JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Modeling the distribution of migratory bird stopovers to inform landscape-scale siting of wind development.
PUBLISHED: 01-01-2013
Conservation of migratory birds requires understanding the distribution of and potential threats to their migratory habitats. However, although migratory birds are protected under international treaties, few maps have been available to represent migration at a landscape scale useful to target conservation efforts or inform the siting of wind energy developments that may affect migratory birds. To fill this gap, we developed models that predict where four groups of birds concentrate or stopover during their migration through the state of Wyoming, USA: raptors, wetland, riparian and sparse grassland birds. The models were based on existing literature and expert knowledge concerning bird migration behavior and ecology and validated using expert ratings and known occurrences. There was significant agreement between migratory occurrence data and migration models for all groups except raptors, and all models ranked well with experts. We measured the overlap between the migration concentration models and a predictive model of wind energy development to assess the potential exposure of migratory birds to wind development and illustrate the utility of migratory concentration models for landscape-scale planning. Wind development potential is high across 15% of Wyoming, and 73% of this high potential area intersects important migration concentration areas. From 5.2% to 18.8% of each groups important migration areas was represented within this high wind potential area, with the highest exposures for sparse grassland birds and the lowest for riparian birds. Our approach could be replicated elsewhere to fill critical data gaps and better inform conservation priorities and landscape-scale planning for migratory birds.
Authors: John Y. Takekawa, Nichola J. Hill, Annie K. Schultz, Samuel A. Iverson, Carol J. Cardona, Walter M. Boyce, Joseph P. Dudley.
Published: 08-02-2011
Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAI) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds for avian influenza virus (AIV) is often conducted in remote regions, but results are often delayed because of the need to transport samples to a laboratory equipped for molecular testing. Real-time reverse transcriptase polymerase chain reaction (rRT-PCR) is a molecular technique that offers one of the most accurate and sensitive methods for diagnosis of AIV. The previously strict lab protocols needed for rRT-PCR are now being adapted for the field. Development of freeze-dried (lyophilized) reagents that do not require cold chain, with sensitivity at the level of wet reagents has brought on-site remote testing to a practical goal. Here we present a method for the rapid diagnosis of AIV in wild birds using an rRT-PCR unit (Ruggedized Advanced Pathogen Identification Device or RAPID, Idaho Technologies, Salt Lake City, UT) that employs lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies). The reagents contain all of the necessary components for testing at appropriate concentrations in a single tube: primers, probes, enzymes, buffers and internal positive controls, eliminating errors associated with improper storage or handling of wet reagents. The portable unit performs a screen for Influenza A by targeting the matrix gene and yields results in 2-3 hours. Genetic subtyping is also possible with H5 and H7 primer sets that target the hemagglutinin gene. The system is suitable for use on cloacal and oropharyngeal samples collected from wild birds, as demonstrated here on the migratory shorebird species, the western sandpiper (Calidrus mauri) captured in Northern California. Animal handling followed protocols approved by the Animal Care and Use Committee of the U.S. Geological Survey Western Ecological Research Center and permits of the U.S. Geological Survey Bird Banding Laboratory. The primary advantage of this technique is to expedite diagnosis of wild birds, increasing the chances of containing an outbreak in a remote location. On-site diagnosis would also prove useful for identifying and studying infected individuals in wild populations. The opportunity to collect information on host biology (immunological and physiological response to infection) and spatial ecology (migratory performance of infected birds) will provide insights into the extent to which wild birds can act as vectors for AIV over long distances.
24 Related JoVE Articles!
Play Button
Competitive Homing Assays to Study Gut-tropic T Cell Migration
Authors: Eduardo J. Villablanca, J. Rodrigo Mora.
Institutions: Massachusetts General Hospital, Harvard Medical School.
In order to exert their function lymphocytes need to leave the blood and migrate into different tissues in the body. Lymphocyte adhesion to endothelial cells and tissue extravasation is a multistep process controlled by different adhesion molecules (homing receptors) expressed on lymphocytes and their respective ligands (addressins) displayed on endothelial cells 1 2. Even though the function of these adhesion receptors can be partially studied ex vivo, the ultimate test for their physiological relevance is to assess their role during in vivo lymphocyte adhesion and migration. Two complementary strategies have been used for this purpose: intravital microscopy (IVM) and homing experiments. Although IVM has been essential to define the precise contribution of specific adhesion receptors during the adhesion cascade in real time and in different tissues, IVM is time consuming and labor intensive, it often requires the development of sophisticated surgical techniques, it needs prior isolation of homogeneous cell populations and it permits the analysis of only one tissue/organ at any given time. By contrast, competitive homing experiments allow the direct and simultaneous comparison in the migration of two (or even more) cell subsets in the same mouse and they also permit the analysis of many tissues and of a high number of cells in the same experiment. Here we describe the classical competitive homing protocol used to determine the advantage/disadvantage of a given cell type to home to specific tissues as compared to a control cell population. We chose to illustrate the migratory properties of gut-tropic versus non gut-tropic T cells, because the intestinal mucosa is the largest body surface in contact with the external environment and it is also the extra-lymphoid tissue with the best-defined migratory requirements. Moreover, recent work has determined that the vitamin A metabolite all-trans retinoic acid (RA) is the main molecular mechanism responsible for inducing gut-specific adhesion receptors (integrin a4b7and chemokine receptor CCR9) on lymphocytes. Thus, we can readily generate large numbers of gut-tropic and non gut-tropic lymphocytes ex vivoby activating T cells in the presence or absence of RA, respectively, which can be finally used in the competitive homing experiments described here.
Immunology, Issue 49, Homing, competitive, gut-tropism, chemokine, in vivo
Play Button
Analysis of Pulmonary Dendritic Cell Maturation and Migration during Allergic Airway Inflammation
Authors: Rahul Kushwah, Jim Hu.
Institutions: McMaster University, Hamilton, University of Toronto.
Dendritic cells (DCs) are the key players involved in initiation of adaptive immune response by activating antigen-specific T cells. DCs are present in peripheral tissues in steady state; however in response to antigen stimulation, DCs take up the antigen and rapidly migrate to the draining lymph nodes where they initiate T cell response against the antigen1,2. Additionally, DCs also play a key role in initiating autoimmune as well as allergic immune response3. DCs play an essential role in both initiation of immune response and induction of tolerance in the setting of lung environment4. Lung environment is largely tolerogenic, owing to the exposure to vast array of environmental antigens5. However, in some individuals there is a break in tolerance, which leads to induction of allergy and asthma. In this study, we describe a strategy, which can be used to monitor airway DC maturation and migration in response to the antigen used for sensitization. The measurement of airway DC maturation and migration allows for assessment of the kinetics of immune response during airway allergic inflammation and also assists in understanding the magnitude of the subsequent immune response along with the underlying mechanisms. Our strategy is based on the use of ovalbumin as a sensitizing agent. Ovalbumin-induced allergic asthma is a widely used model to reproduce the airway eosinophilia, pulmonary inflammation and elevated IgE levels found during asthma6,7. After sensitization, mice are challenged by intranasal delivery of FITC labeled ovalbumin, which allows for specific labeling of airway DCs which uptake ovalbumin. Next, using several DC specific markers, we can assess the maturation of these DCs and can also assess their migration to the draining lymph nodes by employing flow cytometry.
Immunology, Issue 65, Medicine, Physiology, Dendritic Cells, allergic airway inflammation, ovalbumin, lymph nodes, lungs, dendritic cell maturation, dendritic cell migration, mediastinal lymph nodes
Play Button
Organotypic Slice Cultures of Embryonic Ventral Midbrain: A System to Study Dopaminergic Neuronal Development in vitro
Authors: Gabriela Oana Bodea, Sandra Blaess.
Institutions: University of Bonn.
The mouse is an excellent model organism to study mammalian brain development due to the abundance of molecular and genetic data. However, the developing mouse brain is not suitable for easy manipulation and imaging in vivo since the mouse embryo is inaccessible and opaque. Organotypic slice cultures of embryonic brains are therefore widely used to study murine brain development in vitro. Ex-vivo manipulation or the use of transgenic mice allows the modification of gene expression so that subpopulations of neuronal or glial cells can be labeled with fluorescent proteins. The behavior of labeled cells can then be observed using time-lapse imaging. Time-lapse imaging has been particularly successful for studying cell behaviors that underlie the development of the cerebral cortex at late embryonic stages 1-2. Embryonic organotypic slice culture systems in brain regions outside of the forebrain are less well established. Therefore, the wealth of time-lapse imaging data describing neuronal cell migration is restricted to the forebrain 3,4. It is still not known, whether the principles discovered for the dorsal brain hold true for ventral brain areas. In the ventral brain, neurons are organized in neuronal clusters rather than layers and they often have to undergo complicated migratory trajectories to reach their final position. The ventral midbrain is not only a good model system for ventral brain development, but also contains neuronal populations such as dopaminergic neurons that are relevant in disease processes. While the function and degeneration of dopaminergic neurons has been investigated in great detail in the adult and ageing brain, little is known about the behavior of these neurons during their differentiation and migration phase 5. We describe here the generation of slice cultures from the embryonic day (E) 12.5 mouse ventral midbrain. These slice cultures are potentially suitable for monitoring dopaminergic neuron development over several days in vitro. We highlight the critical steps in generating brain slices at these early stages of embryonic development and discuss the conditions necessary for maintaining normal development of dopaminergic neurons in vitro. We also present results from time lapse imaging experiments. In these experiments, ventral midbrain precursors (including dopaminergic precursors) and their descendants were labeled in a mosaic manner using a Cre/loxP based inducible fate mapping system 6.
Neuroscience, Issue 59, Developmental Biology, organotypic slice culture, midbrain, mouse, time-lapse imaging, neurons
Play Button
Human T Lymphocyte Isolation, Culture and Analysis of Migration In Vitro
Authors: Craig T. Lefort, Minsoo Kim.
Institutions: University of Rochester.
The migration of T lymphocytes involves the adhesive interaction of cell surface integrins with ligands expressed on other cells or with extracellular matrix proteins. The precise spatiotemporal activation of integrins from a low affinity state to a high affinity state at the cell leading edge is important for T lymphocyte migration 1. Likewise, retraction of the cell trailing edge, or uropod, is a necessary step in maintaining persistent integrin-dependent T lymphocyte motility 2. Many therapeutic approaches to autoimmune or inflammatory diseases target integrins as a means to inhibit the excessive recruitment and migration of leukocytes 3. To study the molecular events that regulate human T lymphocyte migration, we have utilized an in vitro system to analyze cell migration on a two-dimensional substrate that mimics the environment that a T lymphocyte encounters during recruitment from the vasculature. T lymphocytes are first isolated from human donors and are then stimulated and cultured for seven to ten days. During the assay, T lymphocytes are allowed to adhere and migrate on a substrate coated with intercellular adhesion molecule-1 (ICAM-1), a ligand for integrin LFA-1, and stromal cell-derived factor-1 (SDF-1). Our data show that T lymphocytes exhibit a migratory velocity of ~15 μm/min. T lymphocyte migration can be inhibited by integrin blockade 1 or by inhibitors of the cellular actomyosin machinery that regulates cell migration 2.
Immunology, Issue 40, T lymphocyte, Migration, Integrin, LFA-1, ICAM-1, Chemokine
Play Button
Measurement of Greenhouse Gas Flux from Agricultural Soils Using Static Chambers
Authors: Sarah M. Collier, Matthew D. Ruark, Lawrence G. Oates, William E. Jokela, Curtis J. Dell.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison, University of Wisconsin-Madison, University of Wisconsin-Madison, USDA-ARS Dairy Forage Research Center, USDA-ARS Pasture Systems Watershed Management Research Unit.
Measurement of greenhouse gas (GHG) fluxes between the soil and the atmosphere, in both managed and unmanaged ecosystems, is critical to understanding the biogeochemical drivers of climate change and to the development and evaluation of GHG mitigation strategies based on modulation of landscape management practices. The static chamber-based method described here is based on trapping gases emitted from the soil surface within a chamber and collecting samples from the chamber headspace at regular intervals for analysis by gas chromatography. Change in gas concentration over time is used to calculate flux. This method can be utilized to measure landscape-based flux of carbon dioxide, nitrous oxide, and methane, and to estimate differences between treatments or explore system dynamics over seasons or years. Infrastructure requirements are modest, but a comprehensive experimental design is essential. This method is easily deployed in the field, conforms to established guidelines, and produces data suitable to large-scale GHG emissions studies.
Environmental Sciences, Issue 90, greenhouse gas, trace gas, gas flux, static chamber, soil, field, agriculture, climate
Play Button
Design and Construction of an Urban Runoff Research Facility
Authors: Benjamin G. Wherley, Richard H. White, Kevin J. McInnes, Charles H. Fontanier, James C. Thomas, Jacqueline A. Aitkenhead-Peterson, Steven T. Kelly.
Institutions: Texas A&M University, The Scotts Miracle-Gro Company.
As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m2 facility was constructed which consists of 24 individual 33.6 m2 field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4-P, K+, Mg2+, and Ca2+ had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems.
Environmental Sciences, Issue 90, urban runoff, landscapes, home lawns, turfgrass, St. Augustinegrass, carbon, nitrogen, phosphorus, sodium
Play Button
A Protocol for Computer-Based Protein Structure and Function Prediction
Authors: Ambrish Roy, Dong Xu, Jonathan Poisson, Yang Zhang.
Institutions: University of Michigan , University of Kansas.
Genome sequencing projects have ciphered millions of protein sequence, which require knowledge of their structure and function to improve the understanding of their biological role. Although experimental methods can provide detailed information for a small fraction of these proteins, computational modeling is needed for the majority of protein molecules which are experimentally uncharacterized. The I-TASSER server is an on-line workbench for high-resolution modeling of protein structure and function. Given a protein sequence, a typical output from the I-TASSER server includes secondary structure prediction, predicted solvent accessibility of each residue, homologous template proteins detected by threading and structure alignments, up to five full-length tertiary structural models, and structure-based functional annotations for enzyme classification, Gene Ontology terms and protein-ligand binding sites. All the predictions are tagged with a confidence score which tells how accurate the predictions are without knowing the experimental data. To facilitate the special requests of end users, the server provides channels to accept user-specified inter-residue distance and contact maps to interactively change the I-TASSER modeling; it also allows users to specify any proteins as template, or to exclude any template proteins during the structure assembly simulations. The structural information could be collected by the users based on experimental evidences or biological insights with the purpose of improving the quality of I-TASSER predictions. The server was evaluated as the best programs for protein structure and function predictions in the recent community-wide CASP experiments. There are currently >20,000 registered scientists from over 100 countries who are using the on-line I-TASSER server.
Biochemistry, Issue 57, On-line server, I-TASSER, protein structure prediction, function prediction
Play Button
Neural Circuit Recording from an Intact Cockroach Nervous System
Authors: Josh S. Titlow, Zana R. Majeed, H. Bernard Hartman, Ellen Burns, Robin L. Cooper.
Institutions: University of Kentucky , University of Salahaddin, University of Oregon.
The cockroach ventral nerve cord preparation is a tractable system for neuroethology experiments, neural network modeling, and testing the physiological effects of insecticides. This article describes the scope of cockroach sensory modalities that can be used to assay how an insect nervous system responds to environmental perturbations. Emphasis here is on the escape behavior mediated by cerci to giant fiber transmission in Periplaneta americana. This in situ preparation requires only moderate dissecting skill and electrophysiological expertise to generate reproducible recordings of neuronal activity. Peptides or other chemical reagents can then be applied directly to the nervous system in solution with the physiological saline. Insecticides could also be administered prior to dissection and the escape circuit can serve as a proxy for the excitable state of the central nervous system. In this context the assays described herein would also be useful to researchers interested in limb regeneration and the evolution of nervous system development for which P. americana is an established model organism.
Neuroscience, Issue 81, Life Sciences (General), electrophysiology, neural circuit, cockroach, neuroethology, neural network modeling, P. americana, action potentials (APs)
Play Button
Investigating the Three-dimensional Flow Separation Induced by a Model Vocal Fold Polyp
Authors: Kelley C. Stewart, Byron D. Erath, Michael W. Plesniak.
Institutions: The George Washington University, Clarkson University.
The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. Our laboratory has reported particle image velocimetry (PIV) measurements, within an investigation of a model polyp located on the medial surface of an in vitro driven vocal fold model, which show that such a geometric abnormality considerably disrupts the glottal jet behavior. This flow field adjustment is a likely reason for the severe degradation of the vocal quality in patients with polyps. A more complete understanding of the formation and propagation of vortical structures from a geometric protuberance, such as a vocal fold polyp, and the resulting influence on the aerodynamic loadings that drive the vocal fold dynamics, is necessary for advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp, using an oil-film visualization technique. Unsteady, three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements.
Bioengineering, Issue 84, oil-flow visualization, vocal fold polyp, three-dimensional flow separation, aerodynamic pressure loadings
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
Migratory Behavior of Cells Generated in Ganglionic Eminence Cultures
Authors: Marcin Gierdalski, Thomas McFate, Joseph Abbah, Sharon L. Juliano.
Institutions: Uniformed Services University, Uniformed Services University.
Migration of cells is a common process that leads to the development and maturation of the vertebrate central nervous system (Hatten, '99). The cerebral cortex consists of two basic neuronal types: excitatory and inhibitory. These cells arise in distinct areas and migrate into the cortex along different routes (Pearlman et al., '98). Inhibitory interneurons migrate tangentially from subcortical sources, mostly from different regions of the ganglionic eminences (Gelman et al., '09; Xu et al., '04). Their movement requires precise spatiotemporal control imposed by environmental cues, to allow for the establishment of proper cytoarchitecture and connectivity in the cerebral cortex (Caviness & Rakic, '78; Hatten, '90; Rakic, '90). To study the migratory behavior of cells generated in proliferative zones of the ganglionic eminences (GE) in newborn ferrets in vitro we used a 3 dimensional culture arrangement in a BD Matrigel Matrix. The culture setup consisted of two GE explants and a source of tested proteins extracted from the cerebral cortex and adsorbed on fluorescent latex Retrobeads IX positioned between the explants (Hasling et al., '03; Riddle et al., '97). After 2-3 days of culture, the cells start to appear at the edge of the explant showing a propensity to leave the tissue in a radial direction. Live imaging allowed observation of migratory patterns without the necessity of labeling or marking the cells. When exposed to fractions of the protein extract obtained from isochronic ferret cortex, the GE cells displayed different behaviors as judged by quantitative kinetic analysis of individual moving cells.
Neuroscience, Issue 50, migration kinetics, corticogenesis, 3D culture, time-lapse imaging
Play Button
In vitro Cell Migration and Invasion Assays
Authors: Calvin R. Justus, Nancy Leffler, Maria Ruiz-Echevarria, Li V. Yang.
Institutions: East Carolina University.
Migration is a key property of live cells and critical for normal development, immune response, and disease processes such as cancer metastasis and inflammation. Methods to examine cell migration are very useful and important for a wide range of biomedical research such as cancer biology, immunology, vascular biology, cell biology and developmental biology. Here we use tumor cell migration and invasion as an example and describe two related assays to illustrate the commonly used, easily accessible methods to measure these processes. The first method is the cell culture wound closure assay in which a scratch is generated on a confluent cell monolayer. The speed of wound closure and cell migration can be quantified by taking snapshot pictures with a regular inverted microscope at several time intervals. More detailed cell migratory behavior can be documented using the time-lapse microscopy system. The second method described in this paper is the transwell cell migration and invasion assay that measures the capacity of cell motility and invasiveness toward a chemo-attractant gradient. It is our goal to describe these methods in a highly accessible manner so that the procedures can be successfully performed in research laboratories even just with basic cell biology setup.
Bioengineering, Issue 88, Cell migration, cell invasion, chemotaxis, transwell assay, wound closure assay, time-lapse microscopy
Play Button
Avian Influenza Surveillance with FTA Cards: Field Methods, Biosafety, and Transportation Issues Solved
Authors: Robert H.S. Kraus, Pim van Hooft, Jonas Waldenström, Neus Latorre-Margalef, Ronald C. Ydenberg, Herbert H.T. Prins.
Institutions: Wageningen University, Linnaeus University, Simon Fraser University .
Avian Influenza Viruses (AIVs) infect many mammals, including humans1. These AIVs are diverse in their natural hosts, harboring almost all possible viral subtypes2. Human pandemics of flu originally stem from AIVs3. Many fatal human cases during the H5N1 outbreaks in recent years were reported. Lately, a new AIV related strain swept through the human population, causing the 'swine flu epidemic'4. Although human trading and transportation activity seems to be responsible for the spread of highly pathogenic strains5, dispersal can also partly be attributed to wild birds6, 7. However, the actual reservoir of all AIV strains is wild birds. In reaction to this and in face of severe commercial losses in the poultry industry, large surveillance programs have been implemented globally to collect information on the ecology of AIVs, and to install early warning systems to detect certain highly pathogenic strains8-12. Traditional virological methods require viruses to be intact and cultivated before analysis. This necessitates strict cold chains with deep freezers and heavy biosafety procedures to be in place during transport. Long-term surveillance is therefore usually restricted to a few field stations close to well equipped laboratories. Remote areas cannot be sampled unless logistically cumbersome procedures are implemented. These problems have been recognised13, 14 and the use of alternative storage and transport strategies investigated (alcohols or guanidine)15-17. Recently, Kraus et al.18 introduced a method to collect, store and transport AIV samples, based on a special filter paper. FTA cards19 preserve RNA on a dry storage basis20 and render pathogens inactive upon contact21. This study showed that FTA cards can be used to detect AIV RNA in reverse-transcription PCR and that the resulting cDNA could be sequenced and virus genes and determined. In the study of Kraus et al.18 a laboratory isolate of AIV was used, and samples were handled individually. In the extension presented here, faecal samples from wild birds from the duck trap at the Ottenby Bird Observatory (SE Sweden) were tested directly to illustrate the usefulness of the methods under field conditions. Catching of ducks and sample collection by cloacal swabs is demonstrated. The current protocol includes up-scaling of the work flow from single tube handling to a 96-well design. Although less sensitive than the traditional methods, the method of FTA cards provides an excellent supplement to large surveillance schemes. It allows collection and analysis of samples from anywhere in the world, without the need to maintaining a cool chain or safety regulations with respect to shipping of hazardous reagents, such as alcohol or guanidine.
Immunology, Issue 54, AI, Influenza A Virus, zoonoses, reverse transcription PCR, viral RNA, surveillance, duck trap, RNA preservation and storage, infection, mallard
Play Button
Analysis of Cell Migration within a Three-dimensional Collagen Matrix
Authors: Nadine Rommerswinkel, Bernd Niggemann, Silvia Keil, Kurt S. Zänker, Thomas Dittmar.
Institutions: Witten/Herdecke University.
The ability to migrate is a hallmark of various cell types and plays a crucial role in several physiological processes, including embryonic development, wound healing, and immune responses. However, cell migration is also a key mechanism in cancer enabling these cancer cells to detach from the primary tumor to start metastatic spreading. Within the past years various cell migration assays have been developed to analyze the migratory behavior of different cell types. Because the locomotory behavior of cells markedly differs between a two-dimensional (2D) and three-dimensional (3D) environment it can be assumed that the analysis of the migration of cells that are embedded within a 3D environment would yield in more significant cell migration data. The advantage of the described 3D collagen matrix migration assay is that cells are embedded within a physiological 3D network of collagen fibers representing the major component of the extracellular matrix. Due to time-lapse video microscopy real cell migration is measured allowing the determination of several migration parameters as well as their alterations in response to pro-migratory factors or inhibitors. Various cell types could be analyzed using this technique, including lymphocytes/leukocytes, stem cells, and tumor cells. Likewise, also cell clusters or spheroids could be embedded within the collagen matrix concomitant with analysis of the emigration of single cells from the cell cluster/ spheroid into the collagen lattice. We conclude that the 3D collagen matrix migration assay is a versatile method to analyze the migration of cells within a physiological-like 3D environment.
Bioengineering, Issue 92, cell migration, 3D collagen matrix, cell tracking
Play Button
Analysis of Neural Crest Migration and Differentiation by Cross-species Transplantation
Authors: Shannon L. Griswold, Peter Y. Lwigale.
Institutions: Rice University .
Avian embryos provide a unique platform for studying many vertebrate developmental processes, due to the easy access of the embryos within the egg. Chimeric avian embryos, in which quail donor tissue is transplanted into a chick embryo in ovo, combine the power of indelible genetic labeling of cell populations with the ease of manipulation presented by the avian embryo. Quail-chick chimeras are a classical tool for tracing migratory neural crest cells (NCCs)1-3. NCCs are a transient migratory population of cells in the embryo, which originate in the dorsal region of the developing neural tube4. They undergo an epithelial to mesenchymal transition and subsequently migrate to other regions of the embryo, where they differentiate into various cell types including cartilage5-13, melanocytes11,14-20, neurons and glia21-32. NCCs are multipotent, and their ultimate fate is influenced by 1) the region of the neural tube in which they originate along the rostro-caudal axis of the embryo11,33-37, 2) signals from neighboring cells as they migrate38-44, and 3) the microenvironment of their ultimate destination within the embryo45,46. Tracing these cells from their point of origin at the neural tube, to their final position and fate within the embryo, provides important insight into the developmental processes that regulate patterning and organogenesis. Transplantation of complementary regions of donor neural tube (homotopic grafting) or different regions of donor neural tube (heterotopic grafting) can reveal differences in pre-specification of NCCs along the rostro-caudal axis2,47. This technique can be further adapted to transplant a unilateral compartment of the neural tube, such that one side is derived from donor tissue, and the contralateral side remains unperturbed in the host embryo, yielding an internal control within the same sample2,47. It can also be adapted for transplantation of brain segments in later embryos, after HH10, when the anterior neural tube has closed47. Here we report techniques for generating quail-chick chimeras via neural tube transplantation, which allow for tracing of migratory NCCs derived from a discrete segment of the neural tube. Species-specific labeling of the donor-derived cells with the quail-specific QCPN antibody48-56 allows the researcher to distinguish donor and host cells at the experimental end point. This technique is straightforward, inexpensive, and has many applications, including fate-mapping, cell lineage tracing, and identifying pre-patterning events along the rostro-caudal axis45. Because of the ease of access to the avian embryo, the quail-chick graft technique may be combined with other manipulations, including but not limited to lens ablation40, injection of inhibitory molecules57,58, or genetic manipulation via electroporation of expression plasmids59-61, to identify the response of particular migratory streams of NCCs to perturbations in the embryo's developmental program. Furthermore, this grafting technique may also be used to generate other interspecific chimeric embryos such as quail-duck chimeras to study NCC contribution to craniofacial morphogenesis, or mouse-chick chimeras to combine the power of mouse genetics with the ease of manipulation of the avian embryo.62
Neuroscience, Issue 60, Neural crest, chick, quail, chimera, fate map, cell migration, cell differentiation
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
In vivo Postnatal Electroporation and Time-lapse Imaging of Neuroblast Migration in Mouse Acute Brain Slices
Authors: Martina Sonego, Ya Zhou, Madeleine Julie Oudin, Patrick Doherty, Giovanna Lalli.
Institutions: King's College London, Massachusetts Institute of Technology.
The subventricular zone (SVZ) is one of the main neurogenic niches in the postnatal brain. Here, neural progenitors proliferate and give rise to neuroblasts able to move along the rostral migratory stream (RMS) towards the olfactory bulb (OB). This long-distance migration is required for the subsequent maturation of newborn neurons in the OB, but the molecular mechanisms regulating this process are still unclear. Investigating the signaling pathways controlling neuroblast motility may not only help understand a fundamental step in neurogenesis, but also have therapeutic regenerative potential, given the ability of these neuroblasts to target brain sites affected by injury, stroke, or degeneration. In this manuscript we describe a detailed protocol for in vivo postnatal electroporation and subsequent time-lapse imaging of neuroblast migration in the mouse RMS. Postnatal electroporation can efficiently transfect SVZ progenitor cells, which in turn generate neuroblasts migrating along the RMS. Using confocal spinning disk time-lapse microscopy on acute brain slice cultures, neuroblast migration can be monitored in an environment closely resembling the in vivo condition. Moreover, neuroblast motility can be tracked and quantitatively analyzed. As an example, we describe how to use in vivo postnatal electroporation of a GFP-expressing plasmid to label and visualize neuroblasts migrating along the RMS. Electroporation of shRNA or CRE recombinase-expressing plasmids in conditional knockout mice employing the LoxP system can also be used to target genes of interest. Pharmacological manipulation of acute brain slice cultures can be performed to investigate the role of different signaling molecules in neuroblast migration. By coupling in vivo electroporation with time-lapse imaging, we hope to understand the molecular mechanisms controlling neuroblast motility and contribute to the development of novel approaches to promote brain repair.
Neuroscience, Issue 81, Time-Lapse Imaging, Cell Migration Assays, Electroporation, neurogenesis, neuroblast migration, neural stem cells, subventricular zone (SVZ), rostral migratory stream (RMS), neonatal mouse pups, electroporation, time-lapse imaging, brain slice culture, cell tracking
Play Button
Time-lapse Imaging of Neuroblast Migration in Acute Slices of the Adult Mouse Forebrain
Authors: Jivan Khlghatyan, Armen Saghatelyan.
Institutions: Centre de Recherche Université Laval Robert-Giffard.
There is a substantial body of evidence indicating that new functional neurons are constitutively generated from an endogenous pool of neural stem cells in restricted areas of the adult mammalian brain. Newborn neuroblasts from the subventricular zone (SVZ) migrate along the rostral migratory stream (RMS) to their final destination in the olfactory bulb (OB)1. In the RMS, neuroblasts migrate tangentially in chains ensheathed by astrocytic processes2,3 using blood vessels as a structural support and a source of molecular factors required for migration4,5. In the OB, neuroblasts detach from the chains and migrate radially into the different bulbar layers where they differentiate into interneurons and integrate into the existing network1, 6. In this manuscript we describe the procedure for monitoring cell migration in acute slices of the rodent brain. The use of acute slices allows the assessment of cell migration in the microenvironment that closely resembling to in vivo conditions and in brain regions that are difficult to access for in vivo imaging. In addition, it avoids long culturing condition as in the case of organotypic and cell cultures that may eventually alter the migration properties of the cells. Neuronal precursors in acute slices can be visualized using DIC optics or fluorescent proteins. Viral labeling of neuronal precursors in the SVZ, grafting neuroblasts from reporter mice into the SVZ of wild-type mice, and using transgenic mice that express fluorescent protein in neuroblasts are all suitable methods for visualizing neuroblasts and following their migration. The later method, however, does not allow individual cells to be tracked for long periods of time because of the high density of labeled cells. We used a wide-field fluorescent upright microscope equipped with a CCD camera to achieve a relatively rapid acquisition interval (one image every 15 or 30 sec) to reliably identify the stationary and migratory phases. A precise identification of the duration of the stationary and migratory phases is crucial for the unambiguous interpretation of results. We also performed multiple z-step acquisitions to monitor neuroblasts migration in 3D. Wide-field fluorescent imaging has been used extensively to visualize neuronal migration7-10. Here, we describe detailed protocol for labeling neuroblasts, performing real-time video-imaging of neuroblast migration in acute slices of the adult mouse forebrain, and analyzing cell migration. While the described protocol exemplified the migration of neuroblasts in the adult RMS, it can also be used to follow cell migration in embryonic and early postnatal brains.
Neuroscience, Issue 67, Molecular Biology, Medicine, Physiology, brain, migration, neuroblast, rostral migratory stream (RMS), blood vessels, subventricular zone (SVZ), olfactory bulb, real-time video imaging
Play Button
A Novel Three-dimensional Flow Chamber Device to Study Chemokine-directed Extravasation of Cells Circulating under Physiological Flow Conditions
Authors: Valentina Goncharova, Sophia K. Khaldoyanidi.
Institutions: Torrey Pines Institute for Molecular Studies, Cascade LifeSciences Inc..
Extravasation of circulating cells from the bloodstream plays a central role in many physiological and pathophysiological processes, including stem cell homing and tumor metastasis. The three-dimensional flow chamber device (hereafter the 3D device) is a novel in vitro technology that recreates physiological shear stress and allows each step of the cell extravasation cascade to be quantified. The 3D device consists of an upper compartment in which the cells of interest circulate under shear stress, and a lower compartment of static wells that contain the chemoattractants of interest. The two compartments are separated by porous inserts coated with a monolayer of endothelial cells (EC). An optional second insert with microenvironmental cells of interest can be placed immediately beneath the EC layer. A gas exchange unit allows the optimal CO2 tension to be maintained and provides an access point to add or withdraw cells or compounds during the experiment. The test cells circulate in the upper compartment at the desired shear stress (flow rate) controlled by a peristaltic pump. At the end of the experiment, the circulating and migrated cells are collected for further analyses. The 3D device can be used to examine cell rolling on and adhesion to EC under shear stress, transmigration in response to chemokine gradients, resistance to shear stress, cluster formation, and cell survival. In addition, the optional second insert allows the effects of crosstalk between EC and microenvironmental cells to be examined. The translational applications of the 3D device include testing of drug candidates that target cell migration and predicting the in vivo behavior of cells after intravenous injection. Thus, the novel 3D device is a versatile and inexpensive tool to study the molecular mechanisms that mediate cellular extravasation.
Bioengineering, Issue 77, Cellular Biology, Biophysics, Physiology, Molecular Biology, Biomedical Engineering, Immunology, Cells, Biological Factors, Equipment and Supplies, Cell Physiological Phenomena, Natural Science Disciplines, Life Sciences (General), circulating cells, extravasation, physiological shear stress, endothelial cells, microenvironment, chemokine gradient, flow, chamber, cell culture, assay
Play Button
In vitro Coculture Assay to Assess Pathogen Induced Neutrophil Trans-epithelial Migration
Authors: Mark E. Kusek, Michael A. Pazos, Waheed Pirzai, Bryan P. Hurley.
Institutions: Harvard Medical School, MGH for Children, Massachusetts General Hospital.
Mucosal surfaces serve as protective barriers against pathogenic organisms. Innate immune responses are activated upon sensing pathogen leading to the infiltration of tissues with migrating inflammatory cells, primarily neutrophils. This process has the potential to be destructive to tissues if excessive or held in an unresolved state.  Cocultured in vitro models can be utilized to study the unique molecular mechanisms involved in pathogen induced neutrophil trans-epithelial migration. This type of model provides versatility in experimental design with opportunity for controlled manipulation of the pathogen, epithelial barrier, or neutrophil. Pathogenic infection of the apical surface of polarized epithelial monolayers grown on permeable transwell filters instigates physiologically relevant basolateral to apical trans-epithelial migration of neutrophils applied to the basolateral surface. The in vitro model described herein demonstrates the multiple steps necessary for demonstrating neutrophil migration across a polarized lung epithelial monolayer that has been infected with pathogenic P. aeruginosa (PAO1). Seeding and culturing of permeable transwells with human derived lung epithelial cells is described, along with isolation of neutrophils from whole human blood and culturing of PAO1 and nonpathogenic K12 E. coli (MC1000).  The emigrational process and quantitative analysis of successfully migrated neutrophils that have been mobilized in response to pathogenic infection is shown with representative data, including positive and negative controls. This in vitro model system can be manipulated and applied to other mucosal surfaces. Inflammatory responses that involve excessive neutrophil infiltration can be destructive to host tissues and can occur in the absence of pathogenic infections. A better understanding of the molecular mechanisms that promote neutrophil trans-epithelial migration through experimental manipulation of the in vitro coculture assay system described herein has significant potential to identify novel therapeutic targets for a range of mucosal infectious as well as inflammatory diseases.
Infection, Issue 83, Cellular Biology, Epithelium, Neutrophils, Pseudomonas aeruginosa, Respiratory Tract Diseases, Neutrophils, epithelial barriers, pathogens, transmigration
Play Button
Nucleofection of Rodent Neuroblasts to Study Neuroblast Migration In vitro
Authors: Katarzyna Falenta, Sangeetha Gajendra, Martina Sonego, Patrick Doherty, Giovanna Lalli.
Institutions: King's College London, King's College London.
The subventricular zone (SVZ) located in the lateral wall of the lateral ventricles plays a fundamental role in adult neurogenesis. In this restricted area of the brain, neural stem cells proliferate and constantly generate neuroblasts that migrate tangentially in chains along the rostral migratory stream (RMS) to reach the olfactory bulb (OB). Once in the OB, neuroblasts switch to radial migration and then differentiate into mature neurons able to incorporate into the preexisting neuronal network. Proper neuroblast migration is a fundamental step in neurogenesis, ensuring the correct functional maturation of newborn neurons. Given the ability of SVZ-derived neuroblasts to target injured areas in the brain, investigating the intracellular mechanisms underlying their motility will not only enhance the understanding of neurogenesis but may also promote the development of neuroregenerative strategies. This manuscript describes a detailed protocol for the transfection of primary rodent RMS postnatal neuroblasts and the analysis of their motility using a 3D in vitro migration assay recapitulating their mode of migration observed in vivo. Both rat and mouse neuroblasts can be quickly and efficiently transfected via nucleofection with either plasmid DNA, small hairpin (sh)RNA or short interfering (si)RNA oligos targeting genes of interest. To analyze migration, nucleofected cells are reaggregated in 'hanging drops' and subsequently embedded in a three-dimensional matrix. Nucleofection per se does not significantly impair the migration of neuroblasts. Pharmacological treatment of nucleofected and reaggregated neuroblasts can also be performed to study the role of signaling pathways involved in neuroblast migration.
Neuroscience, Issue 81, Cellular Biology, Cell Migration Assays, Transfection, Neurogenesis, subventricular zone (SVZ), neural stem cells, rostral migratory stream (RMS), neuroblast, 3D migration assay, nucleofection
Play Button
Assessing Signaling Properties of Ectodermal Epithelia During Craniofacial Development
Authors: Diane Hu, Ralph S. Marcucio.
Institutions: University of California San Francisco.
The accessibility of avian embryos has helped experimental embryologists understand the fates of cells during development and the role of tissue interactions that regulate patterning and morphogenesis of vertebrates (e.g., 1, 2, 3, 4). Here, we illustrate a method that exploits this accessibility to test the signaling and patterning properties of ectodermal tissues during facial development. In these experiments, we create quail-chick 5 or mouse-chick 6 chimeras by transplanting the surface cephalic ectoderm that covers the upper jaw from quail or mouse onto either the same region or an ectopic region of chick embryos. The use of quail as donor tissue for transplantation into chicks was developed to take advantage of a nucleolar marker present in quail but not chick cells, thus allowing investigators to distinguish host and donor tissues 7. Similarly, a repetitive element is present in the mouse genome and is expressed ubiquitously, which allows us to distinguish host and donor tissues in mouse-chick chimeras 8. The use of mouse ectoderm as donor tissue will greatly extend our understanding of these tissue interactions, because this will allow us to test the signaling properties of ectoderm derived from various mutant embryos.
Developmental Biology, Issue 49, Quail-chick chimera, Ectoderm transplant, FEZ, Mouse-chick chimera
Play Button
Nanomanipulation of Single RNA Molecules by Optical Tweezers
Authors: William Stephenson, Gorby Wan, Scott A. Tenenbaum, Pan T. X. Li.
Institutions: University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York, University at Albany, State University of New York.
A large portion of the human genome is transcribed but not translated. In this post genomic era, regulatory functions of RNA have been shown to be increasingly important. As RNA function often depends on its ability to adopt alternative structures, it is difficult to predict RNA three-dimensional structures directly from sequence. Single-molecule approaches show potentials to solve the problem of RNA structural polymorphism by monitoring molecular structures one molecule at a time. This work presents a method to precisely manipulate the folding and structure of single RNA molecules using optical tweezers. First, methods to synthesize molecules suitable for single-molecule mechanical work are described. Next, various calibration procedures to ensure the proper operations of the optical tweezers are discussed. Next, various experiments are explained. To demonstrate the utility of the technique, results of mechanically unfolding RNA hairpins and a single RNA kissing complex are used as evidence. In these examples, the nanomanipulation technique was used to study folding of each structural domain, including secondary and tertiary, independently. Lastly, the limitations and future applications of the method are discussed.
Bioengineering, Issue 90, RNA folding, single-molecule, optical tweezers, nanomanipulation, RNA secondary structure, RNA tertiary structure
Play Button
An Organotypic Slice Assay for High-Resolution Time-Lapse Imaging of Neuronal Migration in the Postnatal Brain
Authors: Benoit V. Jacquet, Philip Ruckart, H. Troy Ghashghaei.
Institutions: North Carolina State University.
Neurogenesis in the postnatal brain depends on maintenance of three biological events: proliferation of progenitor cells, migration of neuroblasts, as well as differentiation and integration of new neurons into existing neural circuits. For postnatal neurogenesis in the olfactory bulbs, these events are segregated within three anatomically distinct domains: proliferation largely occurs in the subependymal zone (SEZ) of the lateral ventricles, migrating neuroblasts traverse through the rostral migratory stream (RMS), and new neurons differentiate and integrate within the olfactory bulbs (OB). The three domains serve as ideal platforms to study the cellular, molecular, and physiological mechanisms that regulate each of the biological events distinctly. This paper describes an organotypic slice assay optimized for postnatal brain tissue, in which the extracellular conditions closely mimic the in vivo environment for migrating neuroblasts. We show that our assay provides for uniform, oriented, and speedy movement of neuroblasts within the RMS. This assay will be highly suitable for the study of cell autonomous and non-autonomous regulation of neuronal migration by utilizing cross-transplantation approaches from mice on different genetic backgrounds.
Neuroscience, Issue 46, Rostral Migratory Stream, Neuronal Migration, Organotypic Slices, Transplantation,
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.