JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Predictors of Response Rates to a Long Term Follow-Up Mail out Survey.
PUBLISHED: 01-01-2013
Very little is known about predictors of response rates to long-term follow-up mail-out surveys, including whether the timing of an incentive affects response rates. We aimed to determine whether the timing of the incentive affects response rates and what baseline demographic and psychological factors predict response rates to a 12 year follow-up survey.
In order to follow optic neuritis patients and evaluate the effectiveness of their treatment, a handy, accurate and quantifiable tool is required to assess changes in myelination at the central nervous system (CNS). However, standard measurements, including routine visual tests and MRI scans, are not sensitive enough for this purpose. We present two visual tests addressing dynamic monocular and binocular functions which may closely associate with the extent of myelination along visual pathways. These include Object From Motion (OFM) extraction and Time-constrained stereo protocols. In the OFM test, an array of dots compose an object, by moving the dots within the image rightward while moving the dots outside the image leftward or vice versa. The dot pattern generates a camouflaged object that cannot be detected when the dots are stationary or moving as a whole. Importantly, object recognition is critically dependent on motion perception. In the Time-constrained Stereo protocol, spatially disparate images are presented for a limited length of time, challenging binocular 3-dimensional integration in time. Both tests are appropriate for clinical usage and provide a simple, yet powerful, way to identify and quantify processes of demyelination and remyelination along visual pathways. These protocols may be efficient to diagnose and follow optic neuritis and multiple sclerosis patients. In the diagnostic process, these protocols may reveal visual deficits that cannot be identified via current standard visual measurements. Moreover, these protocols sensitively identify the basis of the currently unexplained continued visual complaints of patients following recovery of visual acuity. In the longitudinal follow up course, the protocols can be used as a sensitive marker of demyelinating and remyelinating processes along time. These protocols may therefore be used to evaluate the efficacy of current and evolving therapeutic strategies, targeting myelination of the CNS.
23 Related JoVE Articles!
Play Button
Psychophysiological Stress Assessment Using Biofeedback
Authors: Inna Khazan.
Institutions: Cambridge Health Alliance, Harvard Medical School.
In the last half century, research in biofeedback has shown the extent to which the human mind can influence the functioning of the autonomic nervous system, previously thought to be outside of conscious control. By letting people observe signals from their own bodies, biofeedback enables them to develop greater awareness of their physiological and psychological reactions, such as stress, and to learn to modify these reactions. Biofeedback practitioners can facilitate this process by assessing people s reactions to mildly stressful events and formulating a biofeedback-based treatment plan. During stress assessment the practitioner first records a baseline for physiological readings, and then presents the client with several mild stressors, such as a cognitive, physical and emotional stressor. Variety of stressors is presented in order to determine a person's stimulus-response specificity, or differences in each person's reaction to qualitatively different stimuli. This video will demonstrate the process of psychophysiological stress assessment using biofeedback and present general guidelines for treatment planning.
Neuroscience, Issue 29, Stress, biofeedback, psychophysiological, assessment
Play Button
Bioenergetic Profile Experiment using C2C12 Myoblast Cells
Authors: David G. Nicholls, Victor M. Darley-Usmar, Min Wu, Per Bo Jensen, George W. Rogers, David A. Ferrick.
Institutions: Novato, CA, University of Alabama at Birmingham - UAB, North Billerica, MA.
The ability to measure cellular metabolism and understand mitochondrial dysfunction, has enabled scientists worldwide to advance their research in understanding the role of mitochondrial function in obesity, diabetes, aging, cancer, cardiovascular function and safety toxicity. Cellular metabolism is the process of substrate uptake, such as oxygen, glucose, fatty acids, and glutamine, and subsequent energy conversion through a series of enzymatically controlled oxidation and reduction reactions. These intracellular biochemical reactions result in the production of ATP, the release of heat and chemical byproducts, such as lactate and CO2 into the extracellular environment. Valuable insight into the physiological state of cells, and the alteration of the state of those cells, can be gained through measuring the rate of oxygen consumed by the cells, an indicator of mitochondrial respiration - the Oxygen Consumption Rate - or OCR. Cells also generate ATP through glycolysis, i.e.: the conversion of glucose to lactate, independent of oxygen. In cultured wells, lactate is the primary source of protons. Measuring the lactic acid produced indirectly via protons released into the extracellular medium surrounding the cells, which causes acidification of the medium provides the Extra-Cellular Acidification Rate - or ECAR. In this experiment, C2C12 myoblast cells are seeded at a given density in Seahorse cell culture plates. The basal oxygen consumption (OCR) and extracellular acidification (ECAR) rates are measured to establish baseline rates. The cells are then metabolically perturbed by three additions of different compounds (in succession) that shift the bioenergetic profile of the cell. This assay is derived from a classic experiment to assess mitochondria and serves as a framework with which to build more complex experiments aimed at understanding both physiologic and pathophysiologic function of mitochondria and to predict the ability of cells to respond to stress and/or insults.
Cellular Biology, Issue 46, Mitochondrial dysfunction, cellular, bioenergetics, metabolism, cancer, obesity, diabetes, aging, neurodegeneration
Play Button
A Microfluidic Device for Studying Multiple Distinct Strains
Authors: Guy Aidelberg, Yifat Goldshmidt, Iftach Nachman.
Institutions: Tel Aviv University.
The study of cell responses to environmental changes poses many experimental challenges: cells need to be imaged under changing conditions, often in a comparative manner. Multiwell plates are routinely used to compare many different strains or cell lines, but allow limited control over the environment dynamics. Microfluidic devices, on the other hand, allow exquisite dynamic control over the surrounding conditions, but it is challenging to image and distinguish more than a few strains in them. Here we describe a method to easily and rapidly manufacture a microfluidic device capable of applying dynamically changing conditions to multiple distinct yeast strains in one channel. The device is designed and manufactured by simple means without the need for soft lithography. It is composed of a Y-shaped flow channel attached to a second layer harboring microwells. The strains are placed in separate microwells, and imaged under the exact same dynamic conditions. We demonstrate the use of the device for measuring protein localization responses to pulses of nutrient changes in different yeast strains.
Bioengineering, Issue 69, Biochemistry, Molecular Biology, Microbiology, Microfluidics, PDMS, Time lapse fluorescent microscopy, S. cerevisiae, imaging, bacteria, strains
Play Button
Thermal Ablation for the Treatment of Abdominal Tumors
Authors: Christopher L. Brace, J. Louis Hinshaw, Meghan G. Lubner.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison.
Percutaneous thermal ablation is an emerging treatment option for many tumors of the abdomen not amenable to conventional treatments. During a thermal ablation procedure, a thin applicator is guided into the target tumor under imaging guidance. Energy is then applied to the tissue until temperatures rise to cytotoxic levels (50-60 °C). Various energy sources are available to heat biological tissues, including radiofrequency (RF) electrical current, microwaves, laser light and ultrasonic waves. Of these, RF and microwave ablation are most commonly used worldwide. During RF ablation, alternating electrical current (~500 kHz) produces resistive heating around the interstitial electrode. Skin surface electrodes (ground pads) are used to complete the electrical circuit. RF ablation has been in use for nearly 20 years, with good results for local tumor control, extended survival and low complication rates1,2. Recent studies suggest RF ablation may be a first-line treatment option for small hepatocellular carcinoma and renal-cell carcinoma3-5. However, RF heating is hampered by local blood flow and high electrical impedance tissues (eg, lung, bone, desiccated or charred tissue)6,7. Microwaves may alleviate some of these problems by producing faster, volumetric heating8-10. To create larger or conformal ablations, multiple microwave antennas can be used simultaneously while RF electrodes require sequential operation, which limits their efficiency. Early experiences with microwave systems suggest efficacy and safety similar to, or better than RF devices11-13. Alternatively, cryoablation freezes the target tissues to lethal levels (-20 to -40 °C). Percutaneous cryoablation has been shown to be effective against RCC and many metastatic tumors, particularly colorectal cancer, in the liver14-16. Cryoablation may also be associated with less post-procedure pain and faster recovery for some indications17. Cryoablation is often contraindicated for primary liver cancer due to underlying coagulopathy and associated bleeding risks frequently seen in cirrhotic patients. In addition, sudden release of tumor cellular contents when the frozen tissue thaws can lead to a potentially serious condition known as cryoshock 16. Thermal tumor ablation can be performed at open surgery, laparoscopy or using a percutaneous approach. When performed percutaneously, the ablation procedure relies on imaging for diagnosis, planning, applicator guidance, treatment monitoring and follow-up. Ultrasound is the most popular modality for guidance and treatment monitoring worldwide, but computed tomography (CT) and magnetic resonance imaging (MRI) are commonly used as well. Contrast-enhanced CT or MRI are typically employed for diagnosis and follow-up imaging.
Medicine, Issue 49, Thermal ablation, interventional oncology, image-guided therapy, radiology, cancer
Play Button
Using Continuous Data Tracking Technology to Study Exercise Adherence in Pulmonary Rehabilitation
Authors: Amanda K. Rizk, Rima Wardini, Emilie Chan-Thim, Barbara Trutschnigg, Amélie Forget, Véronique Pepin.
Institutions: Concordia University, Concordia University, Hôpital du Sacré-Coeur de Montréal.
Pulmonary rehabilitation (PR) is an important component in the management of respiratory diseases. The effectiveness of PR is dependent upon adherence to exercise training recommendations. The study of exercise adherence is thus a key step towards the optimization of PR programs. To date, mostly indirect measures, such as rates of participation, completion, and attendance, have been used to determine adherence to PR. The purpose of the present protocol is to describe how continuous data tracking technology can be used to measure adherence to a prescribed aerobic training intensity on a second-by-second basis. In our investigations, adherence has been defined as the percent time spent within a specified target heart rate range. As such, using a combination of hardware and software, heart rate is measured, tracked, and recorded during cycling second-by-second for each participant, for each exercise session. Using statistical software, the data is subsequently extracted and analyzed. The same protocol can be applied to determine adherence to other measures of exercise intensity, such as time spent at a specified wattage, level, or speed on the cycle ergometer. Furthermore, the hardware and software is also available to measure adherence to other modes of training, such as the treadmill, elliptical, stepper, and arm ergometer. The present protocol, therefore, has a vast applicability to directly measure adherence to aerobic exercise.
Medicine, Issue 81, Data tracking, exercise, rehabilitation, adherence, patient compliance, health behavior, user-computer interface.
Play Button
Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale
Authors: Valentina Gandin, Kristina Sikström, Tommy Alain, Masahiro Morita, Shannon McLaughlan, Ola Larsson, Ivan Topisirovic.
Institutions: McGill University, Karolinska Institutet, McGill University.
mRNA translation plays a central role in the regulation of gene expression and represents the most energy consuming process in mammalian cells. Accordingly, dysregulation of mRNA translation is considered to play a major role in a variety of pathological states including cancer. Ribosomes also host chaperones, which facilitate folding of nascent polypeptides, thereby modulating function and stability of newly synthesized polypeptides. In addition, emerging data indicate that ribosomes serve as a platform for a repertoire of signaling molecules, which are implicated in a variety of post-translational modifications of newly synthesized polypeptides as they emerge from the ribosome, and/or components of translational machinery. Herein, a well-established method of ribosome fractionation using sucrose density gradient centrifugation is described. In conjunction with the in-house developed “anota” algorithm this method allows direct determination of differential translation of individual mRNAs on a genome-wide scale. Moreover, this versatile protocol can be used for a variety of biochemical studies aiming to dissect the function of ribosome-associated protein complexes, including those that play a central role in folding and degradation of newly synthesized polypeptides.
Biochemistry, Issue 87, Cells, Eukaryota, Nutritional and Metabolic Diseases, Neoplasms, Metabolic Phenomena, Cell Physiological Phenomena, mRNA translation, ribosomes, protein synthesis, genome-wide analysis, translatome, mTOR, eIF4E, 4E-BP1
Play Button
Assessment and Evaluation of the High Risk Neonate: The NICU Network Neurobehavioral Scale
Authors: Barry M. Lester, Lynne Andreozzi-Fontaine, Edward Tronick, Rosemarie Bigsby.
Institutions: Brown University, Women & Infants Hospital of Rhode Island, University of Massachusetts, Boston.
There has been a long-standing interest in the assessment of the neurobehavioral integrity of the newborn infant. The NICU Network Neurobehavioral Scale (NNNS) was developed as an assessment for the at-risk infant. These are infants who are at increased risk for poor developmental outcome because of insults during prenatal development, such as substance exposure or prematurity or factors such as poverty, poor nutrition or lack of prenatal care that can have adverse effects on the intrauterine environment and affect the developing fetus. The NNNS assesses the full range of infant neurobehavioral performance including neurological integrity, behavioral functioning, and signs of stress/abstinence. The NNNS is a noninvasive neonatal assessment tool with demonstrated validity as a predictor, not only of medical outcomes such as cerebral palsy diagnosis, neurological abnormalities, and diseases with risks to the brain, but also of developmental outcomes such as mental and motor functioning, behavior problems, school readiness, and IQ. The NNNS can identify infants at high risk for abnormal developmental outcome and is an important clinical tool that enables medical researchers and health practitioners to identify these infants and develop intervention programs to optimize the development of these infants as early as possible. The video shows the NNNS procedures, shows examples of normal and abnormal performance and the various clinical populations in which the exam can be used.
Behavior, Issue 90, NICU Network Neurobehavioral Scale, NNNS, High risk infant, Assessment, Evaluation, Prediction, Long term outcome
Play Button
Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model
Authors: David Stecher, Glenn Bronkers, Jappe O.T. Noest, Cornelis A.F. Tulleken, Imo E. Hoefer, Lex A. van Herwerden, Gerard Pasterkamp, Marc P. Buijsrogge.
Institutions: University Medical Center Utrecht, Vascular Connect b.v., University Medical Center Utrecht, University Medical Center Utrecht.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.
Medicine, Issue 93, Anastomosis, coronary, anastomotic connector, anastomotic coupler, excimer laser-assisted nonocclusive anastomosis (ELANA), coronary artery bypass graft (CABG), off-pump coronary artery bypass (OPCAB), beating heart surgery, excimer laser, porcine model, experimental, medical device
Play Button
Remote Magnetic Navigation for Accurate, Real-time Catheter Positioning and Ablation in Cardiac Electrophysiology Procedures
Authors: David Filgueiras-Rama, Alejandro Estrada, Josh Shachar, Sergio Castrejón, David Doiny, Marta Ortega, Eli Gang, José L. Merino.
Institutions: La Paz University Hospital, Magnetecs Corp., Geffen School of Medicine at UCLA Los Angeles.
New remote navigation systems have been developed to improve current limitations of conventional manually guided catheter ablation in complex cardiac substrates such as left atrial flutter. This protocol describes all the clinical and invasive interventional steps performed during a human electrophysiological study and ablation to assess the accuracy, safety and real-time navigation of the Catheter Guidance, Control and Imaging (CGCI) system. Patients who underwent ablation of a right or left atrium flutter substrate were included. Specifically, data from three left atrial flutter and two counterclockwise right atrial flutter procedures are shown in this report. One representative left atrial flutter procedure is shown in the movie. This system is based on eight coil-core electromagnets, which generate a dynamic magnetic field focused on the heart. Remote navigation by rapid changes (msec) in the magnetic field magnitude and a very flexible magnetized catheter allow real-time closed-loop integration and accurate, stable positioning and ablation of the arrhythmogenic substrate.
Medicine, Issue 74, Anatomy, Physiology, Biomedical Engineering, Surgery, Cardiology, catheter ablation, remote navigation, magnetic, robotic, catheter, positioning, electrophysiology, clinical techniques
Play Button
Use of Animal Model of Sepsis to Evaluate Novel Herbal Therapies
Authors: Wei Li, Shu Zhu, Yusong Zhang, Jianhua Li, Andrew E. Sama, Ping Wang, Haichao Wang.
Institutions: North Shore – LIJ Health System.
Sepsis refers to a systemic inflammatory response syndrome resulting from a microbial infection. It has been routinely simulated in animals by several techniques, including infusion of exogenous bacterial toxin (endotoxemia) or bacteria (bacteremia), as well as surgical perforation of the cecum by cecal ligation and puncture (CLP)1-3. CLP allows bacteria spillage and fecal contamination of the peritoneal cavity, mimicking the human clinical disease of perforated appendicitis or diverticulitis. The severity of sepsis, as reflected by the eventual mortality rates, can be controlled surgically by varying the size of the needle used for cecal puncture2. In animals, CLP induces similar, biphasic hemodynamic cardiovascular, metabolic, and immunological responses as observed during the clinical course of human sepsis3. Thus, the CLP model is considered as one of the most clinically relevant models for experimental sepsis1-3. Various animal models have been used to elucidate the intricate mechanisms underlying the pathogenesis of experimental sepsis. The lethal consequence of sepsis is attributable partly to an excessive accumulation of early cytokines (such as TNF, IL-1 and IFN-γ)4-6 and late proinflammatory mediators (e.g., HMGB1)7. Compared with early proinflammatory cytokines, late-acting mediators have a wider therapeutic window for clinical applications. For instance, delayed administration of HMGB1-neutralizing antibodies beginning 24 hours after CLP, still rescued mice from lethality8,9, establishing HMGB1 as a late mediator of lethal sepsis. The discovery of HMGB1 as a late-acting mediator has initiated a new field of investigation for the development of sepsis therapies using Traditional Chinese Herbal Medicine. In this paper, we describe a procedure of CLP-induced sepsis, and its usage in screening herbal medicine for HMGB1-targeting therapies.
Medicine, Issue 62, Herbal therapies, innate immune cells, cytokines, HMGB1, experimental animal model of sepsis, cecal ligation and puncture
Play Button
An Experimental Paradigm for the Prediction of Post-Operative Pain (PPOP)
Authors: Ruth Landau, John C. Kraft, Lisa Y. Flint, Brendan Carvalho, Philippe Richebé, Monica Cardoso, Patricia Lavand'homme, Michal Granot, David Yarnitsky, Alex Cahana.
Institutions: University of Washington School of Medicine.
Many women undergo cesarean delivery without problems, however some experience significant pain after cesarean section. Pain is associated with negative short-term and long-term effects on the mother. Prior to women undergoing surgery, can we predict who is at risk for developing significant postoperative pain and potentially prevent or minimize its negative consequences? These are the fundamental questions that a team from the University of Washington, Stanford University, the Catholic University in Brussels, Belgium, Santa Joana Women's Hospital in São Paulo, Brazil, and Rambam Medical Center in Israel is currently evaluating in an international research collaboration. The ultimate goal of this project is to provide optimal pain relief during and after cesarean section by offering individualized anesthetic care to women who appear to be more 'susceptible' to pain after surgery. A significant number of women experience moderate or severe acute post-partum pain after vaginal and cesarean deliveries. 1 Furthermore, 10-15% of women suffer chronic persistent pain after cesarean section. 2 With constant increase in cesarean rates in the US 3 and the already high rate in Brazil, this is bound to create a significant public health problem. When questioning women's fears and expectations from cesarean section, pain during and after it is their greatest concern. 4 Individual variability in severity of pain after vaginal or operative delivery is influenced by multiple factors including sensitivity to pain, psychological factors, age, and genetics. The unique birth experience leads to unpredictable requirements for analgesics, from 'none at all' to 'very high' doses of pain medication. Pain after cesarean section is an excellent model to study post-operative pain because it is performed on otherwise young and healthy women. Therefore, it is recommended to attenuate the pain during the acute phase because this may lead to chronic pain disorders. The impact of developing persistent pain is immense, since it may impair not only the ability of women to care for their child in the immediate postpartum period, but also their own well being for a long period of time. In a series of projects, an international research network is currently investigating the effect of pregnancy on pain modulation and ways to predict who will suffer acute severe pain and potentially chronic pain, by using simple pain tests and questionnaires in combination with genetic analysis. A relatively recent approach to investigate pain modulation is via the psychophysical measure of Diffuse Noxious Inhibitory Control (DNIC). This pain-modulating process is the neurophysiological basis for the well-known phenomenon of 'pain inhibits pain' from remote areas of the body. The DNIC paradigm has evolved recently into a clinical tool and simple test and has been shown to be a predictor of post-operative pain.5 Since pregnancy is associated with decreased pain sensitivity and/or enhanced processes of pain modulation, using tests that investigate pain modulation should provide a better understanding of the pathways involved with pregnancy-induced analgesia and may help predict pain outcomes during labor and delivery. For those women delivering by cesarean section, a DNIC test performed prior to surgery along with psychosocial questionnaires and genetic tests should enable one to identify women prone to suffer severe post-cesarean pain and persistent pain. These clinical tests should allow anesthesiologists to offer not only personalized medicine to women with the promise to improve well-being and satisfaction, but also a reduction in the overall cost of perioperative and long term care due to pain and suffering. On a larger scale, these tests that explore pain modulation may become bedside screening tests to predict the development of pain disorders following surgery.
JoVE Medicine, Issue 35, diffuse noxious inhibitory control, DNIC, temporal summation, TS, psychophysical testing, endogenous analgesia, pain modulation, pregnancy-induced analgesia, cesarean section, post-operative pain, prediction
Play Button
Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica
Authors: Hui Lu, Jeffrey M. McManus, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 in Aplysia or in other animal systems2,3,13,14.
Neuroscience, Issue 73, Physiology, Biomedical Engineering, Anatomy, Behavior, Neurobiology, Animal, Neurosciences, Neurophysiology, Electrophysiology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, buccal mass, ganglia, motor neurons, neurons, extracellular stimulation and recordings, extracellular electrodes, animal model
Play Button
Irrelevant Stimuli and Action Control: Analyzing the Influence of Ignored Stimuli via the Distractor-Response Binding Paradigm
Authors: Birte Moeller, Hartmut Schächinger, Christian Frings.
Institutions: Trier University, Trier University.
Selection tasks in which simple stimuli (e.g. letters) are presented and a target stimulus has to be selected against one or more distractor stimuli are frequently used in the research on human action control. One important question in these settings is how distractor stimuli, competing with the target stimulus for a response, influence actions. The distractor-response binding paradigm can be used to investigate this influence. It is particular useful to separately analyze response retrieval and distractor inhibition effects. Computer-based experiments are used to collect the data (reaction times and error rates). In a number of sequentially presented pairs of stimulus arrays (prime-probe design), participants respond to targets while ignoring distractor stimuli. Importantly, the factors response relation in the arrays of each pair (repetition vs. change) and distractor relation (repetition vs. change) are varied orthogonally. The repetition of the same distractor then has a different effect depending on response relation (repetition vs. change) between arrays. This result pattern can be explained by response retrieval due to distractor repetition. In addition, distractor inhibition effects are indicated by a general advantage due to distractor repetition. The described paradigm has proven useful to determine relevant parameters for response retrieval effects on human action.
Behavior, Issue 87, stimulus-response binding, distractor-response binding, response retrieval, distractor inhibition, event file, action control, selection task
Play Button
Inducing Plasticity of Astrocytic Receptors by Manipulation of Neuronal Firing Rates
Authors: Alison X. Xie, Kelli Lauderdale, Thomas Murphy, Timothy L. Myers, Todd A. Fiacco.
Institutions: University of California Riverside, University of California Riverside, University of California Riverside.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.
Neuroscience, Issue 85, astrocyte, plasticity, mGluRs, neuronal Firing, electrophysiology, Gq GPCRs, Bolus-loading, calcium, microdomains, acute slices, Hippocampus, mouse
Play Button
Comprehensive Analysis of Transcription Dynamics from Brain Samples Following Behavioral Experience
Authors: Hagit Turm, Diptendu Mukherjee, Doron Haritan, Maayan Tahor, Ami Citri.
Institutions: The Hebrew University of Jerusalem.
The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied1,2. In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies.
Behavior, Issue 90, Brain, behavior, RNA, transcription, nucleus accumbens, cocaine, high-throughput qPCR, experience-dependent plasticity, gene regulatory networks, microdissection
Play Button
Microvascular Decompression: Salient Surgical Principles and Technical Nuances
Authors: Jonathan Forbes, Calvin Cooper, Walter Jermakowicz, Joseph Neimat, Peter Konrad.
Institutions: Vanderbilt University Medical Center, Vanderbilt University Medical Center.
Trigeminal neuralgia is a disorder associated with severe episodes of lancinating pain in the distribution of the trigeminal nerve. Previous reports indicate that 80-90% of cases are related to compression of the trigeminal nerve by an adjacent vessel. The majority of patients with trigeminal neuralgia eventually require surgical management in order to achieve remission of symptoms. Surgical options for management include ablative procedures (e.g., radiosurgery, percutaneous radiofrequency lesioning, balloon compression, glycerol rhizolysis, etc.) and microvascular decompression. Ablative procedures fail to address the root cause of the disorder and are less effective at preventing recurrence of symptoms over the long term than microvascular decompression. However, microvascular decompression is inherently more invasive than ablative procedures and is associated with increased surgical risks. Previous studies have demonstrated a correlation between surgeon experience and patient outcome in microvascular decompression. In this series of 59 patients operated on by two neurosurgeons (JSN and PEK) since 2006, 93% of patients demonstrated substantial improvement in their trigeminal neuralgia following the procedure—with follow-up ranging from 6 weeks to 2 years. Moreover, 41 of 66 patients (approximately 64%) have been entirely pain-free following the operation. In this publication, video format is utilized to review the microsurgical pathology of this disorder. Steps of the operative procedure are reviewed and salient principles and technical nuances useful in minimizing complications and maximizing efficacy are discussed.
Medicine, Issue 53, microvascular, decompression, trigeminal, neuralgia, operation, video
Play Button
Combining Magnetic Sorting of Mother Cells and Fluctuation Tests to Analyze Genome Instability During Mitotic Cell Aging in Saccharomyces cerevisiae
Authors: Melissa N. Patterson, Patrick H. Maxwell.
Institutions: Rensselaer Polytechnic Institute.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.
Microbiology, Issue 92, Aging, mutations, genome instability, Saccharomyces cerevisiae, fluctuation test, magnetic sorting, mother cell, replicative aging
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
Play Button
Automated, Quantitative Cognitive/Behavioral Screening of Mice: For Genetics, Pharmacology, Animal Cognition and Undergraduate Instruction
Authors: C. R. Gallistel, Fuat Balci, David Freestone, Aaron Kheifets, Adam King.
Institutions: Rutgers University, Koç University, New York University, Fairfield University.
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Behavior, Issue 84, genetics, cognitive mechanisms, behavioral screening, learning, memory, timing
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
Play Button
A Proboscis Extension Response Protocol for Investigating Behavioral Plasticity in Insects: Application to Basic, Biomedical, and Agricultural Research
Authors: Brian H. Smith, Christina M. Burden.
Institutions: Arizona State University.
Insects modify their responses to stimuli through experience of associating those stimuli with events important for survival (e.g., food, mates, threats). There are several behavioral mechanisms through which an insect learns salient associations and relates them to these events. It is important to understand this behavioral plasticity for programs aimed toward assisting insects that are beneficial for agriculture. This understanding can also be used for discovering solutions to biomedical and agricultural problems created by insects that act as disease vectors and pests. The Proboscis Extension Response (PER) conditioning protocol was developed for honey bees (Apis mellifera) over 50 years ago to study how they perceive and learn about floral odors, which signal the nectar and pollen resources a colony needs for survival. The PER procedure provides a robust and easy-to-employ framework for studying several different ecologically relevant mechanisms of behavioral plasticity. It is easily adaptable for use with several other insect species and other behavioral reflexes. These protocols can be readily employed in conjunction with various means for monitoring neural activity in the CNS via electrophysiology or bioimaging, or for manipulating targeted neuromodulatory pathways. It is a robust assay for rapidly detecting sub-lethal effects on behavior caused by environmental stressors, toxins or pesticides. We show how the PER protocol is straightforward to implement using two procedures. One is suitable as a laboratory exercise for students or for quick assays of the effect of an experimental treatment. The other provides more thorough control of variables, which is important for studies of behavioral conditioning. We show how several measures for the behavioral response ranging from binary yes/no to more continuous variable like latency and duration of proboscis extension can be used to test hypotheses. And, we discuss some pitfalls that researchers commonly encounter when they use the procedure for the first time.
Neuroscience, Issue 91, PER, conditioning, honey bee, olfaction, olfactory processing, learning, memory, toxin assay
Play Button
Design and Construction of an Urban Runoff Research Facility
Authors: Benjamin G. Wherley, Richard H. White, Kevin J. McInnes, Charles H. Fontanier, James C. Thomas, Jacqueline A. Aitkenhead-Peterson, Steven T. Kelly.
Institutions: Texas A&M University, The Scotts Miracle-Gro Company.
As the urban population increases, so does the area of irrigated urban landscape. Summer water use in urban areas can be 2-3x winter base line water use due to increased demand for landscape irrigation. Improper irrigation practices and large rainfall events can result in runoff from urban landscapes which has potential to carry nutrients and sediments into local streams and lakes where they may contribute to eutrophication. A 1,000 m2 facility was constructed which consists of 24 individual 33.6 m2 field plots, each equipped for measuring total runoff volumes with time and collection of runoff subsamples at selected intervals for quantification of chemical constituents in the runoff water from simulated urban landscapes. Runoff volumes from the first and second trials had coefficient of variability (CV) values of 38.2 and 28.7%, respectively. CV values for runoff pH, EC, and Na concentration for both trials were all under 10%. Concentrations of DOC, TDN, DON, PO4-P, K+, Mg2+, and Ca2+ had CV values less than 50% in both trials. Overall, the results of testing performed after sod installation at the facility indicated good uniformity between plots for runoff volumes and chemical constituents. The large plot size is sufficient to include much of the natural variability and therefore provides better simulation of urban landscape ecosystems.
Environmental Sciences, Issue 90, urban runoff, landscapes, home lawns, turfgrass, St. Augustinegrass, carbon, nitrogen, phosphorus, sodium
Play Button
A Rapid Technique for the Visualization of Live Immobilized Yeast Cells
Authors: Karl Zawadzki, James Broach.
Institutions: Princeton University.
We present here a simple, rapid, and extremely flexible technique for the immobilization and visualization of growing yeast cells by epifluorescence microscopy. The technique is equally suited for visualization of static yeast populations, or time courses experiments up to ten hours in length. My microscopy investigates epigenetic inheritance at the silent mating loci in S. cerevisiae. There are two silent mating loci, HML and HMR, which are normally not expressed as they are packaged in heterochromatin. In the sir1 mutant background silencing is weakened such that each locus can either be in the expressed or silenced epigenetic state, so in the population as a whole there is a mix of cells of different epigenetic states for both HML and HMR. My microscopy demonstrated that there is no relationship between the epigenetic state of HML and HMR in an individual cell. sir1 cells stochastically switch epigenetic states, establishing silencing at a previously expressed locus or expressing a previously silenced locus. My time course microscopy tracked individual sir1 cells and their offspring to score the frequency of each of the four possible epigenetic switches, and thus the stability of each of the epigenetic states in sir1 cells. See also Xu et al., Mol. Cell 2006.
Microbiology, Issue 1, yeast, HML, HMR, epigenetic, loci, silencing, cerevisiae
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.