JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Using information interaction to discover epistatic effects in complex diseases.
PUBLISHED: 01-01-2013
It is widely agreed that complex diseases are typically caused by the joint effects of multiple instead of a single genetic variation. These genetic variations may show stronger effects when considered together than when considered individually, a phenomenon known as epistasis or multilocus interaction. In this work, we explore the applicability of information interaction to discover pairwise epistatic effects related with complex diseases. We start by showing that traditional approaches such as classification methods or greedy feature selection methods (such as the Fleuret method) do not perform well on this problem. We then compare our information interaction method with BEAM and SNPHarvester in artificial datasets simulating epistatic interactions and show that our method is more powerful to detect pairwise epistatic interactions than its competitors. We show results of the application of information interaction method to the WTCCC breast cancer dataset. Our results are validated using permutation tests. We were able to find 89 statistically significant pairwise interactions with a p-value lower than 10(-3). Even though many recent algorithms have been designed to find epistasis with low marginals, we observed that all (except one) of the SNPs involved in statistically significant interactions have moderate or high marginals. We also report that the interactions found in this work were not present in gene-gene interaction network STRING.
Authors: Alla Gagarinova, Mohan Babu, Jack Greenblatt, Andrew Emili.
Published: 11-12-2012
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10. Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) 'donor strains' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the 'Keio' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.
24 Related JoVE Articles!
Play Button
A Comparative Approach to Characterize the Landscape of Host-Pathogen Protein-Protein Interactions
Authors: Mandy Muller, Patricia Cassonnet, Michel Favre, Yves Jacob, Caroline Demeret.
Institutions: Institut Pasteur , Université Sorbonne Paris Cité, Dana Farber Cancer Institute.
Significant efforts were gathered to generate large-scale comprehensive protein-protein interaction network maps. This is instrumental to understand the pathogen-host relationships and was essentially performed by genetic screenings in yeast two-hybrid systems. The recent improvement of protein-protein interaction detection by a Gaussia luciferase-based fragment complementation assay now offers the opportunity to develop integrative comparative interactomic approaches necessary to rigorously compare interaction profiles of proteins from different pathogen strain variants against a common set of cellular factors. This paper specifically focuses on the utility of combining two orthogonal methods to generate protein-protein interaction datasets: yeast two-hybrid (Y2H) and a new assay, high-throughput Gaussia princeps protein complementation assay (HT-GPCA) performed in mammalian cells. A large-scale identification of cellular partners of a pathogen protein is performed by mating-based yeast two-hybrid screenings of cDNA libraries using multiple pathogen strain variants. A subset of interacting partners selected on a high-confidence statistical scoring is further validated in mammalian cells for pair-wise interactions with the whole set of pathogen variants proteins using HT-GPCA. This combination of two complementary methods improves the robustness of the interaction dataset, and allows the performance of a stringent comparative interaction analysis. Such comparative interactomics constitute a reliable and powerful strategy to decipher any pathogen-host interplays.
Immunology, Issue 77, Genetics, Microbiology, Biochemistry, Molecular Biology, Cellular Biology, Biomedical Engineering, Infection, Cancer Biology, Virology, Medicine, Host-Pathogen Interactions, Host-Pathogen Interactions, Protein-protein interaction, High-throughput screening, Luminescence, Yeast two-hybrid, HT-GPCA, Network, protein, yeast, cell, culture
Play Button
Optimization of the Ugi Reaction Using Parallel Synthesis and Automated Liquid Handling
Authors: Jean-Claude Bradley, Khalid Baig Mirza, Tom Osborne, Antony Wiliams, Kevin Owens.
Institutions: Drexel University, Mettler-Toledo, Chemspider.
The optimization of a Ugi reaction involving the mixing of furfurylamine, benzaldehyde, boc-glycine and t-butylisocyanide is described. Triplicate runs of 48 parallel experiments are reported, varying concentration, solvent and the excess of some of the reagents. The isolation of the product was achieved by a simple filtration and wash procedure. The highest yield obtained was 66% from 0.4 M methanol with 1.2 eq. of imine. This is significantly above the 49% yield obtained from the initial reaction under equimolar concentration at 0.4 M in methanol. Methanol solutions with reagent concentrations of 0.4M or 0.2M gave superior yields while all solvent systems at 0.07M performed poorly. At 0.2M, methanol and ethanol/methanol (60/40) mixtures were statistically equally good while THF/methanol (60/40) was poor and acetonitrile/methanol (60/40) was intermediate. Good reproducibility of the precipitate yields was obtained in these replicate experiments, allowing for subtle interaction effects to be positively identified.
Chemistry, Issue 21, Ugi Reaction, Automated Liquid Handling, Combinatorial Chemistry, organic chemistry, Mini-block, Open Notebook Science, reaction optimization, UsefulChem, MiniBlock, precipitate
Play Button
The Importance of Correct Protein Concentration for Kinetics and Affinity Determination in Structure-function Analysis
Authors: Ewa Pol.
Institutions: GE Healthcare Bio-Sciences AB.
In this study, we explore the interaction between the bovine cysteine protease inhibitor cystatin B and a catalytically inactive form of papain (Fig. 1), a plant cysteine protease, by real-time label-free analysis using Biacore X100. Several cystatin B variants with point mutations in areas of interaction with papain, are produced. For each cystatin B variant we determine its specific binding concentration using calibration-free concentration analysis (CFCA) and compare the values obtained with total protein concentration as determined by A280. After that, the kinetics of each cystatin B variant binding to papain is measured using single-cycle kinetics (SCK). We show that one of the four cystatin B variants we examine is only partially active for binding. This partial activity, revealed by CFCA, translates to a significant difference in the association rate constant (ka) and affinity (KD), compared to the values calculated using total protein concentration. Using CFCA in combination with kinetic analysis in a structure-function study contributes to obtaining reliable results, and helps to make the right interpretation of the interaction mechanism.
Cellular Biology, Issue 37, Protein interaction, Surface Plasmon Resonance, Biacore X100, CFCA, Cystatin B, Papain
Play Button
Eye Tracking, Cortisol, and a Sleep vs. Wake Consolidation Delay: Combining Methods to Uncover an Interactive Effect of Sleep and Cortisol on Memory
Authors: Kelly A. Bennion, Katherine R. Mickley Steinmetz, Elizabeth A. Kensinger, Jessica D. Payne.
Institutions: Boston College, Wofford College, University of Notre Dame.
Although rises in cortisol can benefit memory consolidation, as can sleep soon after encoding, there is currently a paucity of literature as to how these two factors may interact to influence consolidation. Here we present a protocol to examine the interactive influence of cortisol and sleep on memory consolidation, by combining three methods: eye tracking, salivary cortisol analysis, and behavioral memory testing across sleep and wake delays. To assess resting cortisol levels, participants gave a saliva sample before viewing negative and neutral objects within scenes. To measure overt attention, participants’ eye gaze was tracked during encoding. To manipulate whether sleep occurred during the consolidation window, participants either encoded scenes in the evening, slept overnight, and took a recognition test the next morning, or encoded scenes in the morning and remained awake during a comparably long retention interval. Additional control groups were tested after a 20 min delay in the morning or evening, to control for time-of-day effects. Together, results showed that there is a direct relation between resting cortisol at encoding and subsequent memory, only following a period of sleep. Through eye tracking, it was further determined that for negative stimuli, this beneficial effect of cortisol on subsequent memory may be due to cortisol strengthening the relation between where participants look during encoding and what they are later able to remember. Overall, results obtained by a combination of these methods uncovered an interactive effect of sleep and cortisol on memory consolidation.
Behavior, Issue 88, attention, consolidation, cortisol, emotion, encoding, glucocorticoids, memory, sleep, stress
Play Button
Purification of Transcripts and Metabolites from Drosophila Heads
Authors: Kurt Jensen, Jonatan Sanchez-Garcia, Caroline Williams, Swati Khare, Krishanu Mathur, Rita M. Graze, Daniel A. Hahn, Lauren M. McIntyre, Diego E. Rincon-Limas, Pedro Fernandez-Funez.
Institutions: University of Florida , University of Florida , University of Florida , University of Florida .
For the last decade, we have tried to understand the molecular and cellular mechanisms of neuronal degeneration using Drosophila as a model organism. Although fruit flies provide obvious experimental advantages, research on neurodegenerative diseases has mostly relied on traditional techniques, including genetic interaction, histology, immunofluorescence, and protein biochemistry. These techniques are effective for mechanistic, hypothesis-driven studies, which lead to a detailed understanding of the role of single genes in well-defined biological problems. However, neurodegenerative diseases are highly complex and affect multiple cellular organelles and processes over time. The advent of new technologies and the omics age provides a unique opportunity to understand the global cellular perturbations underlying complex diseases. Flexible model organisms such as Drosophila are ideal for adapting these new technologies because of their strong annotation and high tractability. One challenge with these small animals, though, is the purification of enough informational molecules (DNA, mRNA, protein, metabolites) from highly relevant tissues such as fly brains. Other challenges consist of collecting large numbers of flies for experimental replicates (critical for statistical robustness) and developing consistent procedures for the purification of high-quality biological material. Here, we describe the procedures for collecting thousands of fly heads and the extraction of transcripts and metabolites to understand how global changes in gene expression and metabolism contribute to neurodegenerative diseases. These procedures are easily scalable and can be applied to the study of proteomic and epigenomic contributions to disease.
Genetics, Issue 73, Biochemistry, Molecular Biology, Neurobiology, Neuroscience, Bioengineering, Cellular Biology, Anatomy, Neurodegenerative Diseases, Biological Assay, Drosophila, fruit fly, head separation, purification, mRNA, RNA, cDNA, DNA, transcripts, metabolites, replicates, SCA3, neurodegeneration, NMR, gene expression, animal model
Play Button
Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies
Authors: Sungsoo Lee, Hui Zheng, Liang Shi, Qiu-Xing Jiang.
Institutions: University of Texas Southwestern Medical Center at Dallas.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Molecular Biology, Issue 77, Biochemistry, Genetics, Cellular Biology, Structural Biology, Biophysics, Membrane Lipids, Phospholipids, Carrier Proteins, Membrane Proteins, Micelles, Molecular Motor Proteins, life sciences, biochemistry, Amino Acids, Peptides, and Proteins, lipid-protein interaction, channel reconstitution, lipid-dependent gating, voltage-gated ion channel, conformation-specific ligands, lipids
Play Button
Analyzing Protein Dynamics Using Hydrogen Exchange Mass Spectrometry
Authors: Nikolai Hentze, Matthias P. Mayer.
Institutions: University of Heidelberg.
All cellular processes depend on the functionality of proteins. Although the functionality of a given protein is the direct consequence of its unique amino acid sequence, it is only realized by the folding of the polypeptide chain into a single defined three-dimensional arrangement or more commonly into an ensemble of interconverting conformations. Investigating the connection between protein conformation and its function is therefore essential for a complete understanding of how proteins are able to fulfill their great variety of tasks. One possibility to study conformational changes a protein undergoes while progressing through its functional cycle is hydrogen-1H/2H-exchange in combination with high-resolution mass spectrometry (HX-MS). HX-MS is a versatile and robust method that adds a new dimension to structural information obtained by e.g. crystallography. It is used to study protein folding and unfolding, binding of small molecule ligands, protein-protein interactions, conformational changes linked to enzyme catalysis, and allostery. In addition, HX-MS is often used when the amount of protein is very limited or crystallization of the protein is not feasible. Here we provide a general protocol for studying protein dynamics with HX-MS and describe as an example how to reveal the interaction interface of two proteins in a complex.   
Chemistry, Issue 81, Molecular Chaperones, mass spectrometers, Amino Acids, Peptides, Proteins, Enzymes, Coenzymes, Protein dynamics, conformational changes, allostery, protein folding, secondary structure, mass spectrometry
Play Button
Discovering Protein Interactions and Characterizing Protein Function Using HaloTag Technology
Authors: Danette L. Daniels, Jacqui Méndez, Hélène Benink, Andrew Niles, Nancy Murphy, Michael Ford, Richard Jones, Ravi Amunugama, David Allen, Marjeta Urh.
Institutions: Promega Corporation, MS Bioworks LLC.
Research in proteomics has exploded in recent years with advances in mass spectrometry capabilities that have led to the characterization of numerous proteomes, including those from viruses, bacteria, and yeast.  In comparison, analysis of the human proteome lags behind, partially due to the sheer number of proteins which must be studied, but also the complexity of networks and interactions these present. To specifically address the challenges of understanding the human proteome, we have developed HaloTag technology for protein isolation, particularly strong for isolation of multiprotein complexes and allowing more efficient capture of weak or transient interactions and/or proteins in low abundance.  HaloTag is a genetically encoded protein fusion tag, designed for covalent, specific, and rapid immobilization or labelling of proteins with various ligands. Leveraging these properties, numerous applications for mammalian cells were developed to characterize protein function and here we present methodologies including: protein pull-downs used for discovery of novel interactions or functional assays, and cellular localization. We find significant advantages in the speed, specificity, and covalent capture of fusion proteins to surfaces for proteomic analysis as compared to other traditional non-covalent approaches. We demonstrate these and the broad utility of the technology using two important epigenetic proteins as examples, the human bromodomain protein BRD4, and histone deacetylase HDAC1.  These examples demonstrate the power of this technology in enabling  the discovery of novel interactions and characterizing cellular localization in eukaryotes, which will together further understanding of human functional proteomics.              
Cellular Biology, Issue 89, proteomics, HaloTag, protein interactions, mass spectrometry, bromodomain proteins, BRD4, histone deacetylase (HDAC), HDAC cellular assays, and confocal imaging
Play Button
Detection of Protein Interactions in Plant using a Gateway Compatible Bimolecular Fluorescence Complementation (BiFC) System
Authors: Gang Tian, Qing Lu, Li Zhang, Susanne E. Kohalmi, Yuhai Cui.
Institutions: University of Western Ontario, Agriculture and Agri-Food Canada.
We have developed a BiFC technique to test the interaction between two proteins in vivo. This is accomplished by splitting a yellow fluorescent protein (YFP) into two non-overlapping fragments. Each fragment is cloned in-frame to a gene of interest. These constructs can then be co-transformed into Nicotiana benthamiana via Agrobacterium mediated transformation, allowing the transit expression of fusion proteins. The reconstitution of YFP signal only occurs when the inquest proteins interact 1-7. To test and validate the protein-protein interactions, BiFC can be used together with yeast two hybrid (Y2H) assay. This may detect indirect interactions which can be overlooked in the Y2H. Gateway technology is a universal platform that enables researchers to shuttle the gene of interest (GOI) into as many expression and functional analysis systems as possible8,9. Both the orientation and reading frame can be maintained without using restriction enzymes or ligation to make expression-ready clones. As a result, one can eliminate all the re-sequencing steps to ensure consistent results throughout the experiments. We have created a series of Gateway compatible BiFC and Y2H vectors which provide researchers with easy-to-use tools to perform both BiFC and Y2H assays10. Here, we demonstrate the ease of using our BiFC system to test protein-protein interactions in N. benthamiana plants.
Plant Biology, Issue 55, protein interaction, Gateway, Bimolecular fluorescence complementation, Confocal microscope, Agrobacterium, Nicotiana benthamiana, Arabidopsis
Play Button
Determination of Protein-ligand Interactions Using Differential Scanning Fluorimetry
Authors: Mirella Vivoli, Halina R. Novak, Jennifer A. Littlechild, Nicholas J. Harmer.
Institutions: University of Exeter.
A wide range of methods are currently available for determining the dissociation constant between a protein and interacting small molecules. However, most of these require access to specialist equipment, and often require a degree of expertise to effectively establish reliable experiments and analyze data. Differential scanning fluorimetry (DSF) is being increasingly used as a robust method for initial screening of proteins for interacting small molecules, either for identifying physiological partners or for hit discovery. This technique has the advantage that it requires only a PCR machine suitable for quantitative PCR, and so suitable instrumentation is available in most institutions; an excellent range of protocols are already available; and there are strong precedents in the literature for multiple uses of the method. Past work has proposed several means of calculating dissociation constants from DSF data, but these are mathematically demanding. Here, we demonstrate a method for estimating dissociation constants from a moderate amount of DSF experimental data. These data can typically be collected and analyzed within a single day. We demonstrate how different models can be used to fit data collected from simple binding events, and where cooperative binding or independent binding sites are present. Finally, we present an example of data analysis in a case where standard models do not apply. These methods are illustrated with data collected on commercially available control proteins, and two proteins from our research program. Overall, our method provides a straightforward way for researchers to rapidly gain further insight into protein-ligand interactions using DSF.
Biophysics, Issue 91, differential scanning fluorimetry, dissociation constant, protein-ligand interactions, StepOne, cooperativity, WcbI.
Play Button
A Protocol for Phage Display and Affinity Selection Using Recombinant Protein Baits
Authors: Rekha Kushwaha, Kim R. Schäfermeyer, A. Bruce Downie.
Institutions: University of Kentucky .
Using recombinant phage as a scaffold to present various protein portions encoded by a directionally cloned cDNA library to immobilized bait molecules is an efficient means to discover interactions. The technique has largely been used to discover protein-protein interactions but the bait molecule to be challenged need not be restricted to proteins. The protocol presented here has been optimized to allow a modest number of baits to be screened in replicates to maximize the identification of independent clones presenting the same protein. This permits greater confidence that interacting proteins identified are legitimate interactors of the bait molecule. Monitoring the phage titer after each affinity selection round provides information on how the affinity selection is progressing as well as on the efficacy of negative controls. One means of titering the phage, and how and what to prepare in advance to allow this process to progress as efficiently as possible, is presented. Attributes of amplicons retrieved following isolation of independent plaque are highlighted that can be used to ascertain how well the affinity selection has progressed. Trouble shooting techniques to minimize false positives or to bypass persistently recovered phage are explained. Means of reducing viral contamination flare up are discussed.
Biochemistry, Issue 84, Affinity selection, Phage display, protein-protein interaction
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
Play Button
High Content Screening in Neurodegenerative Diseases
Authors: Shushant Jain, Ronald E. van Kesteren, Peter Heutink.
Institutions: VU University Medical Center, Neuroscience Campus Amsterdam.
The functional annotation of genomes, construction of molecular networks and novel drug target identification, are important challenges that need to be addressed as a matter of great urgency1-4. Multiple complementary 'omics' approaches have provided clues as to the genetic risk factors and pathogenic mechanisms underlying numerous neurodegenerative diseases, but most findings still require functional validation5. For example, a recent genome wide association study for Parkinson's Disease (PD), identified many new loci as risk factors for the disease, but the underlying causative variant(s) or pathogenic mechanism is not known6, 7. As each associated region can contain several genes, the functional evaluation of each of the genes on phenotypes associated with the disease, using traditional cell biology techniques would take too long. There is also a need to understand the molecular networks that link genetic mutations to the phenotypes they cause. It is expected that disease phenotypes are the result of multiple interactions that have been disrupted. Reconstruction of these networks using traditional molecular methods would be time consuming. Moreover, network predictions from independent studies of individual components, the reductionism approach, will probably underestimate the network complexity8. This underestimation could, in part, explain the low success rate of drug approval due to undesirable or toxic side effects. Gaining a network perspective of disease related pathways using HT/HC cellular screening approaches, and identifying key nodes within these pathways, could lead to the identification of targets that are more suited for therapeutic intervention. High-throughput screening (HTS) is an ideal methodology to address these issues9-12. but traditional methods were one dimensional whole-well cell assays, that used simplistic readouts for complex biological processes. They were unable to simultaneously quantify the many phenotypes observed in neurodegenerative diseases such as axonal transport deficits or alterations in morphology properties13, 14. This approach could not be used to investigate the dynamic nature of cellular processes or pathogenic events that occur in a subset of cells. To quantify such features one has to move to multi-dimensional phenotypes termed high-content screening (HCS)4, 15-17. HCS is the cell-based quantification of several processes simultaneously, which provides a more detailed representation of the cellular response to various perturbations compared to HTS. HCS has many advantages over HTS18, 19, but conducting a high-throughput (HT)-high-content (HC) screen in neuronal models is problematic due to high cost, environmental variation and human error. In order to detect cellular responses on a 'phenomics' scale using HC imaging one has to reduce variation and error, while increasing sensitivity and reproducibility. Herein we describe a method to accurately and reliably conduct shRNA screens using automated cell culturing20 and HC imaging in neuronal cellular models. We describe how we have used this methodology to identify modulators for one particular protein, DJ1, which when mutated causes autosomal recessive parkinsonism21. Combining the versatility of HC imaging with HT methods, it is possible to accurately quantify a plethora of phenotypes. This could subsequently be utilized to advance our understanding of the genome, the pathways involved in disease pathogenesis as well as identify potential therapeutic targets.
Medicine, Issue 59, High-throughput screening, high-content screening, neurodegeneration, automated cell culturing, Parkinson’s disease
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
Play Button
Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency
Authors: Stéphanie Beaucourt, Antonio V. Bordería, Lark L. Coffey, Nina F. Gnädig, Marta Sanz-Ramos, Yasnee Beeharry, Marco Vignuzzi.
Institutions: Institut Pasteur .
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.
Immunology, Issue 52, Polymerase fidelity, RNA virus, mutation frequency, mutagen, RNA polymerase, viral evolution
Play Button
Facilitating the Analysis of Immunological Data with Visual Analytic Techniques
Authors: David C. Shih, Kevin C. Ho, Kyle M. Melnick, Ronald A. Rensink, Tobias R. Kollmann, Edgardo S. Fortuno III.
Institutions: University of British Columbia, University of British Columbia, University of British Columbia.
Visual analytics (VA) has emerged as a new way to analyze large dataset through interactive visual display. We demonstrated the utility and the flexibility of a VA approach in the analysis of biological datasets. Examples of these datasets in immunology include flow cytometry, Luminex data, and genotyping (e.g., single nucleotide polymorphism) data. Contrary to the traditional information visualization approach, VA restores the analysis power in the hands of analyst by allowing the analyst to engage in real-time data exploration process. We selected the VA software called Tableau after evaluating several VA tools. Two types of analysis tasks analysis within and between datasets were demonstrated in the video presentation using an approach called paired analysis. Paired analysis, as defined in VA, is an analysis approach in which a VA tool expert works side-by-side with a domain expert during the analysis. The domain expert is the one who understands the significance of the data, and asks the questions that the collected data might address. The tool expert then creates visualizations to help find patterns in the data that might answer these questions. The short lag-time between the hypothesis generation and the rapid visual display of the data is the main advantage of a VA approach.
Immunology, Issue 47, Visual analytics, flow cytometry, Luminex, Tableau, cytokine, innate immunity, single nucleotide polymorphism
Play Button
A Strategy to Identify de Novo Mutations in Common Disorders such as Autism and Schizophrenia
Authors: Gauthier Julie, Fadi F. Hamdan, Guy A. Rouleau.
Institutions: Universite de Montreal, Universite de Montreal, Universite de Montreal.
There are several lines of evidence supporting the role of de novo mutations as a mechanism for common disorders, such as autism and schizophrenia. First, the de novo mutation rate in humans is relatively high, so new mutations are generated at a high frequency in the population. However, de novo mutations have not been reported in most common diseases. Mutations in genes leading to severe diseases where there is a strong negative selection against the phenotype, such as lethality in embryonic stages or reduced reproductive fitness, will not be transmitted to multiple family members, and therefore will not be detected by linkage gene mapping or association studies. The observation of very high concordance in monozygotic twins and very low concordance in dizygotic twins also strongly supports the hypothesis that a significant fraction of cases may result from new mutations. Such is the case for diseases such as autism and schizophrenia. Second, despite reduced reproductive fitness1 and extremely variable environmental factors, the incidence of some diseases is maintained worldwide at a relatively high and constant rate. This is the case for autism and schizophrenia, with an incidence of approximately 1% worldwide. Mutational load can be thought of as a balance between selection for or against a deleterious mutation and its production by de novo mutation. Lower rates of reproduction constitute a negative selection factor that should reduce the number of mutant alleles in the population, ultimately leading to decreased disease prevalence. These selective pressures tend to be of different intensity in different environments. Nonetheless, these severe mental disorders have been maintained at a constant relatively high prevalence in the worldwide population across a wide range of cultures and countries despite a strong negative selection against them2. This is not what one would predict in diseases with reduced reproductive fitness, unless there was a high new mutation rate. Finally, the effects of paternal age: there is a significantly increased risk of the disease with increasing paternal age, which could result from the age related increase in paternal de novo mutations. This is the case for autism and schizophrenia3. The male-to-female ratio of mutation rate is estimated at about 4–6:1, presumably due to a higher number of germ-cell divisions with age in males. Therefore, one would predict that de novo mutations would more frequently come from males, particularly older males4. A high rate of new mutations may in part explain why genetic studies have so far failed to identify many genes predisposing to complexes diseases genes, such as autism and schizophrenia, and why diseases have been identified for a mere 3% of genes in the human genome. Identification for de novo mutations as a cause of a disease requires a targeted molecular approach, which includes studying parents and affected subjects. The process for determining if the genetic basis of a disease may result in part from de novo mutations and the molecular approach to establish this link will be illustrated, using autism and schizophrenia as examples.
Medicine, Issue 52, de novo mutation, complex diseases, schizophrenia, autism, rare variations, DNA sequencing
Play Button
In-vivo Detection of Protein-protein Interactions on Micro-patterned Surfaces
Authors: Julian Weghuber, Stefan Sunzenauer, Mario Brameshuber, Birgit Plochberger, Clemens Hesch, Gerhard J. Schutz.
Institutions: Johannes Kepler Universitat Linz.
Unraveling the interaction network of molecules in-vivo is key to understanding the mechanisms that regulate cell function and metabolism. A multitude of methodological options for addressing molecular interactions in cells have been developed, but most of these methods suffer from being rather indirect and therefore hardly quantitative. On the contrary, a few high-end quantitative approaches were introduced, which however are difficult to extend to high throughput. To combine high throughput capabilities with the possibility to extract quantitative information, we recently developed a new concept for identifying protein-protein interactions (Schwarzenbacher et al., 2008). Here, we describe a detailed protocol for the design and the construction of this system which allows for analyzing interactions between a fluorophore-labeled protein ("prey") and a membrane protein ("bait") in-vivo. Cells are plated on micropatterned surfaces functionalized with antibodies against the bait exoplasmic domain. Bait-prey interactions are assayed via the redistribution of the fluorescent prey. The method is characterized by high sensitivity down to the level of single molecules, the capability to detect weak interactions, and high throughput capability, making it applicable as screening tool.
Bioengineering, Issue 37, protein-protein interactions, quantification, in-vivo, micro-contact-printing, micro-patterned surfaces
Play Button
Interview: Protein Folding and Studies of Neurodegenerative Diseases
Authors: Susan Lindquist.
Institutions: MIT - Massachusetts Institute of Technology.
In this interview, Dr. Lindquist describes relationships between protein folding, prion diseases and neurodegenerative disorders. The problem of the protein folding is at the core of the modern biology. In addition to their traditional biochemical functions, proteins can mediate transfer of biological information and therefore can be considered a genetic material. This recently discovered function of proteins has important implications for studies of human disorders. Dr. Lindquist also describes current experimental approaches to investigate the mechanism of neurodegenerative diseases based on genetic studies in model organisms.
Neuroscience, issue 17, protein folding, brain, neuron, prion, neurodegenerative disease, yeast, screen, Translational Research
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.