role for individual molecules in development to be determined. One difficulty is that expression of specific genes often has different phenotypic effects dependent on their temporal expression. This problem can be circumvented by the generation of ESCs that inducibly express a gene of interest using technology such as the doxycycline-inducible transgene system. However, generation of these inducible cell lines is costly and time consuming. Described here is a method for disaggregating ESC-derived embryoid bodies (EBs) into single cell suspensions, retrovirally infecting the cell suspensions, and then reforming the EBs by hanging drop. Downstream differentiation is then evaluated by flow cytometry. Using this protocol, it was demonstrated that exogenous expression of a microRNA gene at the beginning of ESC differentiation blocks HPC generation. However, when expressed in EB derived cells after nascent mesoderm is produced, the microRNA gene enhances hematopoietic differentiation. This method is useful for investigating the role of genes after specific germ layer tissue is derived.
Cellular Biology, Issue 92, Embryonic stem cell, Embryoid body, Hematopoietic Progenitor Cells, Retrovirus, Gene Expression, Temporal Gene Expression
52022
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
51823
Play Button
Isolation and Culture of Neonatal Mouse Cardiomyocytes
Authors: Elisabeth Ehler, Thomas Moore-Morris, Stephan Lange.
Institutions: King’s College London, University of California San Diego .
Cultured neonatal cardiomyocytes have long been used to study myofibrillogenesis and myofibrillar functions. Cultured cardiomyocytes allow for easy investigation and manipulation of biochemical pathways, and their effect on the biomechanical properties of spontaneously beating cardiomyocytes. The following 2-day protocol describes the isolation and culture of neonatal mouse cardiomyocytes. We show how to easily dissect hearts from neonates, dissociate the cardiac tissue and enrich cardiomyocytes from the cardiac cell-population. We discuss the usage of different enzyme mixes for cell-dissociation, and their effects on cell-viability. The isolated cardiomyocytes can be subsequently used for a variety of morphological, electrophysiological, biochemical, cell-biological or biomechanical assays. We optimized the protocol for robustness and reproducibility, by using only commercially available solutions and enzyme mixes that show little lot-to-lot variability. We also address common problems associated with the isolation and culture of cardiomyocytes, and offer a variety of options for the optimization of isolation and culture conditions.
Cellular Biology, Issue 79, Biomedical Engineering, Bioengineering, Molecular Biology, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Primary Cell Culture, Cell Culture Techniques, Disease Models, Animal, Models, Cardiovascular, Cell Biology, neonatal mouse, cardiomyocytes, isolation, culture, primary cells, NMC, heart cells, animal model
50154
Play Button
Generation of Aligned Functional Myocardial Tissue Through Microcontact Printing
Authors: Ayhan Atmanli, Ibrahim J. Domian.
Institutions: Massachusetts General Hospital and Harvard Medical School, Harvard Stem Cell Institute.
Advanced heart failure represents a major unmet clinical challenge, arising from the loss of viable and/or fully functional cardiac muscle cells. Despite optimum drug therapy, heart failure represents a leading cause of mortality and morbidity in the developed world. A major challenge in drug development is the identification of cellular assays that accurately recapitulate normal and diseased human myocardial physiology in vitro. Likewise, the major challenges in regenerative cardiac biology revolve around the identification and isolation of patient-specific cardiac progenitors in clinically relevant quantities. These cells have to then be assembled into functional tissue that resembles the native heart tissue architecture. Microcontact printing allows for the creation of precise micropatterned protein shapes that resemble structural organization of the heart, thus providing geometric cues to control cell adhesion spatially. Herein we describe our approach for the isolation of highly purified myocardial cells from pluripotent stem cells differentiating in vitro, the generation of cell growth surfaces micropatterned with extracellular matrix proteins, and the assembly of the stem cell-derived cardiac muscle cells into anisotropic myocardial tissue.
Stem Cell Biology, Issue 73, Bioengineering, Biomedical Engineering, Medicine, Molecular Biology, Cellular Biology, Anatomy, Physiology, Tissue Engineering, Cardiology, Cell Biology, Embryonic Stem Cells, ESCs, Micropatterning, Microcontact Printing, Cell Alignment, Heart Progenitors, in vitro Differentiation, Transgenic Mice, Mouse Embryonic Stem Cells, stem cells, myocardial tissue, PDMS, FACS, flow cytometry, animal model
50288
Play Button
Isolation, Culture, and Functional Characterization of Adult Mouse Cardiomyoctyes
Authors: Evan Lee Graham, Cristina Balla, Hannabeth Franchino, Yonathan Melman, Federica del Monte, Saumya Das.
Institutions: Beth Israel Deaconess Medical Center, Harvard Medical School, Sapienza University.
The use of primary cardiomyocytes (CMs) in culture has provided a powerful complement to murine models of heart disease in advancing our understanding of heart disease. In particular, the ability to study ion homeostasis, ion channel function, cellular excitability and excitation-contraction coupling and their alterations in diseased conditions and by disease-causing mutations have led to significant insights into cardiac diseases. Furthermore, the lack of an adequate immortalized cell line to mimic adult CMs, and the limitations of neonatal CMs (which lack many of the structural and functional biomechanics characteristic of adult CMs) in culture have hampered our understanding of the complex interplay between signaling pathways, ion channels and contractile properties in the adult heart strengthening the importance of studying adult isolated cardiomyocytes. Here, we present methods for the isolation, culture, manipulation of gene expression by adenoviral-expressed proteins, and subsequent functional analysis of cardiomyocytes from the adult mouse. The use of these techniques will help to develop mechanistic insight into signaling pathways that regulate cellular excitability, Ca2+ dynamics and contractility and provide a much more physiologically relevant characterization of cardiovascular disease.
Cellular Biology, Issue 79, Medicine, Cardiology, Cellular Biology, Anatomy, Physiology, Mice, Ion Channels, Primary Cell Culture, Cardiac Electrophysiology, adult mouse cardiomyocytes, cell isolation, IonOptix, Cell Culture, adenoviral transfection, patch clamp, fluorescent nanosensor
50289
Play Button
Development, Expansion, and In vivo Monitoring of Human NK Cells from Human Embryonic Stem Cells (hESCs) and Induced Pluripotent Stem Cells (iPSCs)
Authors: Allison M. Bock, David Knorr, Dan S. Kaufman.
Institutions: University of Minnesota, Minneapolis, University of Minnesota, Minneapolis.
We present a method for deriving natural killer (NK) cells from undifferentiated hESCs and iPSCs using a feeder-free approach. This method gives rise to high levels of NK cells after 4 weeks culture and can undergo further 2-log expansion with artificial antigen presenting cells. hESC- and iPSC-derived NK cells developed in this system have a mature phenotype and function. The production of large numbers of genetically modifiable NK cells is applicable for both basic mechanistic as well as anti-tumor studies. Expression of firefly luciferase in hESC-derived NK cells allows a non-invasive approach to follow NK cell engraftment, distribution, and function. We also describe a dual-imaging scheme that allows separate monitoring of two different cell populations to more distinctly characterize their interactions in vivo. This method of derivation, expansion, and dual in vivo imaging provides a reliable approach for producing NK cells and their evaluation which is necessary to improve current NK cell adoptive therapies.
Stem Cell Biology, Issue 74, Bioengineering, Biomedical Engineering, Medicine, Physiology, Anatomy, Cellular Biology, Molecular Biology, Biochemistry, Hematology, Embryonic Stem Cells, ESCs, ES Cells, Hematopoietic Stem Cells, HSC, Pluripotent Stem Cells, Induced Pluripotent Stem Cells, iPSCs, Luciferases, Firefly, Immunotherapy, Immunotherapy, Adoptive, stem cells, differentiation, NK cells, in vivo imaging, fluorescent imaging, turboFP650, FACS, cell culture
50337
Play Button
In vitro Differentiation of Mouse Embryonic Stem (mES) Cells Using the Hanging Drop Method
Authors: Xiang Wang, Phillip Yang.
Institutions: Stanford University .
Stem cells have the remarkable potential to develop into many different cell types. When a stem cell divides, each new cell has the potential to either remain a stem cell or become another type of cell with a more specialized function, This promising of science is leading scientists to investigate the possibility of cell-based therapies to treat disease. When culture in suspension without antidifferentiation factors, embryonic stem cells spontaneously differentiate and form three-dimensional multicellular aggregates. These cell aggregates are called embryoid bodies(EB). Hanging drop culture is a widely used EB formation induction method. The rounded bottom of hanging drop allows the aggregation of ES cells which can provide mES cells a good environment for forming EBs. The number of ES cells aggregatied in a hanging drop can be controlled by varying the number of cells in the initial cell suspension to be hung as a drop from the lid of Petri dish. Using this method we can reproducibly form homogeneous EBs from a predetermined number of ES cells.
Cell Biology, Issue 17, Embryonic stem cell, hanging drop, embryoid body, cardiomyocyte
825
Play Button
Modified Technique for Coronary Artery Ligation in Mice
Authors: Yangzhen Shao, Björn Redfors, Elmir Omerovic.
Institutions: Sahlgrenska Academy, University of Gothenburg.
Myocardial infarction (MI) is one of the most important causes of mortality in humans1-3. In order to improve morbidity and mortality in patients with MI we need better knowledge about pathophysiology of myocardial ischemia. This knowledge may be valuable to define new therapeutic targets for innovative cardiovascular therapies4. Experimental MI model in mice is an increasingly popular small-animal model in preclinical research in which MI is induced by means of permanent or temporary ligation of left coronary artery (LCA)5. In this video, we describe the step-by-step method of how to induce experimental MI in mice. The animal is first anesthetized with 2% isoflurane. The unconscious mouse is then intubated and connected to a ventilator for artificial ventilation. The left chest is shaved and 1.5 cm incision along mid-axillary line is made in the skin. The left pectoralis major muscle is bluntly dissociated until the ribs are exposed. The muscle layers are pulled aside and fixed with an eyelid-retractor. After these preparations, left thoracotomy is performed between the third and fourth ribs in order to visualize the anterior surface of the heart and left lung. The proximal segment of LCA artery is then ligated with a 7-0 ethilon suture which typically induces an infarct size ~40% of left ventricle. At the end, the chest is closed and the animals receive postoperative analgesia (Temgesic, 0.3 mg/50 ml, ip). The animals are kept in a warm cage until spontaneous recovery.
Medicine, Issue 73, Anatomy, Physiology, Biomedical Engineering, Surgery, Cardiology, Hematology, myocardial infarction, coronary artery, ligation, ischemia, ECG, electrocardiology, mice, animal model
3093
Play Button
Embryonic Stem Cell-Derived Endothelial Cells for Treatment of Hindlimb Ischemia
Authors: Ngan F. Huang, Hiroshi Niiyama, Abhijit De, Sanjiv S. Gambhir, John P. Cooke.
Institutions: Stanford University , Stanford University .
Peripheral arterial disease (PAD) results from narrowing of the peripheral arteries that supply oxygenated blood and nutrients to the legs and feet, This pathology causes symptoms such as intermittent claudication (pain with walking), painful ischemic ulcerations, or even limb-threatening gangrene. It is generally believed that the vascular endothelium, a monolayer of endothelial cells that invests the luminal surface of all blood and lymphatic vessels, plays a dominant role in vascular homeostasis and vascular regeneration. As a result, stem cell-based regeneration of the endothelium may be a promising approach for treating PAD.In this video, we demonstrate the transplantation of embryonic stem cell (ESC)-derived endothelial cells for treatment of unilateral hindimb ischemia as a model of PAD, followed by non-invasive tracking of cell homing and survival by bioluminescence imaging. The specific materials and procedures for cell delivery and imaging will be described. This protocol follows another publication in describing the induction of hindlimb ischemia by Niiyama et al.1
Medicine, Issue 23, hindlimb ischemia, peripheral arterial disease, embryonic stem cell, cell transplantation, bioluminescence imaging, non-invasive tracking, mouse model
1034
Play Button
Modified Mouse Embryonic Stem Cell based Assay for Quantifying Cardiogenic Induction Efficiency
Authors: Ada Ao, Charles H. Williams, Jijun Hao, Charles C. Hong.
Institutions: Vanderbilt University School of Medicine, Vanderbilt University School of Medicine, Vanderbilt University School of Medicine, Veterans Administration TVHS.
Differentiation of pluripotent stem cells is tightly controlled by temporal and spatial regulation of multiple key signaling pathways. One of the hurdles to its understanding has been the varied methods in correlating changes of key signaling events to differentiation efficiency. We describe here the use of a mouse embryonic stem (ES) cell based assay to identify critical time windows for Wnt/β-catenin and BMP signal activation during cardiogenic induction. By scoring for contracting embryonic bodies (EBs) in a 96-well plate format, we can quickly quantify cardiogenic efficiency and identify crucial time windows for Wnt/β-catenin and BMP signal activation in a time course following specific modulator treatments. The principal outlined here is not limited to cardiac induction alone, and can be applied towards the study of many other cell lineages. In addition, the 96-well format has the potential to be further developed as a high throughput, automated assay to allow for the testing of more sophisticated experimental hypotheses.
Cellular Biology, Issue 50, Embryonic stem cells (ES) cells, embryonic bodies (EB), signaling pathways, modulators, 96-round bottom well microtiter plates and hanging droplets.
2656
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.