JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Use of Nonelectrolytes Reveals the Channel Size and Oligomeric Constitution of the Borrelia burgdorferi P66 Porin.
PUBLISHED: 01-01-2013
In the Lyme disease spirochete Borrelia burgdorferi, the outer membrane protein P66 is capable of pore formation with an atypical high single-channel conductance of 11 nS in 1 M KCl, which suggested that it could have a larger diameter than normal Gram-negative bacterial porins. We studied the diameter of the P66 channel by analyzing its single-channel conductance in black lipid bilayers in the presence of different nonelectrolytes with known hydrodynamic radii. We calculated the filling of the channel with these nonelectrolytes and the results suggested that nonelectrolytes (NEs) with hydrodynamic radii of 0.34 nm or smaller pass through the pore, whereas neutral molecules with greater radii only partially filled the channel or were not able to enter it at all. The diameter of the entrance of the P66 channel was determined to be ?1.9 nm and the channel has a central constriction of about 0.8 nm. The size of the channel appeared to be symmetrical as judged from one-sidedness of addition of NEs. Furthermore, the P66-induced membrane conductance could be blocked by 80-90% by the addition of the nonelectrolytes PEG 400, PEG 600 and maltohexaose to the aqueous phase in the low millimolar range. The analysis of the power density spectra of ion current through P66 after blockage with these NEs revealed no chemical reaction responsible for channel block. Interestingly, the blockage of the single-channel conductance of P66 by these NEs occurred in about eight subconductance states, indicating that the P66 channel could be an oligomer of about eight individual channels. The organization of P66 as a possible octamer was confirmed by Blue Native PAGE and immunoblot analysis, which both demonstrated that P66 forms a complex with a mass of approximately 460 kDa. Two dimension SDS PAGE revealed that P66 is the only polypeptide in the complex.
Authors: Eric Beamish, Harold Kwok, Vincent Tabard-Cossa, Michel Godin.
Published: 10-31-2013
Solid-state nanopores have emerged as a versatile tool for the characterization of single biomolecules such as nucleic acids and proteins1. However, the creation of a nanopore in a thin insulating membrane remains challenging. Fabrication methods involving specialized focused electron beam systems can produce well-defined nanopores, but yield of reliable and low-noise nanopores in commercially available membranes remains low2,3 and size control is nontrivial4,5. Here, the application of high electric fields to fine-tune the size of the nanopore while ensuring optimal low-noise performance is demonstrated. These short pulses of high electric field are used to produce a pristine electrical signal and allow for enlarging of nanopores with subnanometer precision upon prolonged exposure. This method is performed in situ in an aqueous environment using standard laboratory equipment, improving the yield and reproducibility of solid-state nanopore fabrication.
27 Related JoVE Articles!
Play Button
GABA-activated Single-channel and Tonic Currents in Rat Brain Slices
Authors: Zhe Jin, Yang Jin, Bryndis Birnir.
Institutions: Uppsala University, Sweden.
The GABAA channels are present in all neurons and are located both at synapses and outside of synapses where they generate phasic and tonic currents, respectively 4,5,6,7 The GABAA channel is a pentameric GABA-gated chloride channel. The channel subunits are grouped into 8 families (α1-6, β1-3, γ1-3, δ, ε, θ, π and ρ). Two alphas, two betas and one 3rd subunit form the functional channel 8. By combining studies of sub-type specific GABA-activated single-channel molecules with studies including all populations of GABAA channels in the neuron it becomes possible to understand the basic mechanism of neuronal inhibition and how it is modulated by pharmacological agents. We use the patch-clamp technique 9,10 to study the functional properties of the GABAA channels in alive neurons in hippocampal brain slices and record the single-channel and whole-cell currents. We further examine how the channels are affected by different GABA concentrations, other drugs and intra and extracellular factors. For detailed theoretical and practical description of the patch-clamp method please see The Single-Channel Recordings edited by B Sakman and E Neher 10.
Neuroscience, Issue 53, brain, patch-clamp, ion channels, tonic current, slices, whole-cell current, single-channel current, GABAA, GABA
Play Button
F1FO ATPase Vesicle Preparation and Technique for Performing Patch Clamp Recordings of Submitochondrial Vesicle Membranes
Authors: Silvio Sacchetti, Kambiz N. Alavian, Emma Lazrove, Elizabeth A. Jonas.
Institutions: Yale University.
Mitochondria are involved in many important cellular functions including metabolism, survival1, development and, calcium signaling2. Two of the most important mitochondrial functions are related to the efficient production of ATP, the energy currency of the cell, by oxidative phosphorylation, and the mediation of signals for programmed cell death3. The enzyme primarily responsible for the production of ATP is the F1FO-ATP synthase, also called ATP synthase4-5. In recent years, the role of mitochondria in apoptotic and necrotic cell death has received considerable attention. In apoptotic cell death, BCL-2 family proteins such as Bax enter the mitochondrial outer membrane, oligomerize and permeabilize the outer membrane, releasing pro-apoptotic factors into the cytosol6. In classic necrotic cell death, such as that produced by ischemia or excitotoxicity in neurons, a large, poorly regulated increase in matrix calcium contributes to the opening of an inner membrane pore, the mitochondrial permeability transition pore or mPTP. This depolarizes the inner membrane and causes osmotic shifts, contributing to outer membrane rupture, release of pro-apoptotic factors, and metabolic dysfunction. Many proteins including Bcl-xL7 interact with F1FO ATP synthase, modulating its function. Bcl-xL interacts directly with the beta subunit of F1FO ATP synthase, and this interaction decreases a leak conductance within the F1FOATPasecomplex, increasing the net transport of H+ by F1FO during F1FO ATPase activity8 and thereby increasing mitochondrial efficiency. To study the activity and modulation of the ATP synthase, we isolated from rodent brain submitochondrial vesicles (SMVs) containing F1FO ATPase. The SMVs retain the structural and functional integrity of the F1FO ATPase as shown in Alavian et al. Here, we describe a method that we have used successfully for the isolation of SMVs from rat brain and we delineate the patch clamp technique to analyze channel activity (ion leak conductance) of the SMVs.
Neuroscience, Issue 75, Medicine, Biomedical Engineering, Molecular Biology, Cellular Biology, Biochemistry, Neurobiology, Anatomy, Physiology, F1FO ATPase, mitochondria, patch clamp, electrophysiology, submitochondrial vesicles, Bcl-xL, cells, rat, animal model
Play Button
Patch Clamp and Perfusion Techniques for Studying Ion Channels Expressed in Xenopus oocytes
Authors: Junqiu Yang, Kelli Delaloye, Urvi S. Lee, Jianmin Cui.
Institutions: Washington University in St. Louis, Washington University in St. Louis, Washington University in St. Louis.
The protocol presented here is designed to study the activation of the large conductance, voltage- and Ca2+-activated K+ (BK) channels. The protocol may also be used to study the structure-function relationship for other ion channels and neurotransmitter receptors1. BK channels are widely expressed in different tissues and have been implicated in many physiological functions, including regulation of smooth muscle contraction, frequency tuning of inner hair cells and regulation of neurotransmitter release2-6. BK channels are activated by membrane depolarization and by intracellular Ca2+ and Mg2+ 6-9. Therefore, the protocol is designed to control both the membrane voltage and the intracellular solution. In this protocol, messenger RNA of BK channels is injected into Xenopus laevis oocytes (stage V-VI) followed by 2-5 days of incubation at 18°C10-13. Membrane patches that contain single or multiple BK channels are excised with the inside-out configuration using patch clamp techniques10-13. The intracellular side of the patch is perfused with desired solutions during recording so that the channel activation under different conditions can be examined. To summarize, the mRNA of BK channels is injected into Xenopus laevis oocytes to express channel proteins on the oocyte membrane; patch clamp techniques are used to record currents flowing through the channels under controlled voltage and intracellular solutions.
Cellular Biology, Issue 47, patch clamp, ion channel, electrophysiology, biophysics, exogenous expression system, Xenopus oocyte, mRNA, transcription
Play Button
Feeding of Ticks on Animals for Transmission and Xenodiagnosis in Lyme Disease Research
Authors: Monica E. Embers, Britton J. Grasperge, Mary B. Jacobs, Mario T. Philipp.
Institutions: Tulane University Health Sciences Center.
Transmission of the etiologic agent of Lyme disease, Borrelia burgdorferi, occurs by the attachment and blood feeding of Ixodes species ticks on mammalian hosts. In nature, this zoonotic bacterial pathogen may use a variety of reservoir hosts, but the white-footed mouse (Peromyscus leucopus) is the primary reservoir for larval and nymphal ticks in North America. Humans are incidental hosts most frequently infected with B. burgdorferi by the bite of ticks in the nymphal stage. B. burgdorferi adapts to its hosts throughout the enzootic cycle, so the ability to explore the functions of these spirochetes and their effects on mammalian hosts requires the use of tick feeding. In addition, the technique of xenodiagnosis (using the natural vector for detection and recovery of an infectious agent) has been useful in studies of cryptic infection. In order to obtain nymphal ticks that harbor B. burgdorferi, ticks are fed live spirochetes in culture through capillary tubes. Two animal models, mice and nonhuman primates, are most commonly used for Lyme disease studies involving tick feeding. We demonstrate the methods by which these ticks can be fed upon, and recovered from animals for either infection or xenodiagnosis.
Infection, Issue 78, Medicine, Immunology, Infectious Diseases, Biomedical Engineering, Primates, Muridae, Ticks, Borrelia, Borrelia Infections, Ixodes, ticks, Lyme disease, xenodiagnosis, Borrelia, burgdorferi, mice, nonhuman primates, animal model
Play Button
Saliva, Salivary Gland, and Hemolymph Collection from Ixodes scapularis Ticks
Authors: Toni G. Patton, Gabrielle Dietrich, Kevin Brandt, Marc C. Dolan, Joseph Piesman, Robert D. Gilmore Jr..
Institutions: Centers for Disease Control and Prevention, Centers for Disease Control and Prevention.
Ticks are found worldwide and afflict humans with many tick-borne illnesses. Ticks are vectors for pathogens that cause Lyme disease and tick-borne relapsing fever (Borrelia spp.), Rocky Mountain Spotted fever (Rickettsia rickettsii), ehrlichiosis (Ehrlichia chaffeensis and E. equi), anaplasmosis (Anaplasma phagocytophilum), encephalitis (tick-borne encephalitis virus), babesiosis (Babesia spp.), Colorado tick fever (Coltivirus), and tularemia (Francisella tularensis) 1-8. To be properly transmitted into the host these infectious agents differentially regulate gene expression, interact with tick proteins, and migrate through the tick 3,9-13. For example, the Lyme disease agent, Borrelia burgdorferi, adapts through differential gene expression to the feast and famine stages of the tick's enzootic cycle 14,15. Furthermore, as an Ixodes tick consumes a bloodmeal Borrelia replicate and migrate from the midgut into the hemocoel, where they travel to the salivary glands and are transmitted into the host with the expelled saliva 9,16-19. As a tick feeds the host typically responds with a strong hemostatic and innate immune response 11,13,20-22. Despite these host responses, I. scapularis can feed for several days because tick saliva contains proteins that are immunomodulatory, lytic agents, anticoagulants, and fibrinolysins to aid the tick feeding 3,11,20,21,23. The immunomodulatory activities possessed by tick saliva or salivary gland extract (SGE) facilitate transmission, proliferation, and dissemination of numerous tick-borne pathogens 3,20,24-27. To further understand how tick-borne infectious agents cause disease it is essential to dissect actively feeding ticks and collect tick saliva. This video protocol demonstrates dissection techniques for the collection of hemolymph and the removal of salivary glands from actively feeding I. scapularis nymphs after 48 and 72 hours post mouse placement. We also demonstrate saliva collection from an adult female I. scapularis tick.
Immunology, Issue 60, Ixodes scapularis, Lyme disease, Borrelia burgdorferi, salivary glands, hemolymph, tick dissection, saliva, tick
Play Button
Methods for Rapid Transfer and Localization of Lyme Disease Pathogens Within the Tick Gut
Authors: Toru Kariu, Adam S. Coleman, John F. Anderson, Utpal Pal.
Institutions: University of Maryland, Connecticut Agricultural Experiment Station.
Lyme disease is caused by infection with the spirochete pathogen Borrelia burgdorferi, which is maintained in nature by a tick-rodent infection cycle 1. A tick-borne murine model 2 has been developed to study Lyme disease in the laboratory. While naíve ticks can be infected with B. burgdorferi by feeding them on infected mice, the molting process takes several weeks to months to complete. Therefore, development of more rapid and efficient tick infection techniques, such as a microinjection-based procedure, is an important tool for the study of Lyme disease 3,4. The procedure requires only hours to generate infected ticks and allows control over the delivery of equal quantities of spirochetes in a cohort of ticks. This is particularly important as the generation of B. burgdorferi infected ticks by the natural feeding process using mice fails to ensure 100% infection rate and potentially results in variation of pathogen burden amongst fed ticks. Furthermore, microinjection can be used to infect ticks with B. burgdorferi isolates in cases where an attenuated strain is unable to establish infection in mice and thus can not be naturally acquired by ticks 5. This technique can also be used to deliver a variety of other biological materials into ticks, for example, specific antibodies or double stranded RNA 6. In this article, we will demonstrate the microinjection of nymphal ticks with in vitro-grown B. burgdorferi. We will also describe a method for localization of Lyme disease pathogens in the tick gut using confocal immunofluorescence microscopy.
Infection, Issue 48, Lyme disease, tick, microinjection, Borrelia burgdorferi, immunofluorescence microscopy
Play Button
Immuno-fluorescence Assay of Leptospiral Surface-exposed Proteins
Authors: Marija Pinne, David Haake.
Institutions: University of California, Los Angeles, Veterans Affairs Greater Los Angeles Healthcare System, University of California Los Angeles (UCLA), Veterans Affairs Greater Los Angeles Health Care System.
Bacterial surface proteins are involved in direct contact with host cells and in uptake of nutrients from the environment 1. For this reason, cellular localization can provide insights into the functional role of bacterial proteins. Surface localization of bacterial proteins is a key step towards identification of virulence factors involved in mechanisms of pathogenicity. Methods for fractionating leptospiral membranes 2-5 may be selective for a certain class of outer-membrane proteins (OMPs), such as lipoproteins vs. transmembrane OMPs, and therefore lead to misclassification. This likely is due to structural differences and how they are associated to the outer membrane. Lipoproteins are associated with membranes via a hydrophobic interaction between the N-terminal lipid moiety (three fatty acids) and the lipid bilayer phospholipids 6, 7. In contrast, transmembrane OMPs are typically integrated into the lipid bilayer by amphipathic β-sheets arranged in a barrel-like structure 8, 9. In addition, presence of a protein in the outer-membrane does not necessarily guarantee that the protein or its domains are exposed on the surface. Spirochetal outer membranes are known to be fragile and therefore necessitate methods involving gentle manipulation of cells and inclusion of sub-surface protein controls to assess the integrity of the outer membrane. Here, we present an immunofluorescence assay (IFA) method to directly assess surface exposure of proteins on intact leptospires. This method is based on recognition of leptospiral surface proteins by antigen-specific antibodies. Herein, antibodies specific for OmpL5410 are detetcted aftero binding to native, surface exposed epitopes. Comparison of antibody reactivity to intact versus permeabilized cells enables evaluation of cellular distribution and whether or not a protein is selectively present on leptospiral surface. The integrity of outer membrane should be assessed using antibody to one or more subsurface proteins, preferably located in the periplasm. The surface IFA method can be used to analyze surface exposure of any leptospiral protein to which specific antibodies are available. Both the usefulness and limitation of the method depends on whether the antibodies employed are able to bind to native epitopes. Since antibodies often are raised against recombinant proteins, epitopes of native, surface-exposed proteins may not be recognized. Nevertheless, the surface IFA method is a valuable tool for studying components of intact bacterial surfaces. This method can be applied not only for leptospires but also other spirochetes and gram-negative bacteria. For stronger conclusions regarding surface-exposure of OMPs, a comprehensive approach involving several cell localization methods is recommended 10.
Immunology, Issue 53, Molecular Biology, Leptospira, intact cells, outer membrane, surface-exposed proteins, surface immuno-fluorescence
Play Button
Visualization of ATP Synthase Dimers in Mitochondria by Electron Cryo-tomography
Authors: Karen M. Davies, Bertram Daum, Vicki A. M. Gold, Alexander W. Mühleip, Tobias Brandt, Thorsten B. Blum, Deryck J. Mills, Werner Kühlbrandt.
Institutions: Max Planck Institute of Biophysics.
Electron cryo-tomography is a powerful tool in structural biology, capable of visualizing the three-dimensional structure of biological samples, such as cells, organelles, membrane vesicles, or viruses at molecular detail. To achieve this, the aqueous sample is rapidly vitrified in liquid ethane, which preserves it in a close-to-native, frozen-hydrated state. In the electron microscope, tilt series are recorded at liquid nitrogen temperature, from which 3D tomograms are reconstructed. The signal-to-noise ratio of the tomographic volume is inherently low. Recognizable, recurring features are enhanced by subtomogram averaging, by which individual subvolumes are cut out, aligned and averaged to reduce noise. In this way, 3D maps with a resolution of 2 nm or better can be obtained. A fit of available high-resolution structures to the 3D volume then produces atomic models of protein complexes in their native environment. Here we show how we use electron cryo-tomography to study the in situ organization of large membrane protein complexes in mitochondria. We find that ATP synthases are organized in rows of dimers along highly curved apices of the inner membrane cristae, whereas complex I is randomly distributed in the membrane regions on either side of the rows. By subtomogram averaging we obtained a structure of the mitochondrial ATP synthase dimer within the cristae membrane.
Structural Biology, Issue 91, electron microscopy, electron cryo-tomography, mitochondria, ultrastructure, membrane structure, membrane protein complexes, ATP synthase, energy conversion, bioenergetics
Play Button
Monitoring Activation of the Antiviral Pattern Recognition Receptors RIG-I And PKR By Limited Protease Digestion and Native PAGE
Authors: Michaela Weber, Friedemann Weber.
Institutions: Philipps-University Marburg.
Host defenses to virus infection are dependent on a rapid detection by pattern recognition receptors (PRRs) of the innate immune system. In the cytoplasm, the PRRs RIG-I and PKR bind to specific viral RNA ligands. This first mediates conformational switching and oligomerization, and then enables activation of an antiviral interferon response. While methods to measure antiviral host gene expression are well established, methods to directly monitor the activation states of RIG-I and PKR are only partially and less well established. Here, we describe two methods to monitor RIG-I and PKR stimulation upon infection with an established interferon inducer, the Rift Valley fever virus mutant clone 13 (Cl 13). Limited trypsin digestion allows to analyze alterations in protease sensitivity, indicating conformational changes of the PRRs. Trypsin digestion of lysates from mock infected cells results in a rapid degradation of RIG-I and PKR, whereas Cl 13 infection leads to the emergence of a protease-resistant RIG-I fragment. Also PKR shows a virus-induced partial resistance to trypsin digestion, which coincides with its hallmark phosphorylation at Thr 446. The formation of RIG-I and PKR oligomers was validated by native polyacrylamide gel electrophoresis (PAGE). Upon infection, there is a strong accumulation of RIG-I and PKR oligomeric complexes, whereas these proteins remained as monomers in mock infected samples. Limited protease digestion and native PAGE, both coupled to western blot analysis, allow a sensitive and direct measurement of two diverse steps of RIG-I and PKR activation. These techniques are relatively easy and quick to perform and do not require expensive equipment.
Infectious Diseases, Issue 89, innate immune response, virus infection, pathogen recognition receptor, RIG-I, PKR, IRF-3, limited protease digestion, conformational switch, native PAGE, oligomerization
Play Button
Selection of Aptamers for Amyloid β-Protein, the Causative Agent of Alzheimer's Disease
Authors: Farid Rahimi, Gal Bitan.
Institutions: David Geffen School of Medicine, University of California, Los Angeles, University of California, Los Angeles.
Alzheimer's disease (AD) is a progressive, age-dependent, neurodegenerative disorder with an insidious course that renders its presymptomatic diagnosis difficult1. Definite AD diagnosis is achieved only postmortem, thus establishing presymptomatic, early diagnosis of AD is crucial for developing and administering effective therapies2,3. Amyloid β-protein (Aβ) is central to AD pathogenesis. Soluble, oligomeric Aβ assemblies are believed to affect neurotoxicity underlying synaptic dysfunction and neuron loss in AD4,5. Various forms of soluble Aβ assemblies have been described, however, their interrelationships and relevance to AD etiology and pathogenesis are complex and not well understood6. Specific molecular recognition tools may unravel the relationships amongst Aβ assemblies and facilitate detection and characterization of these assemblies early in the disease course before symptoms emerge. Molecular recognition commonly relies on antibodies. However, an alternative class of molecular recognition tools, aptamers, offers important advantages relative to antibodies7,8. Aptamers are oligonucleotides generated by in-vitro selection: systematic evolution of ligands by exponential enrichment (SELEX)9,10. SELEX is an iterative process that, similar to Darwinian evolution, allows selection, amplification, enrichment, and perpetuation of a property, e.g., avid, specific, ligand binding (aptamers) or catalytic activity (ribozymes and DNAzymes). Despite emergence of aptamers as tools in modern biotechnology and medicine11, they have been underutilized in the amyloid field. Few RNA or ssDNA aptamers have been selected against various forms of prion proteins (PrP)12-16. An RNA aptamer generated against recombinant bovine PrP was shown to recognize bovine PrP-β17, a soluble, oligomeric, β-sheet-rich conformational variant of full-length PrP that forms amyloid fibrils18. Aptamers generated using monomeric and several forms of fibrillar β2-microglobulin (β2m) were found to bind fibrils of certain other amyloidogenic proteins besides β2m fibrils19. Ylera et al. described RNA aptamers selected against immobilized monomeric Aβ4020. Unexpectedly, these aptamers bound fibrillar Aβ40. Altogether, these data raise several important questions. Why did aptamers selected against monomeric proteins recognize their polymeric forms? Could aptamers against monomeric and/or oligomeric forms of amyloidogenic proteins be obtained? To address these questions, we attempted to select aptamers for covalently-stabilized oligomeric Aβ4021 generated using photo-induced cross-linking of unmodified proteins (PICUP)22,23. Similar to previous findings17,19,20, these aptamers reacted with fibrils of Aβ and several other amyloidogenic proteins likely recognizing a potentially common amyloid structural aptatope21. Here, we present the SELEX methodology used in production of these aptamers21.
Neuroscience, Issue 39, Cellular Biology, Aptamer, RNA, amyloid β-protein, oligomer, amyloid fibrils, protein assembly
Play Button
Near Infrared Optical Projection Tomography for Assessments of β-cell Mass Distribution in Diabetes Research
Authors: Anna U. Eriksson, Christoffer Svensson, Andreas Hörnblad, Abbas Cheddad, Elena Kostromina, Maria Eriksson, Nils Norlin, Antonello Pileggi, James Sharpe, Fredrik Georgsson, Tomas Alanentalo, Ulf Ahlgren.
Institutions: Umeå University, University of Miami,, Catalan Institute of Research and Advanced Studies, Umeå University.
By adapting OPT to include the capability of imaging in the near infrared (NIR) spectrum, we here illustrate the possibility to image larger bodies of pancreatic tissue, such as the rat pancreas, and to increase the number of channels (cell types) that may be studied in a single specimen. We further describe the implementation of a number of computational tools that provide: 1/ accurate positioning of a specimen's (in our case the pancreas) centre of mass (COM) at the axis of rotation (AR)2; 2/ improved algorithms for post-alignment tuning which prevents geometric distortions during the tomographic reconstruction2 and 3/ a protocol for intensity equalization to increase signal to noise ratios in OPT-based BCM determinations3. In addition, we describe a sample holder that minimizes the risk for unintentional movements of the specimen during image acquisition. Together, these protocols enable assessments of BCM distribution and other features, to be performed throughout the volume of intact pancreata or other organs (e.g. in studies of islet transplantation), with a resolution down to the level of individual islets of Langerhans.
Medicine, Issue 71, Biomedical Engineering, Cellular Biology, Molecular Biology, Biophysics, Pancreas, Islets of Langerhans, Diabetes Mellitus, Imaging, Three-Dimensional, Optical Projection Tomography, Beta-cell Mass, Near Infrared, Computational Processing
Play Button
A Fluorescent Screening Assay for Identifying Modulators of GIRK Channels
Authors: Maribel Vazquez, Charity A. Dunn, Kenneth B. Walsh.
Institutions: University of South Carolina, School of Medicine.
G protein-gated inward rectifier K+ (GIRK) channels function as cellular mediators of a wide range of hormones and neurotransmitters and are expressed in the brain, heart, skeletal muscle and endocrine tissue1,2. GIRK channels become activated following the binding of ligands (neurotransmitters, hormones, drugs, etc.) to their plasma membrane-bound, G protein-coupled receptors (GPCRs). This binding causes the stimulation of G proteins (Gi and Go) which subsequently bind to and activate the GIRK channel. Once opened the GIRK channel allows the movement of K+ out of the cell causing the resting membrane potential to become more negative. As a consequence, GIRK channel activation in neurons decreases spontaneous action potential formation and inhibits the release of excitatory neurotransmitters. In the heart, activation of the GIRK channel inhibits pacemaker activity thereby slowing the heart rate. GIRK channels represent novel targets for the development of new therapeutic agents for the treatment neuropathic pain, drug addiction, cardiac arrhythmias and other disorders3. However, the pharmacology of these channels remains largely unexplored. Although a number of drugs including anti-arrhythmic agents, antipsychotic drugs and antidepressants block the GIRK channel, this inhibition is not selective and occurs at relatively high drug concentrations3. Here, we describe a real-time screening assay for identifying new modulators of GIRK channels. In this assay, neuronal AtT20 cells, expressing GIRK channels, are loaded with membrane potential-sensitive fluorescent dyes such as bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] or HLB 021-152 (Figure 1). The dye molecules become strongly fluorescent following uptake into the cells (Figure 1). Treatment of the cells with GPCR ligands stimulates the GIRK channels to open. The resulting K+ efflux out of the cell causes the membrane potential to become more negative and the fluorescent signal to decrease (Figure 1). Thus, drugs that modulate K+ efflux through the GIRK channel can be assayed using a fluorescent plate reader. Unlike other ion channel screening assays, such atomic absorption spectrometry4 or radiotracer analysis5, the GIRK channel fluorescent assay provides a fast, real-time and inexpensive screening procedure.
Medicine, Issue 62, G protein-gated inward rectifier K+ (GIRK) channels, clonal cell lines, drug screening, fluorescent dyes, K+ channel modulators, Pharmacology
Play Button
Preparation of the Mgm101 Recombination Protein by MBP-based Tagging Strategy
Authors: Xiaowen Wang, MacMillan Mbantenkhu, Sara Wierzbicki, Xin Jie Chen.
Institutions: State University of New York Upstate Medical University.
The MGM101 gene was identified 20 years ago for its role in the maintenance of mitochondrial DNA. Studies from several groups have suggested that the Mgm101 protein is involved in the recombinational repair of mitochondrial DNA. Recent investigations have indicated that Mgm101 is related to the Rad52-type recombination protein family. These proteins form large oligomeric rings and promote the annealing of homologous single stranded DNA molecules. However, the characterization of Mgm101 has been hindered by the difficulty in producing the recombinant protein. Here, a reliable procedure for the preparation of recombinant Mgm101 is described. Maltose Binding Protein (MBP)-tagged Mgm101 is first expressed in Escherichia coli. The fusion protein is initially purified by amylose affinity chromatography. After being released by proteolytic cleavage, Mgm101 is separated from MBP by cationic exchange chromatography. Monodispersed Mgm101 is then obtained by size exclusion chromatography. A yield of ~0.87 mg of Mgm101 per liter of bacterial culture can be routinely obtained. The recombinant Mgm101 has minimal contamination of DNA. The prepared samples are successfully used for biochemical, structural and single particle image analyses of Mgm101. This protocol may also be used for the preparation of other large oligomeric DNA-binding proteins that may be misfolded and toxic to bacterial cells.
Biochemistry, Issue 76, Genetics, Molecular Biology, Cellular Biology, Microbiology, Bacteria, Proteins, Mgm101, Rad52, mitochondria, recombination, mtDNA, maltose-binding protein, MBP, E. coli., yeast, Saccharomyces cerevisiae, chromatography, electron microscopy, cell culture
Play Button
One-channel Cell-attached Patch-clamp Recording
Authors: Bruce A. Maki, Kirstie A. Cummings, Meaghan A. Paganelli, Swetha E. Murthy, Gabriela K. Popescu.
Institutions: University at Buffalo, SUNY, University at Buffalo, SUNY, The Scripps Research Institute, University at Buffalo, SUNY.
Ion channel proteins are universal devices for fast communication across biological membranes. The temporal signature of the ionic flux they generate depends on properties intrinsic to each channel protein as well as the mechanism by which it is generated and controlled and represents an important area of current research. Information about the operational dynamics of ion channel proteins can be obtained by observing long stretches of current produced by a single molecule. Described here is a protocol for obtaining one-channel cell-attached patch-clamp current recordings for a ligand gated ion channel, the NMDA receptor, expressed heterologously in HEK293 cells or natively in cortical neurons. Also provided are instructions on how to adapt the method to other ion channels of interest by presenting the example of the mechano-sensitive channel PIEZO1. This method can provide data regarding the channel’s conductance properties and the temporal sequence of open-closed conformations that make up the channel’s activation mechanism, thus helping to understand their functions in health and disease.
Neuroscience, Issue 88, biophysics, ion channels, single-channel recording, NMDA receptors, gating, electrophysiology, patch-clamp, kinetic analysis
Play Button
Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies
Authors: Sungsoo Lee, Hui Zheng, Liang Shi, Qiu-Xing Jiang.
Institutions: University of Texas Southwestern Medical Center at Dallas.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Molecular Biology, Issue 77, Biochemistry, Genetics, Cellular Biology, Structural Biology, Biophysics, Membrane Lipids, Phospholipids, Carrier Proteins, Membrane Proteins, Micelles, Molecular Motor Proteins, life sciences, biochemistry, Amino Acids, Peptides, and Proteins, lipid-protein interaction, channel reconstitution, lipid-dependent gating, voltage-gated ion channel, conformation-specific ligands, lipids
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy
Authors: Matthew Rames, Yadong Yu, Gang Ren.
Institutions: The Molecular Foundry.
Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.
Environmental Sciences, Issue 90, small and asymmetric protein structure, electron microscopy, optimized negative staining
Play Button
Proton Transfer and Protein Conformation Dynamics in Photosensitive Proteins by Time-resolved Step-scan Fourier-transform Infrared Spectroscopy
Authors: Víctor A. Lórenz-Fonfría, Joachim Heberle.
Institutions: Freie Universität Berlin.
Monitoring the dynamics of protonation and protein backbone conformation changes during the function of a protein is an essential step towards understanding its mechanism. Protonation and conformational changes affect the vibration pattern of amino acid side chains and of the peptide bond, respectively, both of which can be probed by infrared (IR) difference spectroscopy. For proteins whose function can be repetitively and reproducibly triggered by light, it is possible to obtain infrared difference spectra with (sub)microsecond resolution over a broad spectral range using the step-scan Fourier transform infrared technique. With ~102-103 repetitions of the photoreaction, the minimum number to complete a scan at reasonable spectral resolution and bandwidth, the noise level in the absorption difference spectra can be as low as ~10-4, sufficient to follow the kinetics of protonation changes from a single amino acid. Lower noise levels can be accomplished by more data averaging and/or mathematical processing. The amount of protein required for optimal results is between 5-100 µg, depending on the sampling technique used. Regarding additional requirements, the protein needs to be first concentrated in a low ionic strength buffer and then dried to form a film. The protein film is hydrated prior to the experiment, either with little droplets of water or under controlled atmospheric humidity. The attained hydration level (g of water / g of protein) is gauged from an IR absorption spectrum. To showcase the technique, we studied the photocycle of the light-driven proton-pump bacteriorhodopsin in its native purple membrane environment, and of the light-gated ion channel channelrhodopsin-2 solubilized in detergent.
Biophysics, Issue 88, bacteriorhodopsin, channelrhodopsin, attenuated total reflection, proton transfer, protein dynamics, infrared spectroscopy, time-resolved spectroscopy, step-scan, membrane proteins, singular value decomposition
Play Button
The ChroP Approach Combines ChIP and Mass Spectrometry to Dissect Locus-specific Proteomic Landscapes of Chromatin
Authors: Monica Soldi, Tiziana Bonaldi.
Institutions: European Institute of Oncology.
Chromatin is a highly dynamic nucleoprotein complex made of DNA and proteins that controls various DNA-dependent processes. Chromatin structure and function at specific regions is regulated by the local enrichment of histone post-translational modifications (hPTMs) and variants, chromatin-binding proteins, including transcription factors, and DNA methylation. The proteomic characterization of chromatin composition at distinct functional regions has been so far hampered by the lack of efficient protocols to enrich such domains at the appropriate purity and amount for the subsequent in-depth analysis by Mass Spectrometry (MS). We describe here a newly designed chromatin proteomics strategy, named ChroP (Chromatin Proteomics), whereby a preparative chromatin immunoprecipitation is used to isolate distinct chromatin regions whose features, in terms of hPTMs, variants and co-associated non-histonic proteins, are analyzed by MS. We illustrate here the setting up of ChroP for the enrichment and analysis of transcriptionally silent heterochromatic regions, marked by the presence of tri-methylation of lysine 9 on histone H3. The results achieved demonstrate the potential of ChroP in thoroughly characterizing the heterochromatin proteome and prove it as a powerful analytical strategy for understanding how the distinct protein determinants of chromatin interact and synergize to establish locus-specific structural and functional configurations.
Biochemistry, Issue 86, chromatin, histone post-translational modifications (hPTMs), epigenetics, mass spectrometry, proteomics, SILAC, chromatin immunoprecipitation , histone variants, chromatome, hPTMs cross-talks
Play Button
Membrane Potentials, Synaptic Responses, Neuronal Circuitry, Neuromodulation and Muscle Histology Using the Crayfish: Student Laboratory Exercises
Authors: Brittany Baierlein, Alison L. Thurow, Harold L. Atwood, Robin L. Cooper.
Institutions: University of Kentucky, University of Toronto.
The purpose of this report is to help develop an understanding of the effects caused by ion gradients across a biological membrane. Two aspects that influence a cell's membrane potential and which we address in these experiments are: (1) Ion concentration of K+ on the outside of the membrane, and (2) the permeability of the membrane to specific ions. The crayfish abdominal extensor muscles are in groupings with some being tonic (slow) and others phasic (fast) in their biochemical and physiological phenotypes, as well as in their structure; the motor neurons that innervate these muscles are correspondingly different in functional characteristics. We use these muscles as well as the superficial, tonic abdominal flexor muscle to demonstrate properties in synaptic transmission. In addition, we introduce a sensory-CNS-motor neuron-muscle circuit to demonstrate the effect of cuticular sensory stimulation as well as the influence of neuromodulators on certain aspects of the circuit. With the techniques obtained in this exercise, one can begin to answer many questions remaining in other experimental preparations as well as in physiological applications related to medicine and health. We have demonstrated the usefulness of model invertebrate preparations to address fundamental questions pertinent to all animals.
Neuroscience, Issue 47, Invertebrate, Crayfish, neurophysiology, muscle, anatomy, electrophysiology
Play Button
Purification of the Cystic Fibrosis Transmembrane Conductance Regulator Protein Expressed in Saccharomyces cerevisiae
Authors: Naomi Pollock, Natasha Cant, Tracy Rimington, Robert C. Ford.
Institutions: University of Manchester.
Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis (CF), an autosomal recessive disease that currently limits the average life expectancy of sufferers to <40 years of age. The development of novel drug molecules to restore the activity of CFTR is an important goal in the treatment CF, and the isolation of functionally active CFTR is a useful step towards achieving this goal. We describe two methods for the purification of CFTR from a eukaryotic heterologous expression system, S. cerevisiae. Like prokaryotic systems, S. cerevisiae can be rapidly grown in the lab at low cost, but can also traffic and posttranslationally modify large membrane proteins. The selection of detergents for solubilization and purification is a critical step in the purification of any membrane protein. Having screened for the solubility of CFTR in several detergents, we have chosen two contrasting detergents for use in the purification that allow the final CFTR preparation to be tailored to the subsequently planned experiments. In this method, we provide comparison of the purification of CFTR in dodecyl-β-D-maltoside (DDM) and 1-tetradecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (LPG-14). Protein purified in DDM by this method shows ATPase activity in functional assays. Protein purified in LPG-14 shows high purity and yield, can be employed to study post-translational modifications, and can be used for structural methods such as small-angle X-ray scattering and electron microscopy. However it displays significantly lower ATPase activity.
Biochemistry, Issue 87, Membrane protein, cystic fibrosis, CFTR, ABCC7, protein purification, Cystic Fibrosis Foundation, green fluorescent protein
Play Button
Recapitulation of an Ion Channel IV Curve Using Frequency Components
Authors: John R. Rigby, Steven Poelzing.
Institutions: University of Utah.
INTRODUCTION: Presently, there are no established methods to measure multiple ion channel types simultaneously and decompose the measured current into portions attributable to each channel type. This study demonstrates how impedance spectroscopy may be used to identify specific frequencies that highly correlate with the steady state current amplitude measured during voltage clamp experiments. The method involves inserting a noise function containing specific frequencies into the voltage step protocol. In the work presented, a model cell is used to demonstrate that no high correlations are introduced by the voltage clamp circuitry, and also that the noise function itself does not introduce any high correlations when no ion channels are present. This validation is necessary before the technique can be applied to preparations containing ion channels. The purpose of the protocol presented is to demonstrate how to characterize the frequency response of a single ion channel type to a noise function. Once specific frequencies have been identified in an individual channel type, they can be used to reproduce the steady state current voltage (IV) curve. Frequencies that highly correlate with one channel type and minimally correlate with other channel types may then be used to estimate the current contribution of multiple channel types measured simultaneously. METHODS: Voltage clamp measurements were performed on a model cell using a standard voltage step protocol (-150 to +50 mV, 5mV steps). Noise functions containing equal magnitudes of 1-15 kHz frequencies (zero to peak amplitudes: 50 or 100mV) were inserted into each voltage step. The real component of the Fast Fourier transform (FFT) of the output signal was calculated with and without noise for each step potential. The magnitude of each frequency as a function of voltage step was correlated with the current amplitude at the corresponding voltages. RESULTS AND CONCLUSIONS: In the absence of noise (control), magnitudes of all frequencies except the DC component correlated poorly (|R|<0.5) with the IV curve, whereas the DC component had a correlation coefficient greater than 0.999 in all measurements. The quality of correlation between individual frequencies and the IV curve did not change when a noise function was added to the voltage step protocol. Likewise, increasing the amplitude of the noise function also did not increase the correlation. Control measurements demonstrate that the voltage clamp circuitry by itself does not cause any frequencies above 0 Hz to highly correlate with the steady-state IV curve. Likewise, measurements in the presence of the noise function demonstrate that the noise function does not cause any frequencies above 0 Hz to correlate with the steady-state IV curve when no ion channels are present. Based on this verification, the method can now be applied to preparations containing a single ion channel type with the intent of identifying frequencies whose amplitudes correlate specifically with that channel type.
Biophysics, Issue 48, Ion channel, Kir2.1, impedance spectroscopy, frequency response, voltage clamp, electrophysiology
Play Button
Fabrication of the Thermoplastic Microfluidic Channels
Authors: Arpita Bhattacharyya, Dominika Kulinski, Catherine Klapperich.
Institutions: Boston University.
In our lab, we have successfully isolated nucleic acids directly from microliter and submicroliter volumes of human blood, urine and stool using polymer/nanoparticle composite microscale lysis and solid phase extraction columns. The recovered samples are concentrated, small volume samples that are PCRable, without any additional cleanup. Here, we demonstrate how to fabricate thermoplastic microfluidic chips using hot embossing and heat sealing. Then, we demonstrate how to use in situ light directed surface grafting and polymerization through the sealed chip to form the composite solid phase columns. We demonstrate grafting and polymerization of a carbon nanotube/polymer composite column for bacterial cell lysis. We then show the lysis process followed by solid phase extraction of nucleic acids from the sample on chip using a silica/polymer composite column. The attached protocols contain detailed instructions on how to make both lysis and solid phase extraction columns.
Cellular Biology, Issue 12, bioengineering, purification, microfluidics, DNA, RNA, solid phase, column
Play Button
Preparation of Artificial Bilayers for Electrophysiology Experiments
Authors: Ruchi Kapoor, Jung H. Kim, Helgi Ingolfson, Olaf Sparre Andersen.
Institutions: Weill Cornell Medical College of Cornell University.
Planar lipid bilayers, also called artificial lipid bilayers, allow you to study ion-conducting channels in a well-defined environment. These bilayers can be used for many different studies, such as the characterization of membrane-active peptides, the reconstitution of ion channels or investigations on how changes in lipid bilayer properties alter the function of bilayer-spanning channels. Here, we show how to form a planar bilayer and how to isolate small patches from the bilayer, and in a second video will also demonstrate a procedure for using gramicidin channels to determine changes in lipid bilayer elastic properties. We also demonstrate the individual steps needed to prepare the bilayer chamber, the electrodes and how to test that the bilayer is suitable for single-channel measurements.
Cellular Biology, Issue 20, Springer Protocols, Artificial Bilayers, Bilayer Patch Experiments, Lipid Bilayers, Bilayer Punch Electrodes, Electrophysiology
Play Button
Single Molecule Methods for Monitoring Changes in Bilayer Elastic Properties
Authors: Helgi Ingolfson, Ruchi Kapoor, Shemille A. Collingwood, Olaf Sparre Andersen.
Institutions: Weill Cornell Medical College, Weill Cornell Medical College of Cornell University.
Membrane protein function is regulated by the cell membrane lipid composition. This regulation is due to a combination of specific lipid-protein interactions and more general lipid bilayer-protein interactions. These interactions are particularly important in pharmacological research, as many current pharmaceuticals on the market can alter the lipid bilayer material properties, which can lead to altered membrane protein function. The formation of gramicidin channels are dependent on conformational changes in gramicidin subunits which are in turn dependent on the properties of the lipid. Hence the gramicidin channel current is a reporter of altered properties of the bilayer due to certain compounds.
Cellular Biology, Issue 21, Springer Protocols, Membrane Biophysics, Gramicidin Channels, Artificial Bilayers, Bilayer Elastic Properties,
Play Button
Using the GELFREE 8100 Fractionation System for Molecular Weight-Based Fractionation with Liquid Phase Recovery
Authors: Chuck Witkowski, Jay Harkins.
Institutions: Protein Discovery, Inc..
The GELFREE 8100 Fractionation System is a novel protein fractionation system designed to maximize protein recovery during molecular weight based fractionation. The system is comprised of single-use, 8-sample capacity cartridges and a benchtop GELFREE Fractionation Instrument. During separation, a constant voltage is applied between the anode and cathode reservoirs, and each protein mixture is electrophoretically driven from a loading chamber into a specially designed gel column gel. Proteins are concentrated into a tight band in a stacking gel, and separated based on their respective electrophoretic mobilities in a resolving gel. As proteins elute from the column, they are trapped and concentrated in liquid phase in the collection chamber, free of the gel. The instrument is then paused at specific time intervals, and fractions are collected using a pipette. This process is repeated until all desired fractions have been collected. If fewer than 8 samples are run on a cartridge, any unused chambers can be used in subsequent separations. This novel technology facilitates the quick and simple separation of up to 8 complex protein mixtures simultaneously, and offers several advantages when compared to previously available fractionation methods. This system is capable of fractionating up to 1mg of total protein per channel, for a total of 8mg per cartridge. Intact proteins over a broad mass range are separated on the basis of molecular weight, retaining important physiochemical properties of the analyte. The liquid phase entrapment provides for high recovery while eliminating the need for band or spot cutting, making the fractionation process highly reproducible1.
Basic Protocols, Cellular Biology, Issue 34, GELFREE, SDS PAGE, gel electrophoresis, protein fractionation, separation, electrophoresis, proteomics, mass spectrometry
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.