JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
p53-mediated biliary defects caused by knockdown of cirh1a, the zebrafish homolog of the gene responsible for North American Indian Childhood Cirrhosis.
PUBLISHED: 01-01-2013
North American Indian Childhood Cirrhosis (NAIC) is a rare, autosomal recessive, progressive cholestatic disease of infancy affecting the Cree-Ojibway first Nations of Quebec. All NAIC patients are homozygous for a missense mutation (R565W) in CIRH1A, the human homolog of the yeast nucleolar protein Utp4. Utp4 is part of the t-Utp subcomplex of the small subunit (SSU) processome, a ribonucleoprotein complex required for ribosomal RNA processing and small subunit assembly. NAIC has thus been proposed to be a primary ribosomal disorder (ribosomopathy); however, investigation of the pathophysiologic mechanism of this disease has been hindered by lack of an animal model. Here, using a morpholino oligonucleotide (MO)-based loss-of-function strategy, we have generated a model of NAIC in the zebrafish, Danio rerio. Zebrafish Cirhin shows substantial homology to the human homolog, and cirh1a mRNA is expressed in developing hepatocytes and biliary epithelial cells. Injection of two independent MOs directed against cirh1a at the one-cell stage causes defects in canalicular and biliary morphology in 5 dpf larvae. In addition, 5 dpf Cirhin-deficient larvae have dose-dependent defects in hepatobiliary function, as assayed by the metabolism of an ingested fluorescent lipid reporter. Previous yeast and in vitro studies have shown that defects in ribosome biogenesis cause stabilization and nuclear accumulation of p53, which in turn causes p53-mediated cell cycle arrest and/or apoptosis. Thus, the nucleolus appears to function as a cellular stress sensor in some cell types. In accordance with this hypothesis, transcriptional targets of p53 are upregulated in Cirhin-deficient zebrafish embryos, and defects in biliary function seen in Cirhin-deficient larvae are completely abrogated by mutation of tp53. Our data provide the first in vivo evidence of a role for Cirhin in biliary development, and support the hypothesis that congenital defects affecting ribosome biogenesis can activate a cellular stress response mediated by p53.
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Published: 08-24-2013
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
22 Related JoVE Articles!
Play Button
A Possible Zebrafish Model of Polycystic Kidney Disease: Knockdown of wnt5a Causes Cysts in Zebrafish Kidneys
Authors: Liwei Huang, An Xiao, Andrea Wecker, Daniel A. McBride, Soo Young Choi, Weibin Zhou, Joshua H. Lipschutz.
Institutions: Eastern Virginia Medical School, Medical University of South Carolina, University of Michigan.
Polycystic kidney disease (PKD) is one of the most common causes of end-stage kidney disease, a devastating disease for which there is no cure. The molecular mechanisms leading to cyst formation in PKD remain somewhat unclear, but many genes are thought to be involved. Wnt5a is a non-canonical glycoprotein that regulates a wide range of developmental processes. Wnt5a works through the planar cell polarity (PCP) pathway that regulates oriented cell division during renal tubular cell elongation. Defects of the PCP pathway have been found to cause kidney cyst formation. Our paper describes a method for developing a zebrafish cystic kidney disease model by knockdown of the wnt5a gene with wnt5a antisense morpholino (MO) oligonucleotides. Tg(wt1b:GFP) transgenic zebrafish were used to visualize kidney structure and kidney cysts following wnt5a knockdown. Two distinct antisense MOs (AUG - and splice-site) were used and both resulted in curly tail down phenotype and cyst formation after wnt5a knockdown. Injection of mouse Wnt5a mRNA, resistant to the MOs due to a difference in primary base pair structure, rescued the abnormal phenotype, demonstrating that the phenotype was not due to “off-target” effects of the morpholino. This work supports the validity of using a zebrafish model to study wnt5a function in the kidney.
Medicine, Issue 94, Wnt5a, polycystic kidney disease, morpholino, microinjection, zebrafish, pronephros
Play Button
Microinjection of mRNA and Morpholino Antisense Oligonucleotides in Zebrafish Embryos.
Authors: Shiaulou Yuan, Zhaoxia Sun.
Institutions: Yale University School of Medicine.
An essential tool for investigating the role of a gene during development is the ability to perform gene knockdown, overexpression, and misexpression studies. In zebrafish (Danio rerio), microinjection of RNA, DNA, proteins, antisense oligonucleotides and other small molecules into the developing embryo provides researchers a quick and robust assay for exploring gene function in vivo. In this video-article, we will demonstrate how to prepare and microinject in vitro synthesized EGFP mRNA and a translational-blocking morpholino oligo against pkd2, a gene associated with autosomal dominant polycystic kidney disease (ADPKD), into 1-cell stage zebrafish embryos. We will then analyze the success of the mRNA and morpholino microinjections by verifying GFP expression and phenotype analysis. Broad applications of this technique include generating transgenic animals and germ-line chimeras, cell-fate mapping and gene screening. Herein we describe a protocol for overexpression of EGFP and knockdown of pkd2 by mRNA and morpholino oligonucleotide injection.
Developmental Biology, Issue 27, Zebrafish, microinjection, morpholino antisense oligonucleotide, gene overexpression, gene knockdown
Play Button
VisioTracker, an Innovative Automated Approach to Oculomotor Analysis
Authors: Kaspar P. Mueller, Oliver D. R. Schnaedelbach, Holger D. Russig, Stephan C. F. Neuhauss.
Institutions: University of Zurich, TSE Systems GmbH.
Investigations into the visual system development and function necessitate quantifiable behavioral models of visual performance that are easy to elicit, robust, and simple to manipulate. A suitable model has been found in the optokinetic response (OKR), a reflexive behavior present in all vertebrates due to its high selection value. The OKR involves slow stimulus-following movements of eyes alternated with rapid resetting saccades. The measurement of this behavior is easily carried out in zebrafish larvae, due to its early and stable onset (fully developed after 96 hours post fertilization (hpf)), and benefitting from the thorough knowledge about zebrafish genetics, for decades one of the favored model organisms in this field. Meanwhile the analysis of similar mechanisms in adult fish has gained importance, particularly for pharmacological and toxicological applications. Here we describe VisioTracker, a fully automated, high-throughput system for quantitative analysis of visual performance. The system is based on research carried out in the group of Prof. Stephan Neuhauss and was re-designed by TSE Systems. It consists of an immobilizing device for small fish monitored by a high-quality video camera equipped with a high-resolution zoom lens. The fish container is surrounded by a drum screen, upon which computer-generated stimulus patterns can be projected. Eye movements are recorded and automatically analyzed by the VisioTracker software package in real time. Data analysis enables immediate recognition of parameters such as slow and fast phase duration, movement cycle frequency, slow-phase gain, visual acuity, and contrast sensitivity. Typical results allow for example the rapid identification of visual system mutants that show no apparent alteration in wild type morphology, or the determination of quantitative effects of pharmacological or toxic and mutagenic agents on visual system performance.
Neuroscience, Issue 56, zebrafish, fish larvae, visual system, optokinetic response, developmental genetics, pharmacology, mutants, Danio rerio, adult fish
Play Button
Direct Delivery of MIF Morpholinos Into the Zebrafish Otocyst by Injection and Electroporation Affects Inner Ear Development
Authors: Katie E. Holmes, Matthew J. Wyatt, Yu-chi Shen, Deborah A. Thompson, Kate F. Barald.
Institutions: University of Wisconsin, Madison, University of Michigan, Ann Arbor, MI, University of Michigan, Ann Arbor, MI, University of Michigan, Ann Arbor, MI.
In recent years, electroporation has become a popular technique for in vivo transfection of DNA, RNA, and morpholinos into various tissues, including the eye, brain, and somites of zebrafish. The advantage of electroporation over other methods of genetic manipulation is that specific tissues can be targeted, both spatially and temporally, for the introduction of macromolecules by the application of electrical current. Here we describe the use of electroporation for transfecting mif and mif-like morpholinos into the tissues of the developing inner ear of the zebrafish. In past studies, mif morpholino injected into embryos at the 1- to 8-cell stage resulted in widespread morphological changes in the nervous system and eye, as well as the ear. By targeting the tissues of the inner ear at later stages in development, we can determine the primary effects of MIF in the developing inner ear, as opposed to secondary effects that may result from the influence of other tissues. By using phalloidin and acetylated tubulin staining to study the morphology of neurons, neuronal processes, and hair cells associated with the posterior macula, we were able to assess the efficacy of electroporation as a method for targeted transfection in the zebrafish inner ear. The otic vesicles of 24hpf embryos were injected with morpholinos and electroporated and were then compared to embryos that had received no treatment or had been only injected or electroporated. Embryos that were injected and electroporated showed a decrease in hair cell numbers, decreased innervation by the statoacoustic ganglion (SAG) and fewer SAG neurons compared with control groups. Our results showed that direct delivery of morpholinos into otocysts at later stages avoids the non-specific nervous system and neural crest effects of morpholinos delivered at the 1-8 cell stage. It also allows examination of effects that are directed to the inner ear and not secondary effects on the ear from primary effects on the brain, neural crest or periotic mesenchyme.
Developmental Biology, Issue 47, Zebrafish inner ear, microinjection, electroporation, morpholino
Play Button
Live Imaging of Cell Extrusion from the Epidermis of Developing Zebrafish
Authors: George T. Eisenhoffer, Jody Rosenblatt.
Institutions: University of Utah.
Homeostatic maintenance of epithelial tissues requires the continual removal of damaged cells without disrupting barrier function. Our studies have found that dying cells send signals to their live neighbors to form and contract a ring of actin and myosin that ejects it out from the epithelial sheet while closing any gaps that might have resulted from its exit, a process termed cell extrusion1. The optical clarity of developing zebrafish provides an excellent system to visualize extrusion in living epithelia. Here we describe a method to induce and image extrusion in the larval zebrafish epidermis. To visualize extrusion, we inject a red fluorescent protein labeled probe for F-actin into one-cell stage transgenic zebrafish embryos expressing green fluorescent protein in the epidermis and induce apoptosis by addition of G418 to larvae. We then use time-lapse imaging on a spinning disc confocal microscope to observe actin dynamics and epithelial cell behaviors during the process of apoptotic cell extrusion. This approach allows us to investigate the extrusion process in live epithelia and will provide an avenue to study disease states caused by the failure to eliminate apoptotic cells.
Developmental Biology, Issue 52, Actin, Extrusion, Epithelia, Homeostasis, Zebrafish, Time-Lapse Imaging
Play Button
Large-scale Gene Knockdown in C. elegans Using dsRNA Feeding Libraries to Generate Robust Loss-of-function Phenotypes
Authors: Kathryn N. Maher, Mary Catanese, Daniel L. Chase.
Institutions: University of Massachusetts, Amherst, University of Massachusetts, Amherst, University of Massachusetts, Amherst.
RNA interference by feeding worms bacteria expressing dsRNAs has been a useful tool to assess gene function in C. elegans. While this strategy works well when a small number of genes are targeted for knockdown, large scale feeding screens show variable knockdown efficiencies, which limits their utility. We have deconstructed previously published RNAi knockdown protocols and found that the primary source of the reduced knockdown can be attributed to the loss of dsRNA-encoding plasmids from the bacteria fed to the animals. Based on these observations, we have developed a dsRNA feeding protocol that greatly reduces or eliminates plasmid loss to achieve efficient, high throughput knockdown. We demonstrate that this protocol will produce robust, reproducible knock down of C. elegans genes in multiple tissue types, including neurons, and will permit efficient knockdown in large scale screens. This protocol uses a commercially available dsRNA feeding library and describes all steps needed to duplicate the library and perform dsRNA screens. The protocol does not require the use of any sophisticated equipment, and can therefore be performed by any C. elegans lab.
Developmental Biology, Issue 79, Caenorhabditis elegans (C. elegans), Gene Knockdown Techniques, C. elegans, dsRNA interference, gene knockdown, large scale feeding screen
Play Button
Flat Mount Preparation for Observation and Analysis of Zebrafish Embryo Specimens Stained by Whole Mount In situ Hybridization
Authors: Christina N. Cheng, Yue Li, Amanda N. Marra, Valerie Verdun, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.
Developmental Biology, Issue 89, animals, vertebrates, fishes, zebrafish, growth and development, morphogenesis, embryonic and fetal development, organogenesis, natural science disciplines, embryo, whole mount in situ hybridization, flat mount, deyolking, imaging
Play Button
Using Whole Mount in situ Hybridization to Link Molecular and Organismal Biology
Authors: Nicole L. Jacobs, R. Craig Albertson, Jason R. Wiles.
Institutions: Syracuse University, Syracuse University.
Whole mount in situ hybridization (WISH) is a common technique in molecular biology laboratories used to study gene expression through the localization of specific mRNA transcripts within whole mount specimen. This technique (adapted from Albertson and Yelick, 2005) was used in an upper level undergraduate Comparative Vertebrate Biology laboratory classroom at Syracuse University. The first two thirds of the Comparative Vertebrate Biology lab course gave students the opportunity to study the embryology and gross anatomy of several organisms representing various chordate taxa primarily via traditional dissections and the use of models. The final portion of the course involved an innovative approach to teaching anatomy through observation of vertebrate development employing molecular techniques in which WISH was performed on zebrafish embryos. A heterozygous fibroblast growth factor 8 a (fgf8a) mutant line, ace, was used. Due to Mendelian inheritance, ace intercrosses produced wild type, heterozygous, and homozygous ace/fgf8a mutants in a 1:2:1 ratio. RNA probes with known expression patterns in the midline and in developing anatomical structures such as the heart, somites, tailbud, myotome, and brain were used. WISH was performed using zebrafish at the 13 somite and prim-6 stages, with students performing the staining reaction in class. The study of zebrafish embryos at different stages of development gave students the ability to observe how these anatomical structures changed over ontogeny. In addition, some ace/fgf8a mutants displayed improper heart looping, and defects in somite and brain development. The students in this lab observed the normal development of various organ systems using both external anatomy as well as gene expression patterns. They also identified and described embryos displaying improper anatomical development and gene expression (i.e., putative mutants). For instructors at institutions that do not already own the necessary equipment or where funds for lab and curricular innovation are limited, the financial cost of the reagents and apparatus may be a factor to consider, as will the time and effort required on the part of the instructor regardless of the setting. Nevertheless, we contend that the use of WISH in this type of classroom laboratory setting can provide an important link between developmental genetics and anatomy. As technology advances and the ability to study organismal development at the molecular level becomes easier, cheaper, and increasingly popular, many evolutionary biologists, ecologists, and physiologists are turning to research strategies in the field of molecular biology. Using WISH in a Comparative Vertebrate Biology laboratory classroom is one example of how molecules and anatomy can converge within a single course. This gives upper level college students the opportunity to practice modern biological research techniques, leading to a more diversified education and the promotion of future interdisciplinary scientific research.
Developmental Biology, Issue 49, in situ hybridization, genetics, development, anatomy, vertebrate, undergraduate, education, interdisciplinary
Play Button
High Resolution Whole Mount In Situ Hybridization within Zebrafish Embryos to Study Gene Expression and Function
Authors: Babykumari P. Chitramuthu, Hugh P. J. Bennett.
Institutions: Royal Victoria Hospital, McGill University Health Centre Research Institute.
This article focuses on whole-mount in situ hybridization (WISH) of zebrafish embryos. The WISH technology facilitates the assessment of gene expression both in terms of tissue distribution and developmental stage. Protocols are described for the use of WISH of zebrafish embryos using antisense RNA probes labeled with digoxigenin. Probes are generated by incorporating digoxigenin-linked nucleotides through in vitro transcription of gene templates that have been cloned and linearized. The chorions of embryos harvested at defined developmental stages are removed before incubation with specific probes. Following a washing procedure to remove excess probe, embryos are incubated with anti-digoxigenin antibody conjugated with alkaline phosphatase. By employing a chromogenic substrate for alkaline phosphatase, specific gene expression can be assessed. Depending on the level of gene expression the entire procedure can be completed within 2-3 days.
Neuroscience, Issue 80, Blood Cells, Endoderm, Motor Neurons, life sciences, animal models in situ hybridization, morpholino knockdown, progranulin, neuromast, proprotein convertase, anti-sense transcripts, intermediate cell mass, pronephric duct, somites
Play Button
Assessing Teratogenic Changes in a Zebrafish Model of Fetal Alcohol Exposure
Authors: Evyn Loucks, Sara Ahlgren.
Institutions: Children's Memorial Research Center, Northwestern University.
Fetal alcohol syndrome (FAS) is a severe manifestation of embryonic exposure to ethanol. It presents with characteristic defects to the face and organs, including mental retardation due to disordered and damaged brain development. Fetal alcohol spectrum disorder (FASD) is a term used to cover a continuum of birth defects that occur due to maternal alcohol consumption, and occurs in approximately 4% of children born in the United States. With 50% of child-bearing age women reporting consumption of alcohol, and half of all pregnancies being unplanned, unintentional exposure is a continuing issue2. In order to best understand the damage produced by ethanol, plus produce a model with which to test potential interventions, we developed a model of developmental ethanol exposure using the zebrafish embryo. Zebrafish are ideal for this kind of teratogen study3-8. Each pair lays hundreds of eggs, which can then be collected without harming the adult fish. The zebrafish embryo is transparent and can be readily imaged with any number of stains. Analysis of these embryos after exposure to ethanol at different doses and times of duration and application shows that the gross developmental defects produced by ethanol are consistent with the human birth defect. Described here are the basic techniques used to study and manipulate the zebrafish FAS model.
Medicine, Issue 61, Zebrafish, fetal alcohol exposure, Danio rerio, development, mRNA expression, morpholino, ethanol exposure
Play Button
Analysis of Skeletal Muscle Defects in Larval Zebrafish by Birefringence and Touch-evoke Escape Response Assays
Authors: Laura L. Smith, Alan H. Beggs, Vandana A. Gupta.
Institutions: Boston Children's Hospital, Harvard Medical School.
Zebrafish (Danio rerio) have become a particularly effective tool for modeling human diseases affecting skeletal muscle, including muscular dystrophies1-3, congenital myopathies4,5, and disruptions in sarcomeric assembly6,7, due to high genomic and structural conservation with mammals8. Muscular disorganization and locomotive impairment can be quickly assessed in the zebrafish over the first few days post-fertilization. Two assays to help characterize skeletal muscle defects in zebrafish are birefringence (structural) and touch-evoked escape response (behavioral). Birefringence is a physical property in which light is rotated as it passes through ordered matter, such as the pseudo-crystalline array of muscle sarcomeres9. It is a simple, noninvasive approach to assess muscle integrity in translucent zebrafish larvae early in development. Wild-type zebrafish with highly organized skeletal muscle appear very bright amidst a dark background when visualized between two polarized light filters, whereas muscle mutants have birefringence patterns specific to the primary muscular disorder they model. Zebrafish modeling muscular dystrophies, diseases characterized by myofiber degeneration followed by repeated rounds of regeneration, exhibit degenerative dark patches in skeletal muscle under polarized light. Nondystrophic myopathies are not associated with necrosis or regenerative changes, but result in disorganized myofibers and skeletal muscle weakness. Myopathic zebrafish typically show an overall reduction in birefringence, reflecting the disorganization of sarcomeres. The touch-evoked escape assay involves observing an embryo's swimming behavior in response to tactile stimulation10-12. In comparison to wild-type larvae, mutant larvae frequently display a weak escape contraction, followed by slow swimming or other type of impaired motion that fails to propel the larvae more than a short distance12. The advantage of these assays is that disease progression in the same fish type can be monitored in vivo for several days, and that large numbers of fish can be analyzed in a short time relative to higher vertebrates.
Physiology, Issue 82, birefringence, dystrophy, myopathy, touch-evoked escape, zebrafish, Danio rerio, microscopy
Play Button
Forebrain Electrophysiological Recording in Larval Zebrafish
Authors: Scott C. Baraban.
Institutions: University of California, San Francisco .
Epilepsy affects nearly 3 million people in the United States and up to 50 million people worldwide. Defined as the occurrence of spontaneous unprovoked seizures, epilepsy can be acquired as a result of an insult to the brain or a genetic mutation. Efforts to model seizures in animals have primarily utilized acquired insults (convulsant drugs, stimulation or brain injury) and genetic manipulations (antisense knockdown, homologous recombination or transgenesis) in rodents. Zebrafish are a vertebrate model system1-3 that could provide a valuable alternative to rodent-based epilepsy research. Zebrafish are used extensively in the study of vertebrate genetics or development, exhibit a high degree of genetic similarity to mammals and express homologs for ~85% of known human single-gene epilepsy mutations. Because of their small size (4-6 mm in length), zebrafish larvae can be maintained in fluid volumes as low as 100 μl during early development and arrayed in multi-well plates. Reagents can be added directly to the solution in which embryos develop, simplifying drug administration and enabling rapid in vivo screening of test compounds4. Synthetic oligonucleotides (morpholinos), mutagenesis, zinc finger nuclease and transgenic approaches can be used to rapidly generate gene knockdown or mutation in zebrafish5-7. These properties afford zebrafish studies an unprecedented statistical power analysis advantage over rodents in the study of neurological disorders such as epilepsy. Because the "gold standard" for epilepsy research is to monitor and analyze the abnormal electrical discharges that originate in a central brain structure (i.e., seizures), a method to efficiently record brain activity in larval zebrafish is described here. This method is an adaptation of conventional extracellular recording techniques and allows for stable long-term monitoring of brain activity in intact zebrafish larvae. Sample recordings are shown for acute seizures induced by bath application of convulsant drugs and spontaneous seizures recorded in a genetically modified fish.
Developmental Biology, Issue 71, Neuroscience, Anatomy, Physiology, Neurobiology, Cellular Biology, Molecular Biology, Surgery, Seizure, development, telencephalon, electrographic, extracellular, field recording, in vivo, electrophysiology, neuron, activity, microsurgery, micropipette, epilepsy, Danio rerio, zebrafish, zebrafish larvae
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
Play Button
Use of Shigella flexneri to Study Autophagy-Cytoskeleton Interactions
Authors: Maria J. Mazon Moya, Emma Colucci-Guyon, Serge Mostowy.
Institutions: Imperial College London, Institut Pasteur, Unité Macrophages et Développement de l'Immunité.
Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent actin-based motility of S. flexneri by compartmentalizing bacteria inside ‘septin cages’ and targeting them to autophagy. These observations indicate that a more complete understanding of septins, a family of filamentous GTP-binding proteins, will provide new insights into the process of autophagy. This report describes protocols to monitor autophagy-cytoskeleton interactions caused by S. flexneri in vitro using tissue culture cells and in vivo using zebrafish larvae. These protocols enable investigation of intracellular mechanisms that control bacterial dissemination at the molecular, cellular, and whole organism level.
Infection, Issue 91, ATG8/LC3, autophagy, cytoskeleton, HeLa cells, p62, septin, Shigella, zebrafish
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
Play Button
Force Measurement During Contraction to Assess Muscle Function in Zebrafish Larvae
Authors: Darcée D. Sloboda, Dennis R. Claflin, James J. Dowling, Susan V. Brooks.
Institutions: University of Michigan , University of Michigan , University of Michigan , University of Michigan .
Zebrafish larvae provide models of muscle development, muscle disease and muscle-related chemical toxicity, but related studies often lack functional measures of muscle health. In this video article, we demonstrate a method to measure force generation during contraction of zebrafish larval trunk muscle. Force measurements are accomplished by placing an anesthetized larva into a chamber filled with a salt solution. The anterior end of the larva is tied to a force transducer and the posterior end of the larva is tied to a length controller. An isometric twitch contraction is elicited by electric field stimulation and the force response is recorded for analysis. Force generation during contraction provides a measure of overall muscle health and specifically provides a measure of muscle function. Although we describe this technique for use with wild-type larvae, this method can be used with genetically modified larvae or with larvae treated with drugs or toxicants, to characterize muscle disease models and evaluate treatments, or to study muscle development, injury, or chemical toxicity.
Developmental Biology, Issue 77, Anatomy, Physiology, Biophysics, Biomedical Engineering, Neurobiology, Neuroscience, Muscle, contraction, force, zebrafish, larvae, muscle function, muscle health, force generation, animal model
Play Button
Analysis of Embryonic and Larval Zebrafish Skeletal Myofibers from Dissociated Preparations
Authors: Eric J. Horstick, Elizabeth M. Gibbs, Xingli Li, Ann E. Davidson, James J. Dowling.
Institutions: University of Michigan .
The zebrafish has proven to be a valuable model system for exploring skeletal muscle function and for studying human muscle diseases. Despite the many advantages offered by in vivo analysis of skeletal muscle in the zebrafish, visualizing the complex and finely structured protein milieu responsible for muscle function, especially in whole embryos, can be problematic. This hindrance stems from the small size of zebrafish skeletal muscle (60 μm) and the even smaller size of the sarcomere. Here we describe and demonstrate a simple and rapid method for isolating skeletal myofibers from zebrafish embryos and larvae. We also include protocols that illustrate post preparation techniques useful for analyzing muscle structure and function. Specifically, we detail the subsequent immunocytochemical localization of skeletal muscle proteins and the qualitative analysis of stimulated calcium release via live cell calcium imaging. Overall, this video article provides a straight-forward and efficient method for the isolation and characterization of zebrafish skeletal myofibers, a technique which provides a conduit for myriad subsequent studies of muscle structure and function.
Basic Protocol, Issue 81, Zebrafish, Neuromuscular Diseases, Muscular Diseases, Muscular Dystrophies, Primary Cell Culture, Immunohistochemistry (IHC), skeletal muscle, myofiber, live imaging
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Analysis of Gene Function and Visualization of Cilia-Generated Fluid Flow in Kupffer's Vesicle
Authors: Guangliang Wang, H. Joseph Yost, Jeffrey D. Amack.
Institutions: Upstate Medical University, University of Utah .
Internal organs such as the heart, brain, and gut develop left-right (LR) asymmetries that are critical for their normal functions1. Motile cilia are involved in establishing LR asymmetry in vertebrate embryos, including mouse, frog, and zebrafish2-6. These 'LR cilia' generate asymmetric fluid flow that is necessary to trigger a conserved asymmetric Nodal (TGF-β superfamily) signaling cascade in the left lateral plate mesoderm, which is thought to provide LR patterning information for developing organs7. Thus, to understand mechanisms underlying LR patterning, it is essential to identify genes that regulate the organization of LR ciliated cells, the motility and length of LR cilia and their ability to generate robust asymmetric flow. In the zebrafish embryo, LR cilia are located in Kupffer's vesicle (KV)2,4,5. KV is comprised of a single layer of monociliated epithelial cells that enclose a fluid-filled lumen. Fate mapping has shown that KV is derived from a group of ~20-30 cells known as dorsal forerunner cells (DFCs) that migrate at the dorsal blastoderm margin during epiboly stages8,9. During early somite stages, DFCs cluster and differentiate into ciliated epithelial cells to form KV in the tailbud of the embryo10,11. The ability to identify and track DFCs—in combination with optical transparency and rapid development of the zebrafish embryo—make zebrafish KV an excellent model system to study LR ciliated cells. Interestingly, progenitors of the DFC/KV cell lineage retain cytoplasmic bridges between the yolk cell up to 4 hr post-fertilization (hpf), whereas cytoplasmic bridges between the yolk cell and other embryonic cells close after 2 hpf8. Taking advantage of these cytoplasmic bridges, we developed a stage-specific injection strategy to deliver morpholino oligonucleotides (MO) exclusively to DFCs and knockdown the function of a targeted gene in these cells12. This technique creates chimeric embryos in which gene function is knocked down in the DFC/KV lineage developing in the context of a wild-type embryo. To analyze asymmetric fluid flow in KV, we inject fluorescent microbeads into the KV lumen and record bead movement using videomicroscopy2. Fluid flow is easily visualized and can be quantified by tracking bead displacement over time. Here, using the stage-specific DFC-targeted gene knockdown technique and injection of fluorescent microbeads into KV to visualize flow, we present a protocol that provides an effective approach to characterize the role of a particular gene during KV development and function.
Developmental Biology, Issue 73, Genetics, Cellular Biology, Neurobiology, Neuroscience, Molecular Biology, Bioengineering, Biophysics, Anatomy, Physiology, Cilia, Zebrafish, Danio rerio, Gene Knockdown Techniques, Left-right asymmetry, cilia, Kupffer's Vesicle, morpholinos, microinjection, animal model
Play Button
Creation of Reversible Cholestatic Rat Model
Authors: Gokulakkrishna Subhas, Jasneet Bhullar, Vijay K. Mittal, Michael J. Jacobs.
Institutions: Providence Hospital and Medical Centers.
Cholestasis is a clinical condition commonly encountered by both surgeons and gastroenterologists. Cholestasis can cause various physiological changes and affect the nutritional status and surgical outcomes. Study of the pathophysiological changes occurring in the liver and other organs is of importance. Various studies have been done in cholestatic rat models. We used a reversible cholestatic rat model in our recent study looking at the role of methylprednisolone in the ischemia reperfusion injury. Various techniques for creation of a reversible cholestatic model have been described. Creation of a reversible cholestatic rat model can be challenging in view of the smaller size and unique hepatopancreatobiliary anatomy in rats. This video article demonstrates the creation of a reversible cholestatic model. This model can be used in various studies, such as looking at the changes in nutritional, physiological, pathological, histological and immunological changes in the gastrointestinal tract. This model can also be used to see the effects of cholestasis and various therapeutic interventions on major hepatic surgeries.
Medicine, Issue 51, Cholestasis, Rat model, Reversible cholestasis, Choledochoduodenostomy, Bile duct obstruction, Cholestasis
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.