JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Obesity and association with area of residence, gender and socio-economic factors in Algerian and Tunisian adults.
PUBLISHED: 01-01-2013
The epidemiological transition has resulted in a major increase in the prevalence of obesity in North Africa. This study investigated differences in obesity and its association with area of residence, gender and socio-economic position among adults in Algeria and Tunisia, two countries with socio-economic and socio-cultural similarities.
Authors: Adrien Mann, Allie Thompson, Nathan Robbins, Andra L. Blomkalns.
Published: 12-04-2014
Obesity has increased dramatically in the last few decades and affects over one third of the adult US population. The economic effect of obesity in 2005 reached a staggering sum of $190.2 billion in direct medical costs alone. Obesity is a major risk factor for a wide host of diseases. Historically, little was known regarding adipose and its major and essential functions in the body. Brown and white adipose are the two main types of adipose but current literature has identified a new type of fat called brite or beige adipose. Research has shown that adipose depots have specific metabolic profiles and certain depots allow for a propensity for obesity and other related disorders. The goal of this protocol is to provide researchers the capacity to identify and excise adipose depots that will allow for the analysis of different factorial effects on adipose; as well as the beneficial or detrimental role adipose plays in disease and overall health. Isolation and excision of adipose depots allows investigators to look at gross morphological changes as well as histological changes. The adipose isolated can also be used for molecular studies to evaluate transcriptional and translational change or for in vitro experimentation to discover targets of interest and mechanisms of action. This technique is superior to other published techniques due to the design allowing for isolation of multiple depots with simplicity and minimal contamination.
21 Related JoVE Articles!
Play Button
Measuring Oral Fatty Acid Thresholds, Fat Perception, Fatty Food Liking, and Papillae Density in Humans
Authors: Rivkeh Y. Haryono, Madeline A. Sprajcer, Russell S. J. Keast.
Institutions: Deakin University.
Emerging evidence from a number of laboratories indicates that humans have the ability to identify fatty acids in the oral cavity, presumably via fatty acid receptors housed on taste cells. Previous research has shown that an individual's oral sensitivity to fatty acid, specifically oleic acid (C18:1) is associated with body mass index (BMI), dietary fat consumption, and the ability to identify fat in foods. We have developed a reliable and reproducible method to assess oral chemoreception of fatty acids, using a milk and C18:1 emulsion, together with an ascending forced choice triangle procedure. In parallel, a food matrix has been developed to assess an individual's ability to perceive fat, in addition to a simple method to assess fatty food liking. As an added measure tongue photography is used to assess papillae density, with higher density often being associated with increased taste sensitivity.
Neuroscience, Issue 88, taste, overweight and obesity, dietary fat, fatty acid, diet, fatty food liking, detection threshold
Play Button
Fat Preference: A Novel Model of Eating Behavior in Rats
Authors: James M Kasper, Sarah B Johnson, Jonathan D. Hommel.
Institutions: University of Texas Medical Branch.
Obesity is a growing problem in the United States of America, with more than a third of the population classified as obese. One factor contributing to this multifactorial disorder is the consumption of a high fat diet, a behavior that has been shown to increase both caloric intake and body fat content. However, the elements regulating preference for high fat food over other foods remain understudied. To overcome this deficit, a model to quickly and easily test changes in the preference for dietary fat was developed. The Fat Preference model presents rats with a series of choices between foods with differing fat content. Like humans, rats have a natural bias toward consuming high fat food, making the rat model ideal for translational studies. Changes in preference can be ascribed to the effect of either genetic differences or pharmacological interventions. This model allows for the exploration of determinates of fat preference and screening pharmacotherapeutic agents that influence acquisition of obesity.
Behavior, Issue 88, obesity, fat, preference, choice, diet, macronutrient, animal model
Play Button
Cercarial Transformation and in vitro Cultivation of Schistosoma mansoni Schistosomules
Authors: John N. Milligan, Emmitt R. Jolly.
Institutions: Case Western Reserve University .
Schistosome parasites are the causative agents of schistosomiasis, a chronically debilitating disease that affects over 200 million people globally and ranks second to malaria among parasitic diseases in terms of public health and socio-economic impact (1-4). Schistosome parasites are trematode worms with a complex life cycle interchanging between a parasitic life in molluscan and mammalian hosts with intervening free-swimming stages. Briefly, free-swimming cercariae infect a mammalian host by penetrating the skin with the aid of secreted proteases, during which time the cercariae lose their tails, transforming into schistosomules. The schistosomules must now evade the host immune system, develop a gut for digestion of red blood cells, and migrate though the lungs and portal circulation en route to their final destination in the hepatic portal system and eventually the mesenteric veins (for S. mansoni) where male and female worms pair and mate, producing hundreds of eggs daily. Some of the eggs are excreted from the body into fresh water, where the eggs hatch into free-swimming miracidia (5-10). The miracidia infect specific snail species and transform into mother and daughter sporocysts, which in turn, produce infective cercariae, completing the life cycle. Unfortunately, the entire schistosome life cycle cannot be cultured in vitro, but infective cercariae can be transformed into schistosomules, and the schistosomules can be cultured for weeks for the analysis of schistosome development in vitro or microarray analysis. In this protocol, we provide a visual description of cercarial transformation and in vitro culturing of schistosomules. We shed infectious cercariae from the snail host Biomphalaria glabrata and manually transform them into schistosomules by detaching their tails using an emulsifying double-ended needle. The in vitro cercarial transformation and schistosomules culture techniques described avoid the use of a mammalian host, which simplifies visualization of schistosomes and facilitates the collection of the parasite for experimental analysis. in vitro transformation and culturing techniques of schistosomes have been done for years (11, 12), but no visual protocols have been developed that are available to the entire community.
Immunology, Issue 54, Schistosoma mansoni, schistosomiasis, schistosome, cercariae, schistosomula, schistosomula, in vitro culture, parasite, bloodfluke
Play Button
Assessment of Age-related Changes in Cognitive Functions Using EmoCogMeter, a Novel Tablet-computer Based Approach
Authors: Philipp Fuge, Simone Grimm, Anne Weigand, Yan Fan, Matti Gärtner, Melanie Feeser, Malek Bajbouj.
Institutions: Freie Universität Berlin, Charité Berlin, Freie Universität Berlin, Psychiatric University Hospital Zurich.
The main goal of this study was to assess the usability of a tablet-computer-based application (EmoCogMeter) in investigating the effects of age on cognitive functions across the lifespan in a sample of 378 healthy subjects (age range 18-89 years). Consistent with previous findings we found an age-related cognitive decline across a wide range of neuropsychological domains (memory, attention, executive functions), thereby proving the usability of our tablet-based application. Regardless of prior computer experience, subjects of all age groups were able to perform the tasks without instruction or feedback from an experimenter. Increased motivation and compliance proved to be beneficial for task performance, thereby potentially increasing the validity of the results. Our promising findings underline the great clinical and practical potential of a tablet-based application for detection and monitoring of cognitive dysfunction.
Behavior, Issue 84, Neuropsychological Testing, cognitive decline, age, tablet-computer, memory, attention, executive functions
Play Button
Development of a Virtual Reality Assessment of Everyday Living Skills
Authors: Stacy A. Ruse, Vicki G. Davis, Alexandra S. Atkins, K. Ranga R. Krishnan, Kolleen H. Fox, Philip D. Harvey, Richard S.E. Keefe.
Institutions: NeuroCog Trials, Inc., Duke-NUS Graduate Medical Center, Duke University Medical Center, Fox Evaluation and Consulting, PLLC, University of Miami Miller School of Medicine.
Cognitive impairments affect the majority of patients with schizophrenia and these impairments predict poor long term psychosocial outcomes.  Treatment studies aimed at cognitive impairment in patients with schizophrenia not only require demonstration of improvements on cognitive tests, but also evidence that any cognitive changes lead to clinically meaningful improvements.  Measures of “functional capacity” index the extent to which individuals have the potential to perform skills required for real world functioning.  Current data do not support the recommendation of any single instrument for measurement of functional capacity.  The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) is a novel, interactive gaming based measure of functional capacity that uses a realistic simulated environment to recreate routine activities of daily living. Studies are currently underway to evaluate and establish the VRFCAT’s sensitivity, reliability, validity, and practicality. This new measure of functional capacity is practical, relevant, easy to use, and has several features that improve validity and sensitivity of measurement of function in clinical trials of patients with CNS disorders.
Behavior, Issue 86, Virtual Reality, Cognitive Assessment, Functional Capacity, Computer Based Assessment, Schizophrenia, Neuropsychology, Aging, Dementia
Play Button
Cerenkov Luminescence Imaging of Interscapular Brown Adipose Tissue
Authors: Xueli Zhang, Chaincy Kuo, Anna Moore, Chongzhao Ran.
Institutions: Massachusetts General Hospital/Harvard Medical School, China Pharmaceutical University, Perkin Elmer.
Brown adipose tissue (BAT), widely known as a “good fat” plays pivotal roles for thermogenesis in mammals. This special tissue is closely related to metabolism and energy expenditure, and its dysfunction is one important contributor for obesity and diabetes. Contrary to previous belief, recent PET/CT imaging studies indicated the BAT depots are still present in human adults. PET imaging clearly shows that BAT has considerably high uptake of 18F-FDG under certain conditions. In this video report, we demonstrate that Cerenkov luminescence imaging (CLI) with 18F-FDG can be used to optically image BAT in small animals. BAT activation is observed after intraperitoneal injection of norepinephrine (NE) and cold treatment, and depression of BAT is induced by long anesthesia. Using multiple-filter Cerenkov luminescence imaging, spectral unmixing and 3D imaging reconstruction are demonstrated. Our results suggest that CLI with 18F-FDG is a practical technique for imaging BAT in small animals, and this technique can be used as a cheap, fast, and alternative imaging tool for BAT research.
Medicine, Issue 92, Cerenkov luminescence imaging, brown adipose tissue, 18F-FDG, optical imaging, in vivo imaging, spectral unmixing
Play Button
Isolation and Differentiation of Stromal Vascular Cells to Beige/Brite Cells
Authors: Ulrike Liisberg Aune, Lauren Ruiz, Shingo Kajimura.
Institutions: University of California, San Francisco , University of Copenhagen, Denmark, National Institute of Nutrition and Seafood Research, Bergen, Norway.
Brown adipocytes have the ability to uncouple the respiratory chain in mitochondria and dissipate chemical energy as heat. Development of UCP1-positive brown adipocytes in white adipose tissues (so called beige or brite cells) is highly induced by a variety of environmental cues such as chronic cold exposure or by PPARγ agonists, therefore, this cell type has potential as a therapeutic target for obesity treatment. Although most immortalized adipocyte lines cannot recapitulate the process of "browning" of white fat in culture, primary adipocytes isolated from stromal vascular fraction in subcutaneous white adipose tissue (WAT) provide a reliable cellular system to study the molecular control of beige/brite cell development. Here we describe a protocol for effective isolation of primary preadipocytes and for inducing differentiation to beige/brite cells in culture. The browning effect can be assessed by the expression of brown fat-selective markers such as UCP1.
Cellular Biology, Issue 73, Medicine, Anatomy, Physiology, Molecular Biology, Surgery, Adipose Tissue, Adipocytes, Transcription Factors, Cell Differentiation, Obesity, Diabetes, brown adipose tissue, beige/brite cells, primary adipocytes, stromal-vascular fraction, differentiation, uncoupling protein 1, rosiglitazone, differentiation, cells, isolation, fat, animal model
Play Button
Measurement of Lifespan in Drosophila melanogaster
Authors: Nancy J. Linford, Ceyda Bilgir, Jennifer Ro, Scott D. Pletcher.
Institutions: University of Michigan , University of Michigan .
Aging is a phenomenon that results in steady physiological deterioration in nearly all organisms in which it has been examined, leading to reduced physical performance and increased risk of disease. Individual aging is manifest at the population level as an increase in age-dependent mortality, which is often measured in the laboratory by observing lifespan in large cohorts of age-matched individuals. Experiments that seek to quantify the extent to which genetic or environmental manipulations impact lifespan in simple model organisms have been remarkably successful for understanding the aspects of aging that are conserved across taxa and for inspiring new strategies for extending lifespan and preventing age-associated disease in mammals. The vinegar fly, Drosophila melanogaster, is an attractive model organism for studying the mechanisms of aging due to its relatively short lifespan, convenient husbandry, and facile genetics. However, demographic measures of aging, including age-specific survival and mortality, are extraordinarily susceptible to even minor variations in experimental design and environment, and the maintenance of strict laboratory practices for the duration of aging experiments is required. These considerations, together with the need to practice careful control of genetic background, are essential for generating robust measurements. Indeed, there are many notable controversies surrounding inference from longevity experiments in yeast, worms, flies and mice that have been traced to environmental or genetic artifacts1-4. In this protocol, we describe a set of procedures that have been optimized over many years of measuring longevity in Drosophila using laboratory vials. We also describe the use of the dLife software, which was developed by our laboratory and is available for download ( dLife accelerates throughput and promotes good practices by incorporating optimal experimental design, simplifying fly handling and data collection, and standardizing data analysis. We will also discuss the many potential pitfalls in the design, collection, and interpretation of lifespan data, and we provide steps to avoid these dangers.
Developmental Biology, Issue 71, Cellular Biology, Molecular Biology, Anatomy, Physiology, Entomology, longevity, lifespan, aging, Drosophila melanogaster, fruit fly, Drosophila, mortality, animal model
Play Button
Functional Imaging of Brown Fat in Mice with 18F-FDG micro-PET/CT
Authors: Xukui Wang, Laurie J. Minze, Zheng-Zheng Shi.
Institutions: The Methodist Hospital Research Institute, Houston, The Methodist Hospital Research Institute, Houston.
Brown adipose tissue (BAT) differs from white adipose tissue (WAT) by its discrete location and a brown-red color due to rich vascularization and high density of mitochondria. BAT plays a major role in energy expenditure and non-shivering thermogenesis in newborn mammals as well as the adults 1. BAT-mediated thermogenesis is highly regulated by the sympathetic nervous system, predominantly via β adrenergic receptor 2, 3. Recent studies have shown that BAT activities in human adults are negatively correlated with body mass index (BMI) and other diabetic parameters 4-6. BAT has thus been proposed as a potential target for anti-obesity/anti-diabetes therapy focusing on modulation of energy balance 6-8. While several cold challenge-based positron emission tomography (PET) methods are established for detecting human BAT 9-13, there is essentially no standardized protocol for imaging and quantification of BAT in small animal models such as mice. Here we describe a robust PET/CT imaging method for functional assessment of BAT in mice. Briefly, adult C57BL/6J mice were cold treated under fasting conditions for a duration of 4 hours before they received one dose of 18F-Fluorodeoxyglucose (FDG). The mice were remained in the cold for one additional hour post FDG injection, and then scanned with a small animal-dedicated micro-PET/CT system. The acquired PET images were co-registered with the CT images for anatomical references and analyzed for FDG uptake in the interscapular BAT area to present BAT activity. This standardized cold-treatment and imaging protocol has been validated through testing BAT activities during pharmacological interventions, for example, the suppressed BAT activation by the treatment of β-adrenoceptor antagonist propranolol 14, 15, or the enhanced BAT activation by β3 agonist BRL37344 16. The method described here can be applied to screen for drugs/compounds that modulate BAT activity, or to identify genes/pathways that are involved in BAT development and regulation in various preclinical and basic studies.
Molecular Biology, Issue 69, Neuroscience, Anatomy, Physiology, Medicine, Brown adipose tissue, mice, 18F-Fluorodeoxyglucose, micro-PET, PET, CT, CT scan, tomography, imaging
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
Methylnitrosourea (MNU)-induced Retinal Degeneration and Regeneration in the Zebrafish: Histological and Functional Characteristics
Authors: Ellinor Maurer, Markus Tschopp, Christoph Tappeiner, Pauline Sallin, Anna Jazwinska, Volker Enzmann.
Institutions: University of Bern, University Hospital of Basel, University of Fribourg.
Retinal degenerative diseases, e.g. retinitis pigmentosa, with resulting photoreceptor damage account for the majority of vision loss in the industrial world. Animal models are of pivotal importance to study such diseases. In this regard the photoreceptor-specific toxin N-methyl-N-nitrosourea (MNU) has been widely used in rodents to pharmacologically induce retinal degeneration. Previously, we have established a MNU-induced retinal degeneration model in the zebrafish, another popular model system in visual research. A fascinating difference to mammals is the persistent neurogenesis in the adult zebrafish retina and its regeneration after damage. To quantify this observation we have employed visual acuity measurements in the adult zebrafish. Thereby, the optokinetic reflex was used to follow functional changes in non-anesthetized fish. This was supplemented with histology as well as immunohistochemical staining for apoptosis (TUNEL) and proliferation (PCNA) to correlate the developing morphological changes. In summary, apoptosis of photoreceptors occurs three days after MNU treatment, which is followed by a marked reduction of cells in the outer nuclear layer (ONL). Thereafter, proliferation of cells in the inner nuclear layer (INL) and ONL is observed. Herein, we reveal that not only a complete histological but also a functional regeneration occurs over a time course of 30 days. Now we illustrate the methods to quantify and follow up zebrafish retinal de- and regeneration using MNU in a video-format.
Cellular Biology, Issue 92, N-methyl-N-nitrosourea (MNU), retina, degeneration, photoreceptors, Müller cells, regeneration, zebrafish, visual function
Play Button
Studying Food Reward and Motivation in Humans
Authors: Hisham Ziauddeen, Naresh Subramaniam, Victoria C. Cambridge, Nenad Medic, Ismaa Sadaf Farooqi, Paul C. Fletcher.
Institutions: University of Cambridge, University of Cambridge, University of Cambridge, Addenbrooke's Hospital.
A key challenge in studying reward processing in humans is to go beyond subjective self-report measures and quantify different aspects of reward such as hedonics, motivation, and goal value in more objective ways. This is particularly relevant for the understanding of overeating and obesity as well as their potential treatments. In this paper are described a set of measures of food-related motivation using handgrip force as a motivational measure. These methods can be used to examine changes in food related motivation with metabolic (satiety) and pharmacological manipulations and can be used to evaluate interventions targeted at overeating and obesity. However to understand food-related decision making in the complex food environment it is essential to be able to ascertain the reward goal values that guide the decisions and behavioral choices that people make. These values are hidden but it is possible to ascertain them more objectively using metrics such as the willingness to pay and a method for this is described. Both these sets of methods provide quantitative measures of motivation and goal value that can be compared within and between individuals.
Behavior, Issue 85, Food reward, motivation, grip force, willingness to pay, subliminal motivation
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
Laboratory-determined Phosphorus Flux from Lake Sediments as a Measure of Internal Phosphorus Loading
Authors: Mary E. Ogdahl, Alan D. Steinman, Maggie E. Weinert.
Institutions: Grand Valley State University.
Eutrophication is a water quality issue in lakes worldwide, and there is a critical need to identify and control nutrient sources. Internal phosphorus (P) loading from lake sediments can account for a substantial portion of the total P load in eutrophic, and some mesotrophic, lakes. Laboratory determination of P release rates from sediment cores is one approach for determining the role of internal P loading and guiding management decisions. Two principal alternatives to experimental determination of sediment P release exist for estimating internal load: in situ measurements of changes in hypolimnetic P over time and P mass balance. The experimental approach using laboratory-based sediment incubations to quantify internal P load is a direct method, making it a valuable tool for lake management and restoration. Laboratory incubations of sediment cores can help determine the relative importance of internal vs. external P loads, as well as be used to answer a variety of lake management and research questions. We illustrate the use of sediment core incubations to assess the effectiveness of an aluminum sulfate (alum) treatment for reducing sediment P release. Other research questions that can be investigated using this approach include the effects of sediment resuspension and bioturbation on P release. The approach also has limitations. Assumptions must be made with respect to: extrapolating results from sediment cores to the entire lake; deciding over what time periods to measure nutrient release; and addressing possible core tube artifacts. A comprehensive dissolved oxygen monitoring strategy to assess temporal and spatial redox status in the lake provides greater confidence in annual P loads estimated from sediment core incubations.
Environmental Sciences, Issue 85, Limnology, internal loading, eutrophication, nutrient flux, sediment coring, phosphorus, lakes
Play Button
Fundus Photography as a Convenient Tool to Study Microvascular Responses to Cardiovascular Disease Risk Factors in Epidemiological Studies
Authors: Patrick De Boever, Tijs Louwies, Eline Provost, Luc Int Panis, Tim S. Nawrot.
Institutions: Flemish Institute for Technological Research (VITO), Hasselt University, Hasselt University, Leuven University.
The microcirculation consists of blood vessels with diameters less than 150 µm. It makes up a large part of the circulatory system and plays an important role in maintaining cardiovascular health. The retina is a tissue that lines the interior of the eye and it is the only tissue that allows for a non-invasive analysis of the microvasculature. Nowadays, high-quality fundus images can be acquired using digital cameras. Retinal images can be collected in 5 min or less, even without dilatation of the pupils. This unobtrusive and fast procedure for visualizing the microcirculation is attractive to apply in epidemiological studies and to monitor cardiovascular health from early age up to old age. Systemic diseases that affect the circulation can result in progressive morphological changes in the retinal vasculature. For example, changes in the vessel calibers of retinal arteries and veins have been associated with hypertension, atherosclerosis, and increased risk of stroke and myocardial infarction. The vessel widths are derived using image analysis software and the width of the six largest arteries and veins are summarized in the Central Retinal Arteriolar Equivalent (CRAE) and the Central Retinal Venular Equivalent (CRVE). The latter features have been shown useful to study the impact of modifiable lifestyle and environmental cardiovascular disease risk factors. The procedures to acquire fundus images and the analysis steps to obtain CRAE and CRVE are described. Coefficients of variation of repeated measures of CRAE and CRVE are less than 2% and within-rater reliability is very high. Using a panel study, the rapid response of the retinal vessel calibers to short-term changes in particulate air pollution, a known risk factor for cardiovascular mortality and morbidity, is reported. In conclusion, retinal imaging is proposed as a convenient and instrumental tool for epidemiological studies to study microvascular responses to cardiovascular disease risk factors.
Medicine, Issue 92, retina, microvasculature, image analysis, Central Retinal Arteriolar Equivalent, Central Retinal Venular Equivalent, air pollution, particulate matter, black carbon
Play Button
Isolation of Adipose Tissue Immune Cells
Authors: Jeb S. Orr, Arion J. Kennedy, Alyssa H. Hasty.
Institutions: Vanderbilt University School of Medicine.
The discovery of increased macrophage infiltration in the adipose tissue (AT) of obese rodents and humans has led to an intensification of interest in immune cell contribution to local and systemic insulin resistance. Isolation and quantification of different immune cell populations in lean and obese AT is now a commonly utilized technique in immunometabolism laboratories; yet extreme care must be taken both in stromal vascular cell isolation and in the flow cytometry analysis so that the data obtained is reliable and interpretable. In this video we demonstrate how to mince, digest, and isolate the immune cell-enriched stromal vascular fraction. Subsequently, we show how to antibody label macrophages and T lymphocytes and how to properly gate on them in flow cytometry experiments. Representative flow cytometry plots from low fat-fed lean and high fat-fed obese mice are provided. A critical element of this analysis is the use of antibodies that do not fluoresce in channels where AT macrophages are naturally autofluorescent, as well as the use of proper compensation controls.
Immunology, Issue 75, Cellular Biology, Molecular Biology, Biophysics, Physiology, Anatomy, Biomedical Engineering, Surgery, Metabolic Diseases, Diabetes Mellitus, diabetes, Endocrine System Diseases, adipose tissue, AT, stromal vascular fraction, macrophage, lymphocyte, T cells, adipocyte, inflammation, obesity, cell, isolation, FACS, flow cytometry, mice, animal model
Play Button
An Optimized Protocol for Rearing Fopius arisanus, a Parasitoid of Tephritid Fruit Flies
Authors: Nicholas Manoukis, Scott Geib, Danny Seo, Michael McKenney, Roger Vargas, Eric Jang.
Institutions: US Pacific Basin Agricultural Research Center.
Fopius arisanus (Sonan) is an important parasitoid of Tephritid fruit flies for at least two reasons. First, it is the one of only three opiine parasitoids known to infect the host during the egg stage1. Second, it has a wide range of potential fruit fly hosts. Perhaps due to its life history, F. arisanus has been a successfully used for biological control of fruit flies in multiple tropical regions2-4. One impediment to the wide use of F. arisanus for fruit fly control is that it is difficult to establish a stable laboratory colony5-9. Despite this difficulty, in the 1990s USDA researchers developed a reliable method to maintain laboratory populations of F. arisanus10-12. There is significant interest in F. arisanus biology13,14, especially regarding its ability to colonize a wide variety of Tephritid hosts14-17; interest is especially driven by the alarming spread of Bactrocera fruit fly pests to new continents in the last decade18. Further research on F. arisanus and additional deployments of this species as a biological control agent will benefit from optimizations and improvements of rearing methods. In this protocol and associated video article we describe an optimized method for rearing F. arisanus based on a previously described approach12. The method we describe here allows rearing of F. arisanus in a small scale without the use of fruit, using materials available in tropical regions around the world and with relatively low manual labor requirements.
Developmental Biology, Issue 53, Biological control, Tephritidae, parasitoid, French Polynesia, insectary
Play Button
Improving IV Insulin Administration in a Community Hospital
Authors: Michael C. Magee.
Institutions: Wyoming Medical Center.
Diabetes mellitus is a major independent risk factor for increased morbidity and mortality in the hospitalized patient, and elevated blood glucose concentrations, even in non-diabetic patients, predicts poor outcomes.1-4 The 2008 consensus statement by the American Association of Clinical Endocrinologists (AACE) and the American Diabetes Association (ADA) states that "hyperglycemia in hospitalized patients, irrespective of its cause, is unequivocally associated with adverse outcomes."5 It is important to recognize that hyperglycemia occurs in patients with known or undiagnosed diabetes as well as during acute illness in those with previously normal glucose tolerance. The Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation (NICE-SUGAR) study involved over six thousand adult intensive care unit (ICU) patients who were randomized to intensive glucose control or conventional glucose control.6 Surprisingly, this trial found that intensive glucose control increased the risk of mortality by 14% (odds ratio, 1.14; p=0.02). In addition, there was an increased prevalence of severe hypoglycemia in the intensive control group compared with the conventional control group (6.8% vs. 0.5%, respectively; p<0.001). From this pivotal trial and two others,7,8 Wyoming Medical Center (WMC) realized the importance of controlling hyperglycemia in the hospitalized patient while avoiding the negative impact of resultant hypoglycemia. Despite multiple revisions of an IV insulin paper protocol, analysis of data from usage of the paper protocol at WMC shows that in terms of achieving normoglycemia while minimizing hypoglycemia, results were suboptimal. Therefore, through a systematical implementation plan, monitoring of patient blood glucose levels was switched from using a paper IV insulin protocol to a computerized glucose management system. By comparing blood glucose levels using the paper protocol to that of the computerized system, it was determined, that overall, the computerized glucose management system resulted in more rapid and tighter glucose control than the traditional paper protocol. Specifically, a substantial increase in the time spent within the target blood glucose concentration range, as well as a decrease in the prevalence of severe hypoglycemia (BG < 40 mg/dL), clinical hypoglycemia (BG < 70 mg/dL), and hyperglycemia (BG > 180 mg/dL), was witnessed in the first five months after implementation of the computerized glucose management system. The computerized system achieved target concentrations in greater than 75% of all readings while minimizing the risk of hypoglycemia. The prevalence of hypoglycemia (BG < 70 mg/dL) with the use of the computer glucose management system was well under 1%.
Medicine, Issue 64, Physiology, Computerized glucose management, Endotool, hypoglycemia, hyperglycemia, diabetes, IV insulin, paper protocol, glucose control
Play Button
Segmentation and Measurement of Fat Volumes in Murine Obesity Models Using X-ray Computed Tomography
Authors: Todd A. Sasser, Sarah E. Chapman, Shengting Li, Caroline Hudson, Sean P. Orton, Justin M. Diener, Seth T. Gammon, Carlos Correcher, W. Matthew Leevy.
Institutions: Carestream Molecular Imaging , University of Notre Dame , University of Notre Dame , Oncovision, GEM-Imaging S.A..
Obesity is associated with increased morbidity and mortality as well as reduced metrics in quality of life.1 Both environmental and genetic factors are associated with obesity, though the precise underlying mechanisms that contribute to the disease are currently being delineated.2,3 Several small animal models of obesity have been developed and are employed in a variety of studies.4 A critical component to these experiments involves the collection of regional and/or total animal fat content data under varied conditions. Traditional experimental methods available for measuring fat content in small animal models of obesity include invasive (e.g. ex vivo measurement of fat deposits) and non-invasive (e.g. Dual Energy X-ray Absorptiometry (DEXA), or Magnetic Resonance (MR)) protocols, each of which presents relative trade-offs. Current invasive methods for measuring fat content may provide details for organ and region specific fat distribution, but sacrificing the subjects will preclude longitudinal assessments. Conversely, current non-invasive strategies provide limited details for organ and region specific fat distribution, but enable valuable longitudinal assessment. With the advent of dedicated small animal X-ray computed tomography (CT) systems and customized analytical procedures, both organ and region specific analysis of fat distribution and longitudinal profiling may be possible. Recent reports have validated the use of CT for in vivo longitudinal imaging of adiposity in living mice.5,6 Here we provide a modified method that allows for fat/total volume measurement, analysis and visualization utilizing the Carestream Molecular Imaging Albira CT system in conjunction with PMOD and Volview software packages.
Medicine, Issue 62, X-ray computed tomography (CT), image analysis, in vivo, obesity, metabolic disorders
Play Button
Brain Imaging Investigation of the Neural Correlates of Observing Virtual Social Interactions
Authors: Keen Sung, Sanda Dolcos, Sophie Flor-Henry, Crystal Zhou, Claudia Gasior, Jennifer Argo, Florin Dolcos.
Institutions: University of Alberta, University of Illinois, University of Alberta, University of Alberta, University of Alberta, University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign.
The ability to gauge social interactions is crucial in the assessment of others’ intentions. Factors such as facial expressions and body language affect our decisions in personal and professional life alike 1. These "friend or foe" judgements are often based on first impressions, which in turn may affect our decisions to "approach or avoid". Previous studies investigating the neural correlates of social cognition tended to use static facial stimuli 2. Here, we illustrate an experimental design in which whole-body animated characters were used in conjunction with functional magnetic resonance imaging (fMRI) recordings. Fifteen participants were presented with short movie-clips of guest-host interactions in a business setting, while fMRI data were recorded; at the end of each movie, participants also provided ratings of the host behaviour. This design mimics more closely real-life situations, and hence may contribute to better understanding of the neural mechanisms of social interactions in healthy behaviour, and to gaining insight into possible causes of deficits in social behaviour in such clinical conditions as social anxiety and autism 3.
Neuroscience, Issue 53, Social Perception, Social Knowledge, Social Cognition Network, Non-Verbal Communication, Decision-Making, Event-Related fMRI
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.