JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Association of serum retinol binding protein 4 with atherogenic dyslipidemia in morbid obese patients.
PUBLISHED: 01-01-2013
Retinol binding protein 4 (RBP4) is an adipokine that may contribute to the development of insulin resistance. However, how this adipokine is affected and its possible involvement in lipid metabolism in obese patients with varying degrees of insulin resistance is yet to be determined. A total of 299 middle-aged morbid obese patients (BMI>40 kg/m(2)) were divided in euglycemic, metabolic syndrome or type 2 diabetic. Anthropometric measurements, biochemical variables and systemic RBP4 levels were determined. RBP4 levels were significantly higher in patients with metabolic syndrome and type 2 diabetes than in euglycemic subjects (42.9±14.6; 42.3±17.0 and 37.4±11.7 µg/ml, respectively) and correlated with triglycerides but not with those of HOMA-IR in the whole population. The multivariate regression model revealed that triglycerides were the strongest predictor of systemic RBP4 levels. Analysis of lipoprotein subfractions in a subpopulation of 80 subjects showed an altered profile of insulin resistant states characterized by higher VLDL, sdLDL and small HDL percentages and lower large HDL percentage. Although RBP4 levels correlated significantly with LDL particle size and small HDL percentage, the latter parameter was independently associated only with RBP4. Our study reveals that systemic RBP4 levels could play an important role in lipid metabolism in morbid obesity, increasing triglyceride levels and contributing to the formation of small HDL.
Authors: Jeb S. Orr, Arion J. Kennedy, Alyssa H. Hasty.
Published: 05-22-2013
The discovery of increased macrophage infiltration in the adipose tissue (AT) of obese rodents and humans has led to an intensification of interest in immune cell contribution to local and systemic insulin resistance. Isolation and quantification of different immune cell populations in lean and obese AT is now a commonly utilized technique in immunometabolism laboratories; yet extreme care must be taken both in stromal vascular cell isolation and in the flow cytometry analysis so that the data obtained is reliable and interpretable. In this video we demonstrate how to mince, digest, and isolate the immune cell-enriched stromal vascular fraction. Subsequently, we show how to antibody label macrophages and T lymphocytes and how to properly gate on them in flow cytometry experiments. Representative flow cytometry plots from low fat-fed lean and high fat-fed obese mice are provided. A critical element of this analysis is the use of antibodies that do not fluoresce in channels where AT macrophages are naturally autofluorescent, as well as the use of proper compensation controls.
21 Related JoVE Articles!
Play Button
Cholesterol Efflux Assay
Authors: Hann Low, Anh Hoang, Dmitri Sviridov.
Institutions: Baker IDI Heart and Diabetes Institute.
Cholesterol content of cells must be maintained within the very tight limits, too much or too little cholesterol in a cell results in disruption of cellular membranes, apoptosis and necrosis 1. Cells can source cholesterol from intracellular synthesis and from plasma lipoproteins, both sources are sufficient to fully satisfy cells' requirements for cholesterol. The processes of cholesterol synthesis and uptake are tightly regulated and deficiencies of cholesterol are rare 2. Excessive cholesterol is more common problem 3. With the exception of hepatocytes and to some degree adrenocortical cells, cells are unable to degrade cholesterol. Cells have two options to reduce their cholesterol content: to convert cholesterol into cholesteryl esters, an option with limited capacity as overloading cells with cholesteryl esters is also toxic, and cholesterol efflux, an option with potentially unlimited capacity. Cholesterol efflux is a specific process that is regulated by a number of intracellular transporters, such as ATP binding cassette transporter proteins A1 (ABCA1) and G1 (ABCG1) and scavenger receptor type B1. The natural acceptor of cholesterol in plasma is high density lipoprotein (HDL) and apolipoprotein A-I. The cholesterol efflux assay is designed to quantitate the rate of cholesterol efflux from cultured cells. It measures the capacity of cells to maintain cholesterol efflux and/or the capacity of plasma acceptors to accept cholesterol released from cells. The assay consists of the following steps. Step 1: labelling cellular cholesterol by adding labelled cholesterol to serum-containing medium and incubating with cells for 24-48 h. This step may be combined with loading of cells with cholesterol. Step 2: incubation of cells in serum-free medium to equilibrate labelled cholesterol among all intracellular cholesterol pools. This stage may be combined with activation of cellular cholesterol transporters. Step 3: incubation of cells with extracellular acceptor and quantitation of movement of labelled cholesterol from cells to the acceptor. If cholesterol precursors were used to label newly synthesized cholesterol, a fourth step, purification of cholesterol, may be required. The assay delivers the following information: (i) how a particular treatment (a mutation, a knock-down, an overexpression or a treatment) affects the capacity of cell to efflux cholesterol and (ii) how the capacity of plasma acceptors to accept cholesterol is affected by a disease or a treatment. This method is often used in context of cardiovascular research, metabolic and neurodegenerative disorders, infectious and reproductive diseases.
Medicine, Issue 61, Lipids, lipoproteins, atherosclerosis, trafficking, cholesterol
Play Button
Fat Preference: A Novel Model of Eating Behavior in Rats
Authors: James M Kasper, Sarah B Johnson, Jonathan D. Hommel.
Institutions: University of Texas Medical Branch.
Obesity is a growing problem in the United States of America, with more than a third of the population classified as obese. One factor contributing to this multifactorial disorder is the consumption of a high fat diet, a behavior that has been shown to increase both caloric intake and body fat content. However, the elements regulating preference for high fat food over other foods remain understudied. To overcome this deficit, a model to quickly and easily test changes in the preference for dietary fat was developed. The Fat Preference model presents rats with a series of choices between foods with differing fat content. Like humans, rats have a natural bias toward consuming high fat food, making the rat model ideal for translational studies. Changes in preference can be ascribed to the effect of either genetic differences or pharmacological interventions. This model allows for the exploration of determinates of fat preference and screening pharmacotherapeutic agents that influence acquisition of obesity.
Behavior, Issue 88, obesity, fat, preference, choice, diet, macronutrient, animal model
Play Button
Quantitative Measurement of GLUT4 Translocation to the Plasma Membrane by Flow Cytometry
Authors: Shyny Koshy, Parema Alizadeh, Lubov T. Timchenko, Christine Beeton.
Institutions: Baylor College of Medicine.
Glucose is the main source of energy for the body, requiring constant regulation of its blood concentration. Insulin release by the pancreas induces glucose uptake by insulin-sensitive tissues, most notably the brain, skeletal muscle, and adipocytes. Patients suffering from type-2 diabetes and/or obesity often develop insulin resistance and are unable to control their glucose homeostasis. New insights into the mechanisms of insulin resistance may provide new treatment strategies for type-2 diabetes. The GLUT family of glucose transporters consists of thirteen members distributed on different tissues throughout the body1. Glucose transporter type 4 (GLUT4) is the major transporter that mediates glucose uptake by insulin sensitive tissues, such as the skeletal muscle. Upon binding of insulin to its receptor, vesicles containing GLUT4 translocate from the cytoplasm to the plasma membrane, inducing glucose uptake. Reduced GLUT4 translocation is one of the causes of insulin resistance in type-2 diabetes2,3. The translocation of GLUT4 from the cytoplasm to the plasma membrane can be visualized by immunocytochemistry, using fluorophore-conjugated GLUT4-specific antibodies. Here, we describe a technique to quantify total amounts of GLUT4 translocation to the plasma membrane of cells during a chosen duration, using flow cytometry. This protocol is rapid (less than 4 hours, including incubation with insulin) and allows the analysis of as few as 3,000 cells or as many as 1 million cells per condition in a single experiment. It relies on anti-GLUT4 antibodies directed to an external epitope of the transporter that bind to it as soon as it is exposed to the extracellular medium after translocation to the plasma membrane.
Cellular Biology, Issue 45, Glucose, FACS, Plasma Membrane, Insulin Receptor, myoblast, myocyte, adipocyte
Play Button
Chemically-blocked Antibody Microarray for Multiplexed High-throughput Profiling of Specific Protein Glycosylation in Complex Samples
Authors: Chen Lu, Joshua L. Wonsidler, Jianwei Li, Yanming Du, Timothy Block, Brian Haab, Songming Chen.
Institutions: Institute for Hepatitis and Virus Research, Thomas Jefferson University , Drexel University College of Medicine, Van Andel Research Institute, Serome Biosciences Inc..
In this study, we describe an effective protocol for use in a multiplexed high-throughput antibody microarray with glycan binding protein detection that allows for the glycosylation profiling of specific proteins. Glycosylation of proteins is the most prevalent post-translational modification found on proteins, and leads diversified modifications of the physical, chemical, and biological properties of proteins. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases. However, current methods to study protein glycosylation typically are too complicated or expensive for use in most normal laboratory or clinical settings and a more practical method to study protein glycosylation is needed. The new protocol described in this study makes use of a chemically blocked antibody microarray with glycan-binding protein (GBP) detection and significantly reduces the time, cost, and lab equipment requirements needed to study protein glycosylation. In this method, multiple immobilized glycoprotein-specific antibodies are printed directly onto the microarray slides and the N-glycans on the antibodies are blocked. The blocked, immobilized glycoprotein-specific antibodies are able to capture and isolate glycoproteins from a complex sample that is applied directly onto the microarray slides. Glycan detection then can be performed by the application of biotinylated lectins and other GBPs to the microarray slide, while binding levels can be determined using Dylight 549-Streptavidin. Through the use of an antibody panel and probing with multiple biotinylated lectins, this method allows for an effective glycosylation profile of the different proteins found in a given human or animal sample to be developed. Introduction Glycosylation of protein, which is the most ubiquitous post-translational modification on proteins, modifies the physical, chemical, and biological properties of a protein, and plays a fundamental role in various biological processes1-6. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases 7-12. In fact, most current cancer biomarkers, such as the L3 fraction of α-1 fetoprotein (AFP) for hepatocellular carcinoma 13-15, and CA199 for pancreatic cancer 16, 17 are all aberrant glycan moieties on glycoproteins. However, methods to study protein glycosylation have been complicated, and not suitable for routine laboratory and clinical settings. Chen et al. has recently invented a chemically blocked antibody microarray with a glycan-binding protein (GBP) detection method for high-throughput and multiplexed profile glycosylation of native glycoproteins in a complex sample 18. In this affinity based microarray method, multiple immobilized glycoprotein-specific antibodies capture and isolate glycoproteins from the complex mixture directly on the microarray slide, and the glycans on each individual captured protein are measured by GBPs. Because all normal antibodies contain N-glycans which could be recognized by most GBPs, the critical step of this method is to chemically block the glycans on the antibodies from binding to GBP. In the procedure, the cis-diol groups of the glycans on the antibodies were first oxidized to aldehyde groups by using NaIO4 in sodium acetate buffer avoiding light. The aldehyde groups were then conjugated to the hydrazide group of a cross-linker, 4-(4-N-MaleimidoPhenyl)butyric acid Hydrazide HCl (MPBH), followed by the conjugation of a dipeptide, Cys-Gly, to the maleimide group of the MPBH. Thus, the cis-diol groups on glycans of antibodies were converted into bulky none hydroxyl groups, which hindered the lectins and other GBPs bindings to the capture antibodies. This blocking procedure makes the GBPs and lectins bind only to the glycans of captured proteins. After this chemically blocking, serum samples were incubated with the antibody microarray, followed by the glycans detection by using different biotinylated lectins and GBPs, and visualized with Cy3-streptavidin. The parallel use of an antibody panel and multiple lectin probing provides discrete glycosylation profiles of multiple proteins in a given sample 18-20. This method has been used successfully in multiple different labs 1, 7, 13, 19-31. However, stability of MPBH and Cys-Gly, complicated and extended procedure in this method affect the reproducibility, effectiveness and efficiency of the method. In this new protocol, we replaced both MPBH and Cys-Gly with one much more stable reagent glutamic acid hydrazide (Glu-hydrazide), which significantly improved the reproducibility of the method, simplified and shorten the whole procedure so that the it can be completed within one working day. In this new protocol, we describe the detailed procedure of the protocol which can be readily adopted by normal labs for routine protein glycosylation study and techniques which are necessary to obtain reproducible and repeatable results.
Molecular Biology, Issue 63, Glycoproteins, glycan-binding protein, specific protein glycosylation, multiplexed high-throughput glycan blocked antibody microarray
Play Button
Bio-layer Interferometry for Measuring Kinetics of Protein-protein Interactions and Allosteric Ligand Effects
Authors: Naman B. Shah, Thomas M. Duncan.
Institutions: SUNY Upstate Medical University.
We describe the use of Bio-layer Interferometry to study inhibitory interactions of subunit ε with the catalytic complex of Escherichia coli ATP synthase. Bacterial F-type ATP synthase is the target of a new, FDA-approved antibiotic to combat drug-resistant tuberculosis. Understanding bacteria-specific auto-inhibition of ATP synthase by the C-terminal domain of subunit ε could provide a new means to target the enzyme for discovery of antibacterial drugs. The C-terminal domain of ε undergoes a dramatic conformational change when the enzyme transitions between the active and inactive states, and catalytic-site ligands can influence which of ε's conformations is predominant. The assay measures kinetics of ε's binding/dissociation with the catalytic complex, and indirectly measures the shift of enzyme-bound ε to and from the apparently nondissociable inhibitory conformation. The Bio-layer Interferometry signal is not overly sensitive to solution composition, so it can also be used to monitor allosteric effects of catalytic-site ligands on ε's conformational changes.
Chemistry, Issue 84, ATP synthase, Bio-Layer Interferometry, Ligand-induced conformational change, Biomolecular Interaction Analysis, Allosteric regulation, Enzyme inhibition
Play Button
Preparation of Living Isolated Vertebrate Photoreceptor Cells for Fluorescence Imaging
Authors: Nicholas P. Boyer, Chunhe Chen, Yiannis Koutalos.
Institutions: Medical University of South Carolina.
In the vertebrate retina, phototransduction, the conversion of light to an electrical signal, is carried out by the rod and cone photoreceptor cells1-4. Rod photoreceptors are responsible for vision in dim light, cones in bright light. Phototransduction takes place in the outer segment of the photoreceptor cell, a specialized compartment that contains a high concentration of visual pigment, the primary light detector. The visual pigment is composed of a chromophore, 11-cis retinal, attached to a protein, opsin. A photon absorbed by the visual pigment isomerizes the chromophore from 11-cis to all-trans. This photoisomerization brings about a conformational change in the visual pigment that initiates a cascade of reactions culminating in a change in membrane potential, and bringing about the transduction of the light stimulus to an electrical signal. The recovery of the cell from light stimulation involves the deactivation of the intermediates activated by light, and the reestablishment of the membrane potential. Ca2+ modulates the activity of several of the enzymes involved in phototransduction, and its concentration is reduced upon light stimulation. In this way, Ca2+ plays an important role in the recovery of the cell from light stimulation and its adaptation to background light. Another essential part of the recovery process is the regeneration of the visual pigment that has been destroyed during light-detection by the photoisomerization of its 11-cis chromophore to all-trans5-7. This regeneration begins with the release of all-trans retinal by the photoactivated pigment, leaving behind the apo-protein opsin. The released all-trans retinal is rapidly reduced in a reaction utilizing NADPH to all- trans retinol, and opsin combines with fresh 11-cis retinal brought into the outer segment to reform the visual pigment. All-trans retinol is then transferred out of the outer segment and into neighboring cells by the specialized carrier Interphotoreceptor Retinoid Binding Protein (IRBP). Fluorescence imaging of single photoreceptor cells can be used to study their physiology and cell biology. Ca2+-sensitive fluorescent dyes can be used to examine in detail the interplay between outer segment Ca2+ changes and response to light8-12 as well as the role of inner segment Ca2+ stores in Ca2+ homeostasis13,14. Fluorescent dyes can also be used for measuring Mg2+ concentration15, pH, and as tracers of aqueous and membrane compartments16. Finally, the intrinsic fluorescence of all-trans retinol (vitamin A) can be used to monitor the kinetics of its formation and removal in single photoreceptor cells17-19.
Neuroscience, Issue 52, retina, rods, cones, vision, fluorescence
Play Button
High-throughput Flow Cytometry Cell-based Assay to Detect Antibodies to N-Methyl-D-aspartate Receptor or Dopamine-2 Receptor in Human Serum
Authors: Mazen Amatoury, Vera Merheb, Jessica Langer, Xin Maggie Wang, Russell Clive Dale, Fabienne Brilot.
Institutions: The University of Sydney, Westmead Millennium Institute for Medical Research.
Over the recent years, antibodies against surface and conformational proteins involved in neurotransmission have been detected in autoimmune CNS diseases in children and adults. These antibodies have been used to guide diagnosis and treatment. Cell-based assays have improved the detection of antibodies in patient serum. They are based on the surface expression of brain antigens on eukaryotic cells, which are then incubated with diluted patient sera followed by fluorochrome-conjugated secondary antibodies. After washing, secondary antibody binding is then analyzed by flow cytometry. Our group has developed a high-throughput flow cytometry live cell-based assay to reliably detect antibodies against specific neurotransmitter receptors. This flow cytometry method is straight forward, quantitative, efficient, and the use of a high-throughput sampler system allows for large patient cohorts to be easily assayed in a short space of time. Additionally, this cell-based assay can be easily adapted to detect antibodies to many different antigenic targets, both from the central nervous system and periphery. Discovering additional novel antibody biomarkers will enable prompt and accurate diagnosis and improve treatment of immune-mediated disorders.
Medicine, Issue 81, Flow cytometry, cell-based assay, autoantibody, high-throughput sampler, autoimmune CNS disease
Play Button
Investigating Protein-protein Interactions in Live Cells Using Bioluminescence Resonance Energy Transfer
Authors: Pelagia Deriziotis, Sarah A. Graham, Sara B. Estruch, Simon E. Fisher.
Institutions: Max Planck Institute for Psycholinguistics, Donders Institute for Brain, Cognition and Behaviour.
Assays based on Bioluminescence Resonance Energy Transfer (BRET) provide a sensitive and reliable means to monitor protein-protein interactions in live cells. BRET is the non-radiative transfer of energy from a 'donor' luciferase enzyme to an 'acceptor' fluorescent protein. In the most common configuration of this assay, the donor is Renilla reniformis luciferase and the acceptor is Yellow Fluorescent Protein (YFP). Because the efficiency of energy transfer is strongly distance-dependent, observation of the BRET phenomenon requires that the donor and acceptor be in close proximity. To test for an interaction between two proteins of interest in cultured mammalian cells, one protein is expressed as a fusion with luciferase and the second as a fusion with YFP. An interaction between the two proteins of interest may bring the donor and acceptor sufficiently close for energy transfer to occur. Compared to other techniques for investigating protein-protein interactions, the BRET assay is sensitive, requires little hands-on time and few reagents, and is able to detect interactions which are weak, transient, or dependent on the biochemical environment found within a live cell. It is therefore an ideal approach for confirming putative interactions suggested by yeast two-hybrid or mass spectrometry proteomics studies, and in addition it is well-suited for mapping interacting regions, assessing the effect of post-translational modifications on protein-protein interactions, and evaluating the impact of mutations identified in patient DNA.
Cellular Biology, Issue 87, Protein-protein interactions, Bioluminescence Resonance Energy Transfer, Live cell, Transfection, Luciferase, Yellow Fluorescent Protein, Mutations
Play Button
Blood Collection for Biochemical Analysis in Adult Zebrafish
Authors: Gabriela L. Pedroso, Thais O. Hammes, Thayssa D.C. Escobar, Laisa B. Fracasso, Luiz Felipe Forgiarini, Themis R. da Silveira.
Institutions: Centro de Pesquisa Experimental Laboratório de Hepatologia e Gastroenterologia Experimental, Universidade Federal do Rio Grande do Sul, UFRGS. Porto Alegre, RS, Brasil.
The zebrafish has been used as an animal model for studies of several human diseases. It can serve as a powerful preclinical platform for studies of molecular events and therapeutic strategies as well as for evaluating the physiological mechanisms of some pathologies1. There are relatively few publications related to adult zebrafish physiology of organs and systems2, which may lead researchers to infer that the basic techniques needed to allow the exploration of zebrafish systems are lacking3. Hematologic biochemical values of zebrafish were first reported in 2003 by Murtha and colleagues4 who employed a blood collection technique first described by Jagadeeswaran and colleagues in 1999. Briefly, blood was collected via a micropipette tip through a lateral incision, approximately 0.3 cm in length, in the region of the dorsal aorta5. Because of the minute dimensions involved, this is a high-precision technique requiring a highly skilled practitioner. The same technique was used by the same group in another publication in that same year6. In 2010, Eames and colleagues assessed whole blood glucose levels in zebrafish7. They gained access to the blood by performing decapitations with scissors and then inserting a heparinized microcapillary collection tube into the pectoral articulation. They mention difficulties with hemolysis that were solved with an appropriate storage temperature based on the work Kilpatrick et al.8. When attempting to use Jagadeeswaran's technique in our laboratory, we found that it was difficult to make the incision in precisely the right place as not to allow a significant amount of blood to be lost before collection could be started. Recently, Gupta et al.9 described how to dissect adult zebrafish organs, Kinkle et al.10 described how to perform intraperitoneal injections, and Pugach et al.11 described how to perform retro-orbital injections. However, more work is needed to more fully explore basic techniques for research in zebrafish. The small size of zebrafish presents challenges for researchers using it as an experimental model. Furthermore, given this smallness of scale, it is important that simple techniques are developed to enable researchers to explore the advantages of the zebrafish model.
Biochemistry, Issue 63, Developmental Biology, Zebrafish, Zebrafish blood, Hematologic, Biochemical analysis
Play Button
Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery in Clinical Research
Authors: Hugh Alley, Christopher D. Owens, Warren J. Gasper, S. Marlene Grenon.
Institutions: University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, Veterans Affairs Medical Center, San Francisco.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone. Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia. The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction. There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia. This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.
Medicine, Issue 92, endothelial function, endothelial dysfunction, brachial artery, peripheral artery disease, ultrasound, vascular, endothelium, cardiovascular disease.
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Production of Apolipoprotein C-III Knockout Rabbits using Zinc Finger Nucleases
Authors: Dongshan Yang, Jifeng Zhang, Jie Xu, Tianqing Zhu, Yanbo Fan, Jianglin Fan, Y. Eugene Chen.
Institutions: University of Michigan Medical Center, University of Yamanashi.
Apolipoprotein (Apo) C-III (ApoCIII) resides on the surface of plasma chylomicron (CM), very low density lipoprotein (VLDL) and high density lipoproteins (HDL). It has been recognized that high levels of plasma ApoCIII constitutea risk factor for cardiovascular diseases (CVD). Elevated plasma ApoCIII level often correlates with insulin resistance, obesity, and hypertriglyceridemia. Invaluable knowledge on the roles of ApoCIIIin lipid metabolisms and CVD has been obtained from transgenic mouse models including ApoCIII knockout (KO) mice; however, it is noted that the metabolism of lipoprotein in mice is different from that of humans in many aspects. It is not known until now whether elevated plasma ApoCIII is directly atherogenic. We worked to develop ApoCIII KO rabbits in the present study based on the hypothesis that rabbits can serve as a reasonablemodelfor studying human lipid metabolism and atherosclerosis. Zinc finger nuclease (ZFN) sets targeting rabbit ApoCIIIgene were subjected to in vitro validation prior to embryo microinjection. The mRNA was injected to the cytoplasm of 35 rabbit pronuclear stage embryos, and evaluated the mutation rates at the blastocyst state. Of sixteen blastocysts that were assayed, a satisfactory 50% mutation rate (8/16) at the targeting site was achieved, supporting the use of Set 1 for in vivo experiments. Next, we microinjected 145 embryos with Set 1 mRNA, and transferred these embryos to 7 recipient rabbits. After 30 days gestation, 21 kits were born, out of which five were confirmed as ApoCIII KO rabbits after PCR sequencing assays. The KO animal rate (#KO kits/total born) was 23.8%. The overall production efficiency is 3.4% (5 kits/145 embryos transferred). The present work demonstrated that ZFN is a highly efficient method to produce KO rabbits. These ApoCIII KO rabbits are novel resources to study the roles of ApoCIII in lipid metabolisms.
Medicine, Issue 81, Apolipoprotein C-III, rabbits, knockout, zinc finger nuclease, cardiovascular diseases, lipid metabolism, ApoCIII
Play Button
A Model of Chronic Nutrient Infusion in the Rat
Authors: Grace Fergusson, Mélanie Ethier, Bader Zarrouki, Ghislaine Fontés, Vincent Poitout.
Institutions: CRCHUM, University of Montreal.
Chronic exposure to excessive levels of nutrients is postulated to affect the function of several organs and tissues and to contribute to the development of the many complications associated with obesity and the metabolic syndrome, including type 2 diabetes. To study the mechanisms by which excessive levels of glucose and fatty acids affect the pancreatic beta-cell and the secretion of insulin, we have established a chronic nutrient infusion model in the rat. The procedure consists of catheterizing the right jugular vein and left carotid artery under general anesthesia; allowing a 7-day recuperation period; connecting the catheters to the pumps using a swivel and counterweight system that enables the animal to move freely in the cage; and infusing glucose and/or Intralipid (a soybean oil emulsion which generates a mixture of approximately 80% unsaturated/20% saturated fatty acids when infused with heparin) for 72 hr. This model offers several advantages, including the possibility to finely modulate the target levels of circulating glucose and fatty acids; the option to co-infuse pharmacological compounds; and the relatively short time frame as opposed to dietary models. It can be used to examine the mechanisms of nutrient-induced dysfunction in a variety of organs and to test the effectiveness of drugs in this context.
Biomedical Engineering, Issue 78, Medicine, Anatomy, Physiology, Basic Protocols, Surgery, Metabolic Diseases, Infusions, Intravenous, Infusion Pumps, Glucolipotoxicity, Rat, Infusion, Glucose, Intralipid, Catheter, canulation, canula, diabetes, animal model
Play Button
The α-test: Rapid Cell-free CD4 Enumeration Using Whole Saliva
Authors: Cynthia L. Bristow, Mariya A. Babayeva, Rozbeh Modarresi, Carole P. McArthur, Santosh Kumar, Charles Awasom, Leo Ayuk, Annette Njinda, Paul Achu, Ronald Winston.
Institutions: Weill Cornell Medical College , University of Missouri-Kansas City-School of Dentistry, University of Missouri Kansas City- School of Pharmacy, Bamenda, NWP, Cameroon, Mezam Polyclinic HIV/AIDS Treatment Center, Cameroon, Institute for Human Genetics and Biochemistry.
There is an urgent need for affordable CD4 enumeration to monitor HIV disease. CD4 enumeration is out of reach in resource-limited regions due to the time and temperature restrictions, technical sophistication, and cost of reagents, in particular monoclonal antibodies to measure CD4 on blood cells, the only currently acceptable method. A commonly used cost-saving and time-saving laboratory strategy is to calculate, rather than measure certain blood values. For example, LDL levels are calculated using the measured levels of total cholesterol, HDL, and triglycerides1. Thus, identification of cell-free correlates that directly regulate the number of CD4+ T cells could provide an accurate method for calculating CD4 counts due to the physiological relevance of the correlates. The number of stem cells that enter blood and are destined to become circulating CD4+ T cells is determined by the chemokine CXCL12 and its receptor CXCR4 due to their influence on locomotion2. The process of stem cell locomotion into blood is additionally regulated by cell surface human leukocyte elastase (HLECS) and the HLECS-reactive active α1proteinase inhibitor (α1PI, α1antitrypsin, SerpinA1)3. In HIV-1 disease, α1PI is inactivated due to disease processes 4. In the early asymptomatic categories of HIV-1 disease, active α1PI was found to be below normal in 100% of untreated HIV-1 patients (median=12 μM, and to achieve normal levels during the symptomatic categories4, 5. This pattern has been attributed to immune inactivation, not to insufficient synthesis, proteolytic inactivation, or oxygenation. We observed that in HIV-1 subjects with >220 CD4 cells/μl, CD4 counts were correlated with serum levels of active α1PI (r2=0.93, p<0.0001, n=26) and inactive α1PI (r2=0.91, p<0.0001, n=26) 5. Administration of α1PI to HIV-1 infected and uninfected subjects resulted in dramatic increases in CD4 counts suggesting α1PI participates in regulating the number of CD4+ T cells in blood 3. With stimulation, whole saliva contains sufficient serous exudate (plasma containing proteinaceous material that passes through blood vessel walls into saliva) to allow measurement of active α1PI and the correlation of this measurement is evidence that it is an accurate method for calculating CD4 counts. Briefly, sialogogues such as chewing gum or citric acid stimulate the exudation of serum into whole mouth saliva. After stimulating serum exudation, the activity of serum α1PI in saliva is measured by its capacity to inhibit elastase activity. Porcine pancreatic elastase (PPE) is a readily available inexpensive source of elastase. PPE binds to α1PI forming a one-to-one complex that prevents PPE from cleaving its specific substrates, one of which is the colorimetric peptide, succinyl-L-Ala-L-Ala-L-Ala-p-nitroanilide (SA3NA). Incubating saliva with a saturating concentration of PPE for 10 min at room temperature allows the binding of PPE to all the active α1PI in saliva. The resulting inhibition of PPE by active α1PI can be measured by adding the PPE substrate SA3NA. (Figure 1). Although CD4 counts are measured in terms of blood volume (CD4 cells/μl), the concentration of α1PI in saliva is related to the concentration of serum in saliva, not to volume of saliva since volume can vary considerably during the day and person to person6. However, virtually all the protein in saliva is due to serum content, and the protein content of saliva is measurable7. Thus, active α1PI in saliva is calculated as a ratio to saliva protein content and is termed the α1PI Index. Results presented herein demonstrate that the α1PI Index provides an accurate and precise physiologic method for calculating CD4 counts.
Medicine, Issue 63, CD4 count, saliva, antitrypsin, hematopoiesis, T cells, HIV/AIDS, clinical
Play Button
Real-time Analyses of Retinol Transport by the Membrane Receptor of Plasma Retinol Binding Protein
Authors: Riki Kawaguchi, Ming Zhong, Hui Sun.
Institutions: University of California, Los Angeles .
Vitamin A is essential for vision and the growth/differentiation of almost all human organs. Plasma retinol binding protein (RBP) is the principle and specific carrier of vitamin A in the blood. Here we describe an optimized technique to produce and purify holo-RBP and two real-time monitoring techniques to study the transport of vitamin A by the high-affinity RBP receptor STRA6. The first technique makes it possible to produce a large quantity of high quality holo-RBP (100%-loaded with retinol) for vitamin A transport assays. High quality RBP is essential for functional assays because misfolded RBP releases vitamin A readily and bacterial contamination in RBP preparation can cause artifacts. Real-time monitoring techniques like electrophysiology have made critical contributions to the studies of membrane transport. The RBP receptor-mediated retinol transport has not been analyzed in real time until recently. The second technique described here is the real-time analysis of STRA6-catalyzed retinol release or loading. The third technique is real-time analysis of STRA6-catalyzed retinol transport from holo-RBP to cellular retinol binding protein I (CRBP-I). These techniques provide high sensitivity and resolution in revealing RBP receptor's vitamin A uptake mechanism.
Biochemistry, Issue 71, Molecular Biology, Genetics, Cellular Biology, Molecular Biology, Anatomy, Physiology, Ophthalmology, Proteomics, Proteins, Membrane Transport Proteins, Vitamin A, retinoid, RBP complex, membrane transport, membrane receptor, STRA6, retinol binding protein
Play Button
Measuring Oral Fatty Acid Thresholds, Fat Perception, Fatty Food Liking, and Papillae Density in Humans
Authors: Rivkeh Y. Haryono, Madeline A. Sprajcer, Russell S. J. Keast.
Institutions: Deakin University.
Emerging evidence from a number of laboratories indicates that humans have the ability to identify fatty acids in the oral cavity, presumably via fatty acid receptors housed on taste cells. Previous research has shown that an individual's oral sensitivity to fatty acid, specifically oleic acid (C18:1) is associated with body mass index (BMI), dietary fat consumption, and the ability to identify fat in foods. We have developed a reliable and reproducible method to assess oral chemoreception of fatty acids, using a milk and C18:1 emulsion, together with an ascending forced choice triangle procedure. In parallel, a food matrix has been developed to assess an individual's ability to perceive fat, in addition to a simple method to assess fatty food liking. As an added measure tongue photography is used to assess papillae density, with higher density often being associated with increased taste sensitivity.
Neuroscience, Issue 88, taste, overweight and obesity, dietary fat, fatty acid, diet, fatty food liking, detection threshold
Play Button
Measuring Frailty in HIV-infected Individuals. Identification of Frail Patients is the First Step to Amelioration and Reversal of Frailty
Authors: Hilary C. Rees, Voichita Ianas, Patricia McCracken, Shannon Smith, Anca Georgescu, Tirdad Zangeneh, Jane Mohler, Stephen A. Klotz.
Institutions: University of Arizona, University of Arizona.
A simple, validated protocol consisting of a battery of tests is available to identify elderly patients with frailty syndrome. This syndrome of decreased reserve and resistance to stressors increases in incidence with increasing age. In the elderly, frailty may pursue a step-wise loss of function from non-frail to pre-frail to frail. We studied frailty in HIV-infected patients and found that ~20% are frail using the Fried phenotype using stringent criteria developed for the elderly1,2. In HIV infection the syndrome occurs at a younger age. HIV patients were checked for 1) unintentional weight loss; 2) slowness as determined by walking speed; 3) weakness as measured by a grip dynamometer; 4) exhaustion by responses to a depression scale; and 5) low physical activity was determined by assessing kilocalories expended in a week's time. Pre-frailty was present with any two of five criteria and frailty was present if any three of the five criteria were abnormal. The tests take approximately 10-15 min to complete and they can be performed by medical assistants during routine clinic visits. Test results are scored by referring to standard tables. Understanding which of the five components contribute to frailty in an individual patient can allow the clinician to address relevant underlying problems, many of which are not evident in routine HIV clinic visits.
Medicine, Issue 77, Infection, Virology, Infectious Diseases, Anatomy, Physiology, Molecular Biology, Biomedical Engineering, Retroviridae Infections, Body Weight Changes, Diagnostic Techniques and Procedures, Physical Examination, Muscle Strength, Behavior, Virus Diseases, Pathological Conditions, Signs and Symptoms, Diagnosis, Musculoskeletal and Neural Physiological Phenomena, HIV, HIV-1, AIDS, Frailty, Depression, Weight Loss, Weakness, Slowness, Exhaustion, Aging, clinical techniques
Play Button
Optimized Negative Staining: a High-throughput Protocol for Examining Small and Asymmetric Protein Structure by Electron Microscopy
Authors: Matthew Rames, Yadong Yu, Gang Ren.
Institutions: The Molecular Foundry.
Structural determination of proteins is rather challenging for proteins with molecular masses between 40 - 200 kDa. Considering that more than half of natural proteins have a molecular mass between 40 - 200 kDa1,2, a robust and high-throughput method with a nanometer resolution capability is needed. Negative staining (NS) electron microscopy (EM) is an easy, rapid, and qualitative approach which has frequently been used in research laboratories to examine protein structure and protein-protein interactions. Unfortunately, conventional NS protocols often generate structural artifacts on proteins, especially with lipoproteins that usually form presenting rouleaux artifacts. By using images of lipoproteins from cryo-electron microscopy (cryo-EM) as a standard, the key parameters in NS specimen preparation conditions were recently screened and reported as the optimized NS protocol (OpNS), a modified conventional NS protocol 3 . Artifacts like rouleaux can be greatly limited by OpNS, additionally providing high contrast along with reasonably high‐resolution (near 1 nm) images of small and asymmetric proteins. These high-resolution and high contrast images are even favorable for an individual protein (a single object, no average) 3D reconstruction, such as a 160 kDa antibody, through the method of electron tomography4,5. Moreover, OpNS can be a high‐throughput tool to examine hundreds of samples of small proteins. For example, the previously published mechanism of 53 kDa cholesteryl ester transfer protein (CETP) involved the screening and imaging of hundreds of samples 6. Considering cryo-EM rarely successfully images proteins less than 200 kDa has yet to publish any study involving screening over one hundred sample conditions, it is fair to call OpNS a high-throughput method for studying small proteins. Hopefully the OpNS protocol presented here can be a useful tool to push the boundaries of EM and accelerate EM studies into small protein structure, dynamics and mechanisms.
Environmental Sciences, Issue 90, small and asymmetric protein structure, electron microscopy, optimized negative staining
Play Button
Biochemical and High Throughput Microscopic Assessment of Fat Mass in Caenorhabditis Elegans
Authors: Elizabeth C. Pino, Christopher M. Webster, Christopher E. Carr, Alexander A. Soukas.
Institutions: Massachusetts General Hospital and Harvard Medical School, Massachusetts Institute of Technology.
The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research.
Genetics, Issue 73, Biochemistry, Cellular Biology, Molecular Biology, Developmental Biology, Physiology, Anatomy, Caenorhabditis elegans, Obesity, Energy Metabolism, Lipid Metabolism, C. elegans, fluorescent lipid staining, lipids, Nile red, fat, high throughput screening, obesity, gas chromatography, mass spectrometry, GC/MS, animal model
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Hyperinsulinemic-euglycemic Clamps in Conscious, Unrestrained Mice
Authors: Julio E. Ayala, Deanna P. Bracy, Carlo Malabanan, Freyja D. James, Tasneem Ansari, Patrick T. Fueger, Owen P. McGuinness, David H. Wasserman.
Institutions: Sanford-Burnham Medical Research Institute at Lake Nona, Vanderbilt University School of Medicine, Vanderbilt University School of Medicine, Indiana University School of Medicine.
Type 2 diabetes is characterized by a defect in insulin action. The hyperinsulinemic-euglycemic clamp, or insulin clamp, is widely considered the "gold standard" method for assessing insulin action in vivo. During an insulin clamp, hyperinsulinemia is achieved by a constant insulin infusion. Euglycemia is maintained via a concomitant glucose infusion at a variable rate. This variable glucose infusion rate (GIR) is determined by measuring blood glucose at brief intervals throughout the experiment and adjusting the GIR accordingly. The GIR is indicative of whole-body insulin action, as mice with enhanced insulin action require a greater GIR. The insulin clamp can incorporate administration of isotopic 2[14C]deoxyglucose to assess tissue-specific glucose uptake and [3-3H]glucose to assess the ability of insulin to suppress the rate of endogenous glucose appearance (endoRa), a marker of hepatic glucose production, and to stimulate the rate of whole-body glucose disappearance (Rd). The miniaturization of the insulin clamp for use in genetic mouse models of metabolic disease has led to significant advances in diabetes research. Methods for performing insulin clamps vary between laboratories. It is important to note that the manner in which an insulin clamp is performed can significantly affect the results obtained. We have published a comprehensive assessment of different approaches to performing insulin clamps in conscious mice1 as well as an evaluation of the metabolic response of four commonly used inbred mouse strains using various clamp techniques2. Here we present a protocol for performing insulin clamps on conscious, unrestrained mice developed by the Vanderbilt Mouse Metabolic Phenotyping Center (MMPC; URL: This includes a description of the method for implanting catheters used during the insulin clamp. The protocol employed by the Vanderbilt MMPC utilizes a unique two-catheter system3. One catheter is inserted into the jugular vein for infusions. A second catheter is inserted into the carotid artery, which allows for blood sampling without the need to restrain or handle the mouse. This technique provides a significant advantage to the most common method for obtaining blood samples during insulin clamps which is to sample from the severed tip of the tail. Unlike this latter method, sampling from an arterial catheter is not stressful to the mouse1. We also describe methods for using isotopic tracer infusions to assess tissue-specific insulin action. We also provide guidelines for the appropriate presentation of results obtained from insulin clamps.
Medicine, Issue 57, Glucose, insulin, clamp, mice, insulin resistance, diabetes, liver, muscle, conscious, restraint-free, non-stressed
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.