JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Transcriptome comparison reveals key candidate genes responsible for the unusual reblooming trait in tree peonies.
PUBLISHED: 01-01-2013
Tree peonies are important ornamental plants worldwide, but growing them can be frustrating due to their short and concentrated flowering period. Certain cultivars exhibit a reblooming trait that provides a valuable alternative for extending the flowering period. However, the genetic control of reblooming in tree peonies is not well understood. In this study, we compared the molecular properties and morphology of reblooming and non-reblooming tree peonies during the floral initiation and developmental processes. Using transcriptome sequencing technology, we generated 59,275 and 63,962 unigenes with a mean size of 698 bp and 699 bp from the two types of tree peonies, respectively, and identified eight differentially expressed genes that are involved in the floral pathways of Arabidopsis thaliana. These differentially regulated genes were verified through a detailed analysis of their expression pattern during the floral process by real time RT-PCR. From this combined analysis, we identified four genes, PsFT, PsVIN3, PsCO and PsGA20OX, which likely play important roles in the regulation of the reblooming process in tree peonies. These data constitute a valuable resource for the discovery of genes involved in flowering time and insights into the molecular mechanism of flowering to further accelerate the breeding of tree peonies and other perennial woody plants.
Authors: Takayuki Tohge, Alisdair R. Fernie.
Published: 06-17-2012
Given the ever expanding number of model plant species for which complete genome sequences are available and the abundance of bio-resources such as knockout mutants, wild accessions and advanced breeding populations, there is a rising burden for gene functional annotation. In this protocol, annotation of plant gene function using combined co-expression gene analysis, metabolomics and informatics is provided (Figure 1). This approach is based on the theory of using target genes of known function to allow the identification of non-annotated genes likely to be involved in a certain metabolic process, with the identification of target compounds via metabolomics. Strategies are put forward for applying this information on populations generated by both forward and reverse genetics approaches in spite of none of these are effortless. By corollary this approach can also be used as an approach to characterise unknown peaks representing new or specific secondary metabolites in the limited tissues, plant species or stress treatment, which is currently the important trial to understanding plant metabolism.
23 Related JoVE Articles!
Play Button
Determination of DNA Methylation of Imprinted Genes in Arabidopsis Endosperm
Authors: Matthew Rea, Ming Chen, Shan Luan, Drutdaman Bhangu, Max Braud, Wenyan Xiao.
Institutions: Saint Louis University.
Arabidopsis thaliana is an excellent model organism for studying epigenetic mechanisms. One of the reasons is the loss-of-function null mutant of DNA methyltransferases is viable, thus providing a system to study how loss of DNA methylation in a genome affects growth and development. Imprinting refers to differential expression of maternal and paternal alleles and plays an important role in reproduction development in both mammal and plants. DNA methylation is critical for determining whether the maternal or paternal alleles of an imprinted gene is expressed or silenced. In flowering plants, there is a double fertilization event in reproduction: one sperm cell fertilizes the egg cell to form embryo and a second sperm fuses with the central cell to give rise to endosperm. Endosperm is the tissue where imprinting occurs in plants. MEDEA, a SET domain Polycomb group gene, and FWA, a transcription factor regulating flowering, are the first two genes shown to be imprinted in endosperm and their expression is controlled by DNA methylation and demethylation in plants. In order to determine imprinting status of a gene and methylation pattern in endosperm, we need to be able to isolate endosperm first. Since seed is tiny in Arabidopsis, it remains challenging to isolate Arabidopsis endosperm and examine its methylation. In this video protocol, we report how to conduct a genetic cross, to isolate endosperm tissue from seeds, and to determine the methylation status by bisulfite sequencing.
Plant Biology, Issue 47, DNA methylation, imprinting, bisulfite sequencing, endosperm, Arabidopsis
Play Button
Investigating Tissue- and Organ-specific Phytochrome Responses using FACS-assisted Cell-type Specific Expression Profiling in Arabidopsis thaliana
Authors: Sankalpi N. Warnasooriya, Beronda L. Montgomery.
Institutions: Michigan State University (MSU), Michigan State University (MSU).
Light mediates an array of developmental and adaptive processes throughout the life cycle of a plant. Plants utilize light-absorbing molecules called photoreceptors to sense and adapt to light. The red/far-red light-absorbing phytochrome photoreceptors have been studied extensively. Phytochromes exist as a family of proteins with distinct and overlapping functions in all higher plant systems in which they have been studied1. Phytochrome-mediated light responses, which range from seed germination through flowering and senescence, are often localized to specific plant tissues or organs2. Despite the discovery and elucidation of individual and redundant phytochrome functions through mutational analyses, conclusive reports on distinct sites of photoperception and the molecular mechanisms of localized pools of phytochromes that mediate spatial-specific phytochrome responses are limited. We designed experiments based on the hypotheses that specific sites of phytochrome photoperception regulate tissue- and organ-specific aspects of photomorphogenesis, and that localized phytochrome pools engage distinct subsets of downstream target genes in cell-to-cell signaling. We developed a biochemical approach to selectively reduce functional phytochromes in an organ- or tissue-specific manner within transgenic plants. Our studies are based on a bipartite enhancer-trap approach that results in transactivation of the expression of a gene under control of the Upstream Activation Sequence (UAS) element by the transcriptional activator GAL43. The biliverdin reductase (BVR) gene under the control of the UAS is silently maintained in the absence of GAL4 transactivation in the UAS-BVR parent4. Genetic crosses between a UAS-BVR transgenic line and a GAL4-GFP enhancer trap line result in specific expression of the BVR gene in cells marked by GFP expression4. BVR accumulation in Arabidopsis plants results in phytochrome chromophore deficiency in planta5-7. Thus, transgenic plants that we have produced exhibit GAL4-dependent activation of the BVR gene, resulting in the biochemical inactivation of phytochrome, as well as GAL4-dependent GFP expression. Photobiological and molecular genetic analyses of BVR transgenic lines are yielding insight into tissue- and organ-specific phytochrome-mediated responses that have been associated with corresponding sites of photoperception4, 7, 8. Fluorescence Activated Cell Sorting (FACS) of GFP-positive, enhancer-trap-induced BVR-expressing plant protoplasts coupled with cell-type-specific gene expression profiling through microarray analysis is being used to identify putative downstream target genes involved in mediating spatial-specific phytochrome responses. This research is expanding our understanding of sites of light perception, the mechanisms through which various tissues or organs cooperate in light-regulated plant growth and development, and advancing the molecular dissection of complex phytochrome-mediated cell-to-cell signaling cascades.
Plant Biology, Issue 39, Arabidopsis thaliana, confocal microscopy, expression profiling, microarray, fluorescence, FACS, photomorphogenesis, phytochrome, protoplasting
Play Button
The ITS2 Database
Authors: Benjamin Merget, Christian Koetschan, Thomas Hackl, Frank Förster, Thomas Dandekar, Tobias Müller, Jörg Schultz, Matthias Wolf.
Institutions: University of Würzburg, University of Würzburg.
The internal transcribed spacer 2 (ITS2) has been used as a phylogenetic marker for more than two decades. As ITS2 research mainly focused on the very variable ITS2 sequence, it confined this marker to low-level phylogenetics only. However, the combination of the ITS2 sequence and its highly conserved secondary structure improves the phylogenetic resolution1 and allows phylogenetic inference at multiple taxonomic ranks, including species delimitation2-8. The ITS2 Database9 presents an exhaustive dataset of internal transcribed spacer 2 sequences from NCBI GenBank11 accurately reannotated10. Following an annotation by profile Hidden Markov Models (HMMs), the secondary structure of each sequence is predicted. First, it is tested whether a minimum energy based fold12 (direct fold) results in a correct, four helix conformation. If this is not the case, the structure is predicted by homology modeling13. In homology modeling, an already known secondary structure is transferred to another ITS2 sequence, whose secondary structure was not able to fold correctly in a direct fold. The ITS2 Database is not only a database for storage and retrieval of ITS2 sequence-structures. It also provides several tools to process your own ITS2 sequences, including annotation, structural prediction, motif detection and BLAST14 search on the combined sequence-structure information. Moreover, it integrates trimmed versions of 4SALE15,16 and ProfDistS17 for multiple sequence-structure alignment calculation and Neighbor Joining18 tree reconstruction. Together they form a coherent analysis pipeline from an initial set of sequences to a phylogeny based on sequence and secondary structure. In a nutshell, this workbench simplifies first phylogenetic analyses to only a few mouse-clicks, while additionally providing tools and data for comprehensive large-scale analyses.
Genetics, Issue 61, alignment, internal transcribed spacer 2, molecular systematics, secondary structure, ribosomal RNA, phylogenetic tree, homology modeling, phylogeny
Play Button
Microarray-based Identification of Individual HERV Loci Expression: Application to Biomarker Discovery in Prostate Cancer
Authors: Philippe Pérot, Valérie Cheynet, Myriam Decaussin-Petrucci, Guy Oriol, Nathalie Mugnier, Claire Rodriguez-Lafrasse, Alain Ruffion, François Mallet.
Institutions: Joint Unit Hospices de Lyon-bioMérieux, BioMérieux, Hospices Civils de Lyon, Lyon 1 University, BioMérieux, Hospices Civils de Lyon, Hospices Civils de Lyon.
The prostate-specific antigen (PSA) is the main diagnostic biomarker for prostate cancer in clinical use, but it lacks specificity and sensitivity, particularly in low dosage values1​​. ‘How to use PSA' remains a current issue, either for diagnosis as a gray zone corresponding to a concentration in serum of 2.5-10 ng/ml which does not allow a clear differentiation to be made between cancer and noncancer2 or for patient follow-up as analysis of post-operative PSA kinetic parameters can pose considerable challenges for their practical application3,4. Alternatively, noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease, e.g. PCA3 in prostate cancer5,6 and to reveal uncharacterized aspects of tumor biology. Moreover, data from the ENCODE project published in 2012 showed that different RNA types cover about 62% of the genome. It also appears that the amount of transcriptional regulatory motifs is at least 4.5x higher than the one corresponding to protein-coding exons. Thus, long terminal repeats (LTRs) of human endogenous retroviruses (HERVs) constitute a wide range of putative/candidate transcriptional regulatory sequences, as it is their primary function in infectious retroviruses. HERVs, which are spread throughout the human genome, originate from ancestral and independent infections within the germ line, followed by copy-paste propagation processes and leading to multicopy families occupying 8% of the human genome (note that exons span 2% of our genome). Some HERV loci still express proteins that have been associated with several pathologies including cancer7-10. We have designed a high-density microarray, in Affymetrix format, aiming to optimally characterize individual HERV loci expression, in order to better understand whether they can be active, if they drive ncRNA transcription or modulate coding gene expression. This tool has been applied in the prostate cancer field (Figure 1).
Medicine, Issue 81, Cancer Biology, Genetics, Molecular Biology, Prostate, Retroviridae, Biomarkers, Pharmacological, Tumor Markers, Biological, Prostatectomy, Microarray Analysis, Gene Expression, Diagnosis, Human Endogenous Retroviruses, HERV, microarray, Transcriptome, prostate cancer, Affymetrix
Play Button
An Analytical Tool-box for Comprehensive Biochemical, Structural and Transcriptome Evaluation of Oral Biofilms Mediated by Mutans Streptococci
Authors: Marlise I. Klein, Jin Xiao, Arne Heydorn, Hyun Koo.
Institutions: University of Rochester Medical Center, Sichuan University, Glostrup Hospital, Glostrup, Denmark, University of Rochester Medical Center.
Biofilms are highly dynamic, organized and structured communities of microbial cells enmeshed in an extracellular matrix of variable density and composition 1, 2. In general, biofilms develop from initial microbial attachment on a surface followed by formation of cell clusters (or microcolonies) and further development and stabilization of the microcolonies, which occur in a complex extracellular matrix. The majority of biofilm matrices harbor exopolysaccharides (EPS), and dental biofilms are no exception; especially those associated with caries disease, which are mostly mediated by mutans streptococci 3. The EPS are synthesized by microorganisms (S. mutans, a key contributor) by means of extracellular enzymes, such as glucosyltransferases using sucrose primarily as substrate 3. Studies of biofilms formed on tooth surfaces are particularly challenging owing to their constant exposure to environmental challenges associated with complex diet-host-microbial interactions occurring in the oral cavity. Better understanding of the dynamic changes of the structural organization and composition of the matrix, physiology and transcriptome/proteome profile of biofilm-cells in response to these complex interactions would further advance the current knowledge of how oral biofilms modulate pathogenicity. Therefore, we have developed an analytical tool-box to facilitate biofilm analysis at structural, biochemical and molecular levels by combining commonly available and novel techniques with custom-made software for data analysis. Standard analytical (colorimetric assays, RT-qPCR and microarrays) and novel fluorescence techniques (for simultaneous labeling of bacteria and EPS) were integrated with specific software for data analysis to address the complex nature of oral biofilm research. The tool-box is comprised of 4 distinct but interconnected steps (Figure 1): 1) Bioassays, 2) Raw Data Input, 3) Data Processing, and 4) Data Analysis. We used our in vitro biofilm model and specific experimental conditions to demonstrate the usefulness and flexibility of the tool-box. The biofilm model is simple, reproducible and multiple replicates of a single experiment can be done simultaneously 4, 5. Moreover, it allows temporal evaluation, inclusion of various microbial species 5 and assessment of the effects of distinct experimental conditions (e.g. treatments 6; comparison of knockout mutants vs. parental strain 5; carbohydrates availability 7). Here, we describe two specific components of the tool-box, including (i) new software for microarray data mining/organization (MDV) and fluorescence imaging analysis (DUOSTAT), and (ii) in situ EPS-labeling. We also provide an experimental case showing how the tool-box can assist with biofilms analysis, data organization, integration and interpretation.
Microbiology, Issue 47, Extracellular matrix, polysaccharides, biofilm, mutans streptococci, glucosyltransferases, confocal fluorescence, microarray
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
Play Button
Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica
Authors: Hui Lu, Jeffrey M. McManus, Hillel J. Chiel.
Institutions: Case Western Reserve University , Case Western Reserve University , Case Western Reserve University .
In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool. This extracellular technique has advantages. First, extracellular electrodes can stimulate and record neurons through the sheath5, so it does not need to be removed. Thus, neurons will be healthier in extracellular experiments than in intracellular ones. Second, if ganglia are rotated by appropriate pinning of the sheath, extracellular electrodes can access neurons on both sides of the ganglion, which makes it easier and more efficient to identify multiple neurons in the same preparation. Third, extracellular electrodes do not need to penetrate cells, and thus can be easily moved back and forth among neurons, causing less damage to them. This is especially useful when one tries to record multiple neurons during repeating motor patterns that may only persist for minutes. Fourth, extracellular electrodes are more flexible than intracellular ones during muscle movements. Intracellular electrodes may pull out and damage neurons during muscle contractions. In contrast, since extracellular electrodes are gently pressed onto the sheath above neurons, they usually stay above the same neuron during muscle contractions, and thus can be used in more intact preparations. To uniquely identify motor neurons for a motor pool (in particular, the I1/I3 muscle in Aplysia) using extracellular electrodes, one can use features that do not require intracellular measurements as criteria: soma size and location, axonal projection, and muscle innervation4,6,7. For the particular motor pool used to illustrate the technique, we recorded from buccal nerves 2 and 3 to measure axonal projections, and measured the contraction forces of the I1/I3 muscle to determine the pattern of muscle innervation for the individual motor neurons. We demonstrate the complete process of first identifying motor neurons using muscle innervation, then characterizing their timing during motor patterns, creating a simplified diagnostic method for rapid identification. The simplified and more rapid diagnostic method is superior for more intact preparations, e.g. in the suspended buccal mass preparation8 or in vivo9. This process can also be applied in other motor pools10,11,12 in Aplysia or in other animal systems2,3,13,14.
Neuroscience, Issue 73, Physiology, Biomedical Engineering, Anatomy, Behavior, Neurobiology, Animal, Neurosciences, Neurophysiology, Electrophysiology, Aplysia, Aplysia californica, California sea slug, invertebrate, feeding, buccal mass, ganglia, motor neurons, neurons, extracellular stimulation and recordings, extracellular electrodes, animal model
Play Button
A Practical Guide to Phylogenetics for Nonexperts
Authors: Damien O'Halloran.
Institutions: The George Washington University.
Many researchers, across incredibly diverse foci, are applying phylogenetics to their research question(s). However, many researchers are new to this topic and so it presents inherent problems. Here we compile a practical introduction to phylogenetics for nonexperts. We outline in a step-by-step manner, a pipeline for generating reliable phylogenies from gene sequence datasets. We begin with a user-guide for similarity search tools via online interfaces as well as local executables. Next, we explore programs for generating multiple sequence alignments followed by protocols for using software to determine best-fit models of evolution. We then outline protocols for reconstructing phylogenetic relationships via maximum likelihood and Bayesian criteria and finally describe tools for visualizing phylogenetic trees. While this is not by any means an exhaustive description of phylogenetic approaches, it does provide the reader with practical starting information on key software applications commonly utilized by phylogeneticists. The vision for this article would be that it could serve as a practical training tool for researchers embarking on phylogenetic studies and also serve as an educational resource that could be incorporated into a classroom or teaching-lab.
Basic Protocol, Issue 84, phylogenetics, multiple sequence alignments, phylogenetic tree, BLAST executables, basic local alignment search tool, Bayesian models
Play Button
The Analysis of Purkinje Cell Dendritic Morphology in Organotypic Slice Cultures
Authors: Josef P. Kapfhammer, Olivia S. Gugger.
Institutions: University of Basel.
Purkinje cells are an attractive model system for studying dendritic development, because they have an impressive dendritic tree which is strictly oriented in the sagittal plane and develops mostly in the postnatal period in small rodents 3. Furthermore, several antibodies are available which selectively and intensively label Purkinje cells including all processes, with anti-Calbindin D28K being the most widely used. For viewing of dendrites in living cells, mice expressing EGFP selectively in Purkinje cells 11 are available through Jackson labs. Organotypic cerebellar slice cultures cells allow easy experimental manipulation of Purkinje cell dendritic development because most of the dendritic expansion of the Purkinje cell dendritic tree is actually taking place during the culture period 4. We present here a short, reliable and easy protocol for viewing and analyzing the dendritic morphology of Purkinje cells grown in organotypic cerebellar slice cultures. For many purposes, a quantitative evaluation of the Purkinje cell dendritic tree is desirable. We focus here on two parameters, dendritic tree size and branch point numbers, which can be rapidly and easily determined from anti-calbindin stained cerebellar slice cultures. These two parameters yield a reliable and sensitive measure of changes of the Purkinje cell dendritic tree. Using the example of treatments with the protein kinase C (PKC) activator PMA and the metabotropic glutamate receptor 1 (mGluR1) we demonstrate how differences in the dendritic development are visualized and quantitatively assessed. The combination of the presence of an extensive dendritic tree, selective and intense immunostaining methods, organotypic slice cultures which cover the period of dendritic growth and a mouse model with Purkinje cell specific EGFP expression make Purkinje cells a powerful model system for revealing the mechanisms of dendritic development.
Neuroscience, Issue 61, dendritic development, dendritic branching, cerebellum, Purkinje cells
Play Button
Floral-dip Transformation of Arabidopsis thaliana to Examine pTSO2::β-glucuronidase Reporter Gene Expression
Authors: Chloe Mara, Boyana Grigorova, Zhongchi Liu.
Institutions: University of Maryland College Park.
The ability to introduce foreign genes into an organism is the foundation for modern biology and biotechnology. In the model flowering plant Arabidopsis thaliana, the floral-dip transformation method1-2 has replaced all previous methods because of its simplicity, efficiency, and low cost. Specifically, shoots of young flowering Arabidopsis plants are dipped in a solution of Agrobacterium tumefaciens carrying specific plasmid constructs. After dipping, the plants are returned to normal growth and yield seeds, a small percentage of which are transformed with the foreign gene and can be selected for on medium containing antibiotics. This floral-dip method significantly facilitated Arabidopsis research and contributed greatly to our understanding of plant gene function. In this study, we use the floral-dip method to transform a reporter gene, β-glucuronidase (GUS), under the control of TSO2 promoter. TSO2, coding for the Ribonucleotide Reductase (RNR) small subunit3, is a cell cycle regulated gene essential for dNDP biosynthesis in the S-phase of the cell cycle. Examination of GUS expression in transgenic Arabidopsis seedlings shows that TSO2 is expressed in actively dividing tissues. The reported experimental method and materials can be easily adapted not only for research but also for education at high school and college levels.
Cellular Biology, Issue 40, Floral-dip transformation, Agrobacterium tumefaciens, beta-glucuronidase (GUS) reporter, cell cycle, Ribonucleotide Reductase (RNR), Arabidopsis thaliana
Play Button
An Experimental and Bioinformatics Protocol for RNA-seq Analyses of Photoperiodic Diapause in the Asian Tiger Mosquito, Aedes albopictus
Authors: Monica F. Poelchau, Xin Huang, Allison Goff, Julie Reynolds, Peter Armbruster.
Institutions: Georgetown University, The Ohio State University.
Photoperiodic diapause is an important adaptation that allows individuals to escape harsh seasonal environments via a series of physiological changes, most notably developmental arrest and reduced metabolism. Global gene expression profiling via RNA-Seq can provide important insights into the transcriptional mechanisms of photoperiodic diapause. The Asian tiger mosquito, Aedes albopictus, is an outstanding organism for studying the transcriptional bases of diapause due to its ease of rearing, easily induced diapause, and the genomic resources available. This manuscript presents a general experimental workflow for identifying diapause-induced transcriptional differences in A. albopictus. Rearing techniques, conditions necessary to induce diapause and non-diapause development, methods to estimate percent diapause in a population, and RNA extraction and integrity assessment for mosquitoes are documented. A workflow to process RNA-Seq data from Illumina sequencers culminates in a list of differentially expressed genes. The representative results demonstrate that this protocol can be used to effectively identify genes differentially regulated at the transcriptional level in A. albopictus due to photoperiodic differences. With modest adjustments, this workflow can be readily adapted to study the transcriptional bases of diapause or other important life history traits in other mosquitoes.
Genetics, Issue 93, Aedes albopictus Asian tiger mosquito, photoperiodic diapause, RNA-Seq de novo transcriptome assembly, mosquito husbandry
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Non-radioactive in situ Hybridization Protocol Applicable for Norway Spruce and a Range of Plant Species
Authors: Anna Karlgren, Jenny Carlsson, Niclas Gyllenstrand, Ulf Lagercrantz, Jens F. Sundström.
Institutions: Uppsala University, Swedish University of Agricultural Sciences.
The high-throughput expression analysis technologies available today give scientists an overflow of expression profiles but their resolution in terms of tissue specific expression is limited because of problems in dissecting individual tissues. Expression data needs to be confirmed and complemented with expression patterns using e.g. in situ hybridization, a technique used to localize cell specific mRNA expression. The in situ hybridization method is laborious, time-consuming and often requires extensive optimization depending on species and tissue. In situ experiments are relatively more difficult to perform in woody species such as the conifer Norway spruce (Picea abies). Here we present a modified DIG in situ hybridization protocol, which is fast and applicable on a wide range of plant species including P. abies. With just a few adjustments, including altered RNase treatment and proteinase K concentration, we could use the protocol to study tissue specific expression of homologous genes in male reproductive organs of one gymnosperm and two angiosperm species; P. abies, Arabidopsis thaliana and Brassica napus. The protocol worked equally well for the species and genes studied. AtAP3 and BnAP3 were observed in second and third whorl floral organs in A. thaliana and B. napus and DAL13 in microsporophylls of male cones from P. abies. For P. abies the proteinase K concentration, used to permeablize the tissues, had to be increased to 3 g/ml instead of 1 g/ml, possibly due to more compact tissues and higher levels of phenolics and polysaccharides. For all species the RNase treatment was removed due to reduced signal strength without a corresponding increase in specificity. By comparing tissue specific expression patterns of homologous genes from both flowering plants and a coniferous tree we demonstrate that the DIG in situ protocol presented here, with only minute adjustments, can be applied to a wide range of plant species. Hence, the protocol avoids both extensive species specific optimization and the laborious use of radioactively labeled probes in favor of DIG labeled probes. We have chosen to illustrate the technically demanding steps of the protocol in our film. Anna Karlgren and Jenny Carlsson contributed equally to this study. Corresponding authors: Anna Karlgren at and Jens F. Sundström at
Plant Biology, Issue 26, RNA, expression analysis, Norway spruce, Arabidopsis, rapeseed, conifers
Play Button
RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Institutions: Children's Mercy Hospital and Clinics, School of Medicine, University of Missouri-Kansas City.
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
Genetics, Issue 72, Molecular Biology, Immunology, Medicine, Genomics, Proteins, RNA-seq, Next Generation DNA Sequencing, Transcriptome, Transcription, Thrombin, Endothelial cells, high-throughput, DNA, genomic DNA, RT-PCR, PCR
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
Play Button
VIGS-Mediated Forward Genetics Screening for Identification of Genes Involved in Nonhost Resistance
Authors: Muthappa Senthil-Kumar, Hee-Kyung Lee, Kirankumar S. Mysore.
Institutions: The Samuel Roberts Noble Foundation.
Nonhost disease resistance of plants against bacterial pathogens is controlled by complex defense pathways. Understanding this mechanism is important for developing durable disease-resistant plants against wide range of pathogens. Virus-induced gene silencing (VIGS)-based forward genetics screening is a useful approach for identification of plant defense genes imparting nonhost resistance. Tobacco rattle virus (TRV)-based VIGS vector is the most efficient VIGS vector to date and has been efficiently used to silence endogenous target genes in Nicotiana benthamiana. In this manuscript, we demonstrate a forward genetics screening approach for silencing of individual clones from a cDNA library in N. benthamiana and assessing the response of gene silenced plants for compromised nonhost resistance against nonhost pathogens, Pseudomonas syringae pv. tomato T1, P. syringae pv. glycinea, and X. campestris pv. vesicatoria. These bacterial pathogens are engineered to express GFPuv protein and their green fluorescing colonies can be seen by naked eye under UV light in the nonhost pathogen inoculated plants if the silenced target gene is involved in imparting nonhost resistance. This facilitates reliable and faster identification of gene silenced plants susceptible to nonhost pathogens. Further, promising candidate gene information can be known by sequencing the plant gene insert in TRV vector. Here we demonstrate the high throughput capability of VIGS-mediated forward genetics to identify genes involved in nonhost resistance. Approximately, 100 cDNAs can be individually silenced in about two to three weeks and their relevance in nonhost resistance against several nonhost bacterial pathogens can be studied in a week thereafter. In this manuscript, we enumerate the detailed steps involved in this screening. VIGS-mediated forward genetics screening approach can be extended not only to identifying genes involved in nonhost resistance but also to studying genes imparting several biotic and abiotic stress tolerances in various plant species.
Virology, Issue 78, Plant Biology, Infection, Genetics, Molecular Biology, Cellular Biology, Physiology, Genomics, Pathology, plants, Nonhost Resistance, Virus-induced gene silencing, VIGS, disease resistance, gene silencing, Pseudomonas, GFPuv, sequencing, virus, Nicotiana benthamiana, plant model
Play Button
Profiling of Estrogen-regulated MicroRNAs in Breast Cancer Cells
Authors: Anne Katchy, Cecilia Williams.
Institutions: University of Houston.
Estrogen plays vital roles in mammary gland development and breast cancer progression. It mediates its function by binding to and activating the estrogen receptors (ERs), ERα, and ERβ. ERα is frequently upregulated in breast cancer and drives the proliferation of breast cancer cells. The ERs function as transcription factors and regulate gene expression. Whereas ERα's regulation of protein-coding genes is well established, its regulation of noncoding microRNA (miRNA) is less explored. miRNAs play a major role in the post-transcriptional regulation of genes, inhibiting their translation or degrading their mRNA. miRNAs can function as oncogenes or tumor suppressors and are also promising biomarkers. Among the miRNA assays available, microarray and quantitative real-time polymerase chain reaction (qPCR) have been extensively used to detect and quantify miRNA levels. To identify miRNAs regulated by estrogen signaling in breast cancer, their expression in ERα-positive breast cancer cell lines were compared before and after estrogen-activation using both the µParaflo-microfluidic microarrays and Dual Labeled Probes-low density arrays. Results were validated using specific qPCR assays, applying both Cyanine dye-based and Dual Labeled Probes-based chemistry. Furthermore, a time-point assay was used to identify regulations over time. Advantages of the miRNA assay approach used in this study is that it enables a fast screening of mature miRNA regulations in numerous samples, even with limited sample amounts. The layout, including the specific conditions for cell culture and estrogen treatment, biological and technical replicates, and large-scale screening followed by in-depth confirmations using separate techniques, ensures a robust detection of miRNA regulations, and eliminates false positives and other artifacts. However, mutated or unknown miRNAs, or regulations at the primary and precursor transcript level, will not be detected. The method presented here represents a thorough investigation of estrogen-mediated miRNA regulation.
Medicine, Issue 84, breast cancer, microRNA, estrogen, estrogen receptor, microarray, qPCR
Play Button
Collection and Analysis of Arabidopsis Phloem Exudates Using the EDTA-facilitated Method
Authors: Olena Tetyuk, Urs F. Benning, Susanne Hoffmann-Benning.
Institutions: Michigan State Universtiy.
The plant phloem is essential for the long-distance transport of (photo-) assimilates as well as of signals conveying biotic or abiotic stress. It contains sugars, amino acids, proteins, RNA, lipids and other metabolites. While there is a large interest in understanding the composition and function of the phloem, the role of many of these molecules and thus, their importance in plant development and stress response has yet to be determined. One barrier to phloem analysis lies in the fact that the phloem seals itself upon wounding. As a result, the number of plants from which phloem sap can be obtained is limited. One method that allows collection of phloem exudates from several plant species without added equipment is the EDTA-facilitated phloem exudate collection described here. While it is easy to use, it does lead to the wounding of cells and care has to be taken to remove contents of damaged cells. In addition, several controls to prove purity of the exudate are necessary. Because it is an exudation rather than a direct collection of the phloem sap (not possible in many species) only relative quantification of its contents can occur. The advantage of this method over others is that it can be used in many herbaceous or woody plant species (Perilla, Arabidopsis, poplar, etc.) and requires minimal equipment and training. It leads to reasonably large amounts of exudates that can be used for subsequent analysis of proteins, sugars, lipids, RNA, viruses and metabolites. It is simple enough that it can be used in both a research as well as in a teaching laboratory.
Plant Biology, Issue 80, plant, long-distance transport, long-distance signaling, phloem, phloem exudate collection, assimilate transport, protein, RNA, lipids
Play Button
Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry
Authors: Colin Ruprecht, Takayuki Tohge, Alisdair Fernie, Cara L. Mortimer, Amanda Kozlo, Paul D. Fraser, Norma Funke, Igor Cesarino, Ruben Vanholme, Wout Boerjan, Kris Morreel, Ingo Burgert, Notburga Gierlinger, Vincent Bulone, Vera Schneider, Andrea Stockero, Juan Navarro-Aviñó, Frank Pudel, Bart Tambuyser, James Hygate, Jon Bumstead, Louis Notley, Staffan Persson.
Institutions: Max Planck Institute for Molecular Plant Physiology, Royal Holloway, University of London, VIB, UGhent, ETH Zurich, EMPA, Royal Institute of Technology (KTH), European Research and Project Office GmbH, ABBA Gaia S.L., Pflanzenöltechnologie, Capax Environmental Services, Green Fuels, Neutral Consulting Ltd, University of Melbourne.
The global demand for food, feed, energy, and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.
Environmental Sciences, Issue 87, botany, plants, Biorefining, Poplar, Tobacco tree, Arabidopsis, suberin, lignin, cell walls, biomass, long-chain hydrocarbons, isoprenoids, Nicotiana glauca, systems biology
Play Button
Identification of Key Factors Regulating Self-renewal and Differentiation in EML Hematopoietic Precursor Cells by RNA-sequencing Analysis
Authors: Shan Zong, Shuyun Deng, Kenian Chen, Jia Qian Wu.
Institutions: The University of Texas Graduate School of Biomedical Sciences at Houston.
Hematopoietic stem cells (HSCs) are used clinically for transplantation treatment to rebuild a patient's hematopoietic system in many diseases such as leukemia and lymphoma. Elucidating the mechanisms controlling HSCs self-renewal and differentiation is important for application of HSCs for research and clinical uses. However, it is not possible to obtain large quantity of HSCs due to their inability to proliferate in vitro. To overcome this hurdle, we used a mouse bone marrow derived cell line, the EML (Erythroid, Myeloid, and Lymphocytic) cell line, as a model system for this study. RNA-sequencing (RNA-Seq) has been increasingly used to replace microarray for gene expression studies. We report here a detailed method of using RNA-Seq technology to investigate the potential key factors in regulation of EML cell self-renewal and differentiation. The protocol provided in this paper is divided into three parts. The first part explains how to culture EML cells and separate Lin-CD34+ and Lin-CD34- cells. The second part of the protocol offers detailed procedures for total RNA preparation and the subsequent library construction for high-throughput sequencing. The last part describes the method for RNA-Seq data analysis and explains how to use the data to identify differentially expressed transcription factors between Lin-CD34+ and Lin-CD34- cells. The most significantly differentially expressed transcription factors were identified to be the potential key regulators controlling EML cell self-renewal and differentiation. In the discussion section of this paper, we highlight the key steps for successful performance of this experiment. In summary, this paper offers a method of using RNA-Seq technology to identify potential regulators of self-renewal and differentiation in EML cells. The key factors identified are subjected to downstream functional analysis in vitro and in vivo.
Genetics, Issue 93, EML Cells, Self-renewal, Differentiation, Hematopoietic precursor cell, RNA-Sequencing, Data analysis
Play Button
Generation of Composite Plants in Medicago truncatula used for Nodulation Assays
Authors: Ying Deng, Guohong Mao, William Stutz, Oliver Yu.
Institutions: St. Louis, Missouri.
Similar to Agrobacterium tumerfaciens, Agrobacterium rhizogenes can transfer foreign DNAs into plant cells based on the autonomous root-inducing (Ri) plasmid. A. rhizogenes can cause hairy root formation on plant tissues and form composite plants after transformation. On these composite plants, some of the regenerated roots are transgenic, carrying the wild type T-DNA and the engineered binary vector; while the shoots are still non-transgenic, serving to provide energy and growth support. These hairy root composite plants will not produce transgenic seeds, but there are a number of important features that make these composite plants very useful in plant research. First, with a broad host range,A. rhizogenes can transform many plant species, especially dicots, allowing genetic engineering in a variety of species. Second, A. rhizogenes infect tissues and explants directly; no tissue cultures prior to transformation is necessary to obtain composite plants, making them ideal for transforming recalcitrant plant species. Moreover, transgenic root tissues can be generated in a matter of weeks. For Medicago truncatula, we can obtain transgenic roots in as short as three weeks, faster than normal floral dip Arabidopsis transformation. Overall, the hairy root composite plant technology is a versatile and useful tool to study gene functions and root related-phenotypes. Here we demonstrate how hairy root composite plants can be used to study plant-rhizobium interactions and nodulation in the difficult-to-transform species M. truncatula.
Plant Biology, Issue 49, hairy root, composite plants, Medicago truncatula, rhizobia, GFP
Play Button
Use of Arabidopsis eceriferum Mutants to Explore Plant Cuticle Biosynthesis
Authors: Lacey Samuels, Allan DeBono, Patricia Lam, Miao Wen, Reinhard Jetter, Ljerka Kunst.
Institutions: University of British Columbia - UBC, University of British Columbia - UBC.
The plant cuticle is a waxy outer covering on plants that has a primary role in water conservation, but is also an important barrier against the entry of pathogenic microorganisms. The cuticle is made up of a tough crosslinked polymer called "cutin" and a protective wax layer that seals the plant surface. The waxy layer of the cuticle is obvious on many plants, appearing as a shiny film on the ivy leaf or as a dusty outer covering on the surface of a grape or a cabbage leaf thanks to light scattering crystals present in the wax. Because the cuticle is an essential adaptation of plants to a terrestrial environment, understanding the genes involved in plant cuticle formation has applications in both agriculture and forestry. Today, we'll show the analysis of plant cuticle mutants identified by forward and reverse genetics approaches.
Plant Biology, Issue 16, Annual Review, Cuticle, Arabidopsis, Eceriferum Mutants, Cryso-SEM, Gas Chromatography
Play Button
Choice and No-Choice Assays for Testing the Resistance of A. thaliana to Chewing Insects
Authors: Martin De Vos, Georg Jander.
Institutions: Cornell University.
Larvae of the small white cabbage butterfly are a pest in agricultural settings. This caterpillar species feeds from plants in the cabbage family, which include many crops such as cabbage, broccoli, Brussel sprouts etc. Rearing of the insects takes place on cabbage plants in the greenhouse. At least two cages are needed for the rearing of Pieris rapae. One for the larvae and the other to contain the adults, the butterflies. In order to investigate the role of plant hormones and toxic plant chemicals in resistance to this insect pest, we demonstrate two experiments. First, determination of the role of jasmonic acid (JA - a plant hormone often indicated in resistance to insects) in resistance to the chewing insect Pieris rapae. Caterpillar growth can be compared on wild-type and mutant plants impaired in production of JA. This experiment is considered "No Choice", because larvae are forced to subsist on a single plant which synthesizes or is deficient in JA. Second, we demonstrate an experiment that investigates the role of glucosinolates, which are used as oviposition (egg-laying) signals. Here, we use WT and mutant Arabidopsis impaired in glucosinolate production in a "Choice" experiment in which female butterflies are allowed to choose to lay their eggs on plants of either genotype. This video demonstrates the experimental setup for both assays as well as representative results.
Plant Biology, Issue 15, Annual Review, Plant Resistance, Herbivory, Arabidopsis thaliana, Pieris rapae, Caterpillars, Butterflies, Jasmonic Acid, Glucosinolates
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.