JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease.
PLoS ONE
PUBLISHED: 01-01-2013
Rho-family GTPases like RhoA and Rac-1 are potent regulators of cellular signaling that control gene expression, migration and inflammation. Activation of Rho-GTPases has been linked to podocyte dysfunction, a feature of chronic kidney diseases (CKD). We investigated the effect of Rac-1 and Rho kinase (ROCK) inhibition on progressive renal failure in mice and studied the underlying mechanisms in podocytes. SV129 mice were subjected to 5/6-nephrectomy which resulted in arterial hypertension and albuminuria. Subgroups of animals were treated with the Rac-1 inhibitor EHT1846, the ROCK inhibitor SAR407899 and the ACE inhibitor Ramipril. Only Ramipril reduced hypertension. In contrast, all inhibitors markedly attenuated albumin excretion as well as glomerular and tubulo-interstitial damage. The combination of SAR407899 and Ramipril was more effective in preventing albuminuria than Ramipril alone. To study the involved mechanisms, podocytes were cultured from SV129 mice and exposed to static stretch in the Flexcell device. This activated RhoA and Rac-1 and led via TGF? to apoptosis and a switch of the cells into a more mesenchymal phenotype, as evident from loss of WT-1 and nephrin and induction of ?-SMA and fibronectin expression. Rac-1 and ROCK inhibition as well as blockade of TGF? dramatically attenuated all these responses. This suggests that Rac-1 and RhoA are mediators of podocyte dysfunction in CKD. Inhibition of Rho-GTPases may be a novel approach for the treatment of CKD.
Authors: Arianne van Koppen, Marianne C. Verhaar, Lennart G. Bongartz, Jaap A. Joles.
Published: 07-03-2013
ABSTRACT
Chronic kidney disease (CKD) is a global problem. Slowing CKD progression is a major health priority. Since CKD is characterized by complex derangements of homeostasis, integrative animal models are necessary to study development and progression of CKD. To study development of CKD and novel therapeutic interventions in CKD, we use the 5/6th nephrectomy ablation model, a well known experimental model of progressive renal disease, resembling several aspects of human CKD. The gross reduction in renal mass causes progressive glomerular and tubulo-interstitial injury, loss of remnant nephrons and development of systemic and glomerular hypertension. It is also associated with progressive intrarenal capillary loss, inflammation and glomerulosclerosis. Risk factors for CKD invariably impact on endothelial function. To mimic this, we combine removal of 5/6th of renal mass with nitric oxide (NO) depletion and a high salt diet. After arrival and acclimatization, animals receive a NO synthase inhibitor (NG-nitro-L-Arginine) (L-NNA) supplemented to drinking water (20 mg/L) for a period of 4 weeks, followed by right sided uninephrectomy. One week later, a subtotal nephrectomy (SNX) is performed on the left side. After SNX, animals are allowed to recover for two days followed by LNNA in drinking water (20 mg/L) for a further period of 4 weeks. A high salt diet (6%), supplemented in ground chow (see time line Figure 1), is continued throughout the experiment. Progression of renal failure is followed over time by measuring plasma urea, systolic blood pressure and proteinuria. By six weeks after SNX, renal failure has developed. Renal function is measured using 'gold standard' inulin and para-amino hippuric acid (PAH) clearance technology. This model of CKD is characterized by a reduction in glomerular filtration rate (GFR) and effective renal plasma flow (ERPF), hypertension (systolic blood pressure>150 mmHg), proteinuria (> 50 mg/24 hr) and mild uremia (>10 mM). Histological features include tubulo-interstitial damage reflected by inflammation, tubular atrophy and fibrosis and focal glomerulosclerosis leading to massive reduction of healthy glomeruli within the remnant population (<10%). Follow-up until 12 weeks after SNX shows further progression of CKD.
21 Related JoVE Articles!
Play Button
Affinity Precipitation of Active Rho-GEFs Using a GST-tagged Mutant Rho Protein (GST-RhoA(G17A)) from Epithelial Cell Lysates
Authors: Faiza Waheed, Pamela Speight, Qinghong Dan, Rafael Garcia-Mata, Katalin Szaszi.
Institutions: St. Michael's Hospital , University of Toronto, University of North Carolina at Chapel Hill .
Proteins of the Rho family of small GTPases are central regulators of the cytoskeleton, and control a large variety of cellular processes, including cell migration, gene expression, cell cycle progression and cell adhesion 1. Rho proteins are molecular switches that are active in GTP-bound and inactive in GDP-bound state. Their activation is mediated by a family of Guanine-nucleotide Exchange Factor (GEF) proteins. Rho-GEFs constitute a large family, with overlapping specificities 2. Although a lot of progress has been made in identifying the GEFs activated by specific signals, there are still many questions remaining regarding the pathway-specific regulation of these proteins. The number of Rho-GEFs exceeds 70, and each cell expresses more than one GEF protein. In addition, many of these proteins activate not only Rho, but other members of the family, contributing further to the complexity of the regulatory networks. Importantly, exploring how GEFs are regulated requires a method to follow the active pool of individual GEFs in cells activated by different stimuli. Here we provide a step-by-step protocol for a method used to assess and quantify the available active Rho-specific GEFs using an affinity precipitation assay. This assay was developed a few years ago in the Burridge lab 3,4 and we have used it in kidney tubular cell lines 5,6,7. The assay takes advantage of a "nucleotide free" mutant RhoA, with a high affinity for active GEFs. The mutation (G17A) renders the protein unable to bind GDP or GTP and this state mimics the intermediate state that is bound to the GEF. A GST-tagged version of this mutant protein is expressed and purified from E. coli, bound to glutathione sepharose beads and used to precipitate active GEFs from lysates of untreated and stimulated cells. As most GEFs are activated via posttranslational modifications or release from inhibitory bindings, their active state is preserved in cell lysates, and they can be detected by this assay8. Captured proteins can be probed for known GEFs by detection with specific antibodies using Western blotting, or analyzed by Mass Spectrometry to identify unknown GEFs activated by certain stimuli.
Molecular Biology, Issue 61, Rho Family Small GTPases, Guanine-nucleotide exchange factor (GEFs), Affinity Precipitation Assay, expression of proteins in E. Coli, Purification of GST-tagged Protein, microbead assay
3932
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
51478
Play Button
Detection of Neu1 Sialidase Activity in Regulating TOLL-like Receptor Activation
Authors: Schammim R. Amith, Preethi Jayanth, Trisha Finlay, Susan Franchuk, Alanna Gilmour, Samar Abdulkhalek, Myron R. Szewczuk.
Institutions: Queen's University - Kingston, Ontario.
Mammalian Toll-like receptors (TLRs) are a family of receptors that recognize pathogen-associated molecular patterns. Not only are TLRs crucial sensors of microbial (e.g., viruses, bacteria and parasite) infections, they also play an important role in the pathophysiology of infectious diseases, inflammatory diseases, and possibly in autoimmune diseases. Thus, the intensity and duration of TLR responses against infectious diseases must be tightly controlled. It follows that understanding the structural integrity of sensor receptors, their ligand interactions and signaling components is essential for subsequent immunological protection. It would also provide important opportunities for disease modification through sensor manipulation. Although the signaling pathways of TLR sensors are well characterized, the parameters controlling interactions between the sensors and their ligands still remain poorly defined. We have recently identified a novel mechanism of TLR activation by its natural ligand, which has not been previously observed 1,2. It suggests that ligand-induced TLR activation is tightly controlled by Neu1 sialidase activation. We have also reported that Neu1 tightly regulates neurotrophin receptors like TrkA and TrkB 3, which involve Neu1 and matrix metalloproteinase-9 (MMP-9) cross-talk in complex with the receptors 4. The sialidase assay has been initially use to find a novel ligand, thymoquinone, in the activation of Neu4 sialidase on the cell surface of macrophages, dendritic cells and fibroblast cells via GPCR Gαi proteins and MMP-9 5. For TLR receptors, our data indicate that Neu1 sialidase is already in complex with TLR-2, -3 and -4 receptors, and is induced upon ligand binding to either receptor. Activated Neu1 sialidase hydrolyzes sialyl α-2,3-linked β-galactosyl residues distant from ligand binding to remove steric hinderance to TLR-4 dimerization, MyD88/TLR4 complex recruitment, NFkB activation and pro-inflammatory cell responses. In a collaborative report, Neu1 sialidase has been shown to regulate phagocytosis in macrophage cells 6. Taken together, the sialidase assay has provided us with powerful insights to the molecular mechanisms of ligand-induced receptor activation. Although the precise relationship between Neu1 sialidase and the activation of TLR, Trk receptors has yet to be fully elucidated, it would represent a new or pioneering approach to cell regulation pathways.
Cellular Biology, Issue 43, Neu1 sialidase, TOLL-like receptors, macrophages, sialidase substrate, fluorescence microscopy, cell signaling, receptor activation
2142
Play Button
Use of a Hanging-weight System for Isolated Renal Artery Occlusion
Authors: Almut Grenz, Julee H. Hong, Alexander Badulak, Douglas Ridyard, Timothy Luebbert, Jae-Hwan Kim, Holger K. Eltzschig.
Institutions: University of Colorado, University of Colorado, Korea University College of Medicine.
In hospitalized patients, over 50% of cases of acute kidney injury (AKI) are caused by renal ischemia 1-3. A recent study of hospitalized patients revealed that only a mild increase in serum creatinine levels (0.3 to 0.4 mg/dl) is associated with a 70% greater risk of death than in persons without any increase 1. Along these lines, surgical procedures requiring cross-clamping of the aorta and renal vessels are associated with a renal failure rates of up to 30% 4. Similarly, AKI after cardiac surgery occurs in over 10% of patients under normal circumstances and is associated with dramatic increases in mortality. AKI are also common complications after liver transplantation. At least 8-17% of patients end up requiring renal replacement therapy 5. Moreover, delayed graft function due to tubule cell injury during kidney transplantation is frequently related to ischemia-associated AKI 6. Moreover, AKI occurs in approximately 20% of patients suffering from sepsis 6.The occurrence of AKI is associated with dramatic increases of morbidity and mortality 1. Therapeutic approaches are very limited and the majority of interventional trials in AKI have failed in humans. Therefore, additional therapeutic modalities to prevent renal injury from ischemia are urgently needed 3, 7-9. To elucidate mechanisms of renal injury due to ischemia and possible therapeutic strategies murine models are intensively required 7-13. Mouse models provide the possibility of utilizing different genetic models including gene-targeted mice and tissue specific gene-targeted mice (cre-flox system). However, murine renal ischemia is technically challenging and experimental details significantly influence results. We performed a systematic evaluation of a novel model for isolated renal artery occlusion in mice, which specifically avoids the use of clamping or suturing the renal pedicle 14. This model requires a nephrectomy of the right kidney since ischemia can be only performed in one kidney due to the experimental setting. In fact, by using a hanging-weight system, the renal artery is only instrumented once throughout the surgical procedure. In addition, no venous or urethral obstruction occurs with this technique. We could demonstrate time-dose-dependent and highly reproducible renal injury with ischemia by measuring serum creatinine. Moreover, when comparing this new model with conventional clamping of the whole pedicle, renal protection by ischemic preconditioning is more profound and more reliable. Therefore his new technique might be useful for other researchers who are working in the field of acute kidney injury.
Medicine, Issue 53, targeted gene deletion, murine model, acute renal failure, ischemia, reperfusion, video demonstration
2549
Play Button
Experimental Generation of Carcinoma-Associated Fibroblasts (CAFs) from Human Mammary Fibroblasts
Authors: Urszula M. Polanska, Ahmet Acar, Akira Orimo.
Institutions: University of Manchester, Juntendo University.
Carcinomas are complex tissues comprised of neoplastic cells and a non-cancerous compartment referred to as the 'stroma'. The stroma consists of extracellular matrix (ECM) and a variety of mesenchymal cells, including fibroblasts, myofibroblasts, endothelial cells, pericytes and leukocytes 1-3. The tumour-associated stroma is responsive to substantial paracrine signals released by neighbouring carcinoma cells. During the disease process, the stroma often becomes populated by carcinoma-associated fibroblasts (CAFs) including large numbers of myofibroblasts. These cells have previously been extracted from many different types of human carcinomas for their in vitro culture. A subpopulation of CAFs is distinguishable through their up-regulation of α-smooth muscle actin (α-SMA) expression4,5. These cells are a hallmark of 'activated fibroblasts' that share similar properties with myofibroblasts commonly observed in injured and fibrotic tissues 6. The presence of this myofibroblastic CAF subset is highly related to high-grade malignancies and associated with poor prognoses in patients. Many laboratories, including our own, have shown that CAFs, when injected with carcinoma cells into immunodeficient mice, are capable of substantially promoting tumourigenesis 7-10. CAFs prepared from carcinoma patients, however, frequently undergo senescence during propagation in culture limiting the extensiveness of their use throughout ongoing experimentation. To overcome this difficulty, we developed a novel technique to experimentally generate immortalised human mammary CAF cell lines (exp-CAFs) from human mammary fibroblasts, using a coimplantation breast tumour xenograft model. In order to generate exp-CAFs, parental human mammary fibroblasts, obtained from the reduction mammoplasty tissue, were first immortalised with hTERT, the catalytic subunit of the telomerase holoenzyme, and engineered to express GFP and a puromycin resistance gene. These cells were coimplanted with MCF-7 human breast carcinoma cells expressing an activated ras oncogene (MCF-7-ras cells) into a mouse xenograft. After a period of incubation in vivo, the initially injected human mammary fibroblasts were extracted from the tumour xenografts on the basis of their puromycin resistance 11. We observed that the resident human mammary fibroblasts have differentiated, adopting a myofibroblastic phenotype and acquired tumour-promoting properties during the course of tumour progression. Importantly, these cells, defined as exp-CAFs, closely mimic the tumour-promoting myofibroblastic phenotype of CAFs isolated from breast carcinomas dissected from patients. Our tumour xenograft-derived exp-CAFs therefore provide an effective model to study the biology of CAFs in human breast carcinomas. The described protocol may also be extended for generating and characterising various CAF populations derived from other types of human carcinomas.
Medicine, Issue 56, cancer, stromal myofibroblasts, experimentally generated carcinoma-associated fibroblasts (exp-CAFs), fibroblast, human mammary carcinomas, tumour xenografts
3201
Play Button
Ischemia-reperfusion Model of Acute Kidney Injury and Post Injury Fibrosis in Mice
Authors: Nataliya I. Skrypnyk, Raymond C. Harris, Mark P. de Caestecker.
Institutions: Vanderbilt University Medical Center.
Ischemia-reperfusion induced acute kidney injury (IR-AKI) is widely used as a model of AKI in mice, but results are often quite variable with high, often unreported mortality rates that may confound analyses. Bilateral renal pedicle clamping is commonly used to induce IR-AKI, but differences between effective clamp pressures and/or renal responses to ischemia between kidneys often lead to more variable results. In addition, shorter clamp times are known to induce more variable tubular injury, and while mice undergoing bilateral injury with longer clamp times develop more consistent tubular injury, they often die within the first 3 days after injury due to severe renal insufficiency. To improve post-injury survival and obtain more consistent and predictable results, we have developed two models of unilateral ischemia-reperfusion injury followed by contralateral nephrectomy. Both surgeries are performed using a dorsal approach, reducing surgical stress resulting from ventral laparotomy, commonly used for mouse IR-AKI surgeries. For induction of moderate injury BALB/c mice undergo unilateral clamping of the renal pedicle for 26 min and also undergo simultaneous contralateral nephrectomy. Using this approach, 50-60% of mice develop moderate AKI 24 hr after injury but 90-100% of mice survive. To induce more severe AKI, BALB/c mice undergo renal pedicle clamping for 30 min followed by contralateral nephrectomy 8 days after injury. This allows functional assessment of renal recovery after injury with 90-100% survival. Early post-injury tubular damage as well as post injury fibrosis are highly consistent using this model.
Medicine, Issue 78, Immunology, Infection, Biomedical Engineering, Anatomy, Physiology, Kidney, Mice, Inbred Strains, Renal Insufficiency, Acute Kidney Injury, Ischemia-reperfusion, acute kidney injury, post injury fibrosis, mice, ischemia, reperfusion, fibrosis, animal model
50495
Play Button
Renal Ischaemia Reperfusion Injury: A Mouse Model of Injury and Regeneration
Authors: Emily E. Hesketh, Alicja Czopek, Michael Clay, Gary Borthwick, David Ferenbach, David Kluth, Jeremy Hughes.
Institutions: University of Edinburgh.
Renal ischaemia reperfusion injury (IRI) is a common cause of acute kidney injury (AKI) in patients and occlusion of renal blood flow is unavoidable during renal transplantation. Experimental models that accurately and reproducibly recapitulate renal IRI are crucial in dissecting the pathophysiology of AKI and the development of novel therapeutic agents. Presented here is a mouse model of renal IRI that results in reproducible AKI. This is achieved by a midline laparotomy approach for the surgery with one incision allowing both a right nephrectomy that provides control tissue and clamping of the left renal pedicle to induce ischaemia of the left kidney. By careful monitoring of the clamp position and body temperature during the period of ischaemia this model achieves reproducible functional and structural injury. Mice sacrificed 24 hr following surgery demonstrate loss of renal function with elevation of the serum or plasma creatinine level as well as structural kidney damage with acute tubular necrosis evident. Renal function improves and the acute tissue injury resolves during the course of 7 days following renal IRI such that this model may be used to study renal regeneration. This model of renal IRI has been utilized to study the molecular and cellular pathophysiology of AKI as well as analysis of the subsequent renal regeneration.
Medicine, Issue 88, Murine, Acute Kidney Injury, Ischaemia, Reperfusion, Nephrectomy, Regeneration, Laparotomy
51816
Play Button
Flat Mount Preparation for Observation and Analysis of Zebrafish Embryo Specimens Stained by Whole Mount In situ Hybridization
Authors: Christina N. Cheng, Yue Li, Amanda N. Marra, Valerie Verdun, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish embryo is now commonly used for basic and biomedical research to investigate the genetic control of developmental processes and to model congenital abnormalities. During the first day of life, the zebrafish embryo progresses through many developmental stages including fertilization, cleavage, gastrulation, segmentation, and the organogenesis of structures such as the kidney, heart, and central nervous system. The anatomy of a young zebrafish embryo presents several challenges for the visualization and analysis of the tissues involved in many of these events because the embryo develops in association with a round yolk mass. Thus, for accurate analysis and imaging of experimental phenotypes in fixed embryonic specimens between the tailbud and 20 somite stage (10 and 19 hours post fertilization (hpf), respectively), such as those stained using whole mount in situ hybridization (WISH), it is often desirable to remove the embryo from the yolk ball and to position it flat on a glass slide. However, performing a flat mount procedure can be tedious. Therefore, successful and efficient flat mount preparation is greatly facilitated through the visual demonstration of the dissection technique, and also helped by using reagents that assist in optimal tissue handling. Here, we provide our WISH protocol for one or two-color detection of gene expression in the zebrafish embryo, and demonstrate how the flat mounting procedure can be performed on this example of a stained fixed specimen. This flat mounting protocol is broadly applicable to the study of many embryonic structures that emerge during early zebrafish development, and can be implemented in conjunction with other staining methods performed on fixed embryo samples.
Developmental Biology, Issue 89, animals, vertebrates, fishes, zebrafish, growth and development, morphogenesis, embryonic and fetal development, organogenesis, natural science disciplines, embryo, whole mount in situ hybridization, flat mount, deyolking, imaging
51604
Play Button
Mouse Kidney Transplantation: Models of Allograft Rejection
Authors: George H. Tse, Emily E. Hesketh, Michael Clay, Gary Borthwick, Jeremy Hughes, Lorna P. Marson.
Institutions: The University of Edinburgh.
Rejection of the transplanted kidney in humans is still a major cause of morbidity and mortality. The mouse model of renal transplantation closely replicates both the technical and pathological processes that occur in human renal transplantation. Although mouse models of allogeneic rejection in organs other than the kidney exist, and are more technically feasible, there is evidence that different organs elicit disparate rejection modes and dynamics, for instance the time course of rejection in cardiac and renal allograft differs significantly in certain strain combinations. This model is an attractive tool for many reasons despite its technical challenges. As inbred mouse strain haplotypes are well characterized it is possible to choose donor and recipient combinations to model acute allograft rejection by transplanting across MHC class I and II loci. Conversely by transplanting between strains with similar haplotypes a chronic process can be elicited were the allograft kidney develops interstitial fibrosis and tubular atrophy. We have modified the surgical technique to reduce operating time and improve ease of surgery, however a learning curve still needs to be overcome in order to faithfully replicate the model. This study will provide key points in the surgical procedure and aid the process of establishing this technique.
Medicine, Issue 92, transplantation, mouse model, surgery, kidney, immunology, rejection
52163
Play Button
Gene-environment Interaction Models to Unmask Susceptibility Mechanisms in Parkinson's Disease
Authors: Vivian P. Chou, Novie Ko, Theodore R. Holman, Amy B. Manning-Boğ.
Institutions: SRI International, University of California-Santa Cruz.
Lipoxygenase (LOX) activity has been implicated in neurodegenerative disorders such as Alzheimer's disease, but its effects in Parkinson's disease (PD) pathogenesis are less understood. Gene-environment interaction models have utility in unmasking the impact of specific cellular pathways in toxicity that may not be observed using a solely genetic or toxicant disease model alone. To evaluate if distinct LOX isozymes selectively contribute to PD-related neurodegeneration, transgenic (i.e. 5-LOX and 12/15-LOX deficient) mice can be challenged with a toxin that mimics cell injury and death in the disorder. Here we describe the use of a neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which produces a nigrostriatal lesion to elucidate the distinct contributions of LOX isozymes to neurodegeneration related to PD. The use of MPTP in mouse, and nonhuman primate, is well-established to recapitulate the nigrostriatal damage in PD. The extent of MPTP-induced lesioning is measured by HPLC analysis of dopamine and its metabolites and semi-quantitative Western blot analysis of striatum for tyrosine hydroxylase (TH), the rate-limiting enzyme for the synthesis of dopamine. To assess inflammatory markers, which may demonstrate LOX isozyme-selective sensitivity, glial fibrillary acidic protein (GFAP) and Iba-1 immunohistochemistry are performed on brain sections containing substantia nigra, and GFAP Western blot analysis is performed on striatal homogenates. This experimental approach can provide novel insights into gene-environment interactions underlying nigrostriatal degeneration and PD.
Medicine, Issue 83, MPTP, dopamine, Iba1, TH, GFAP, lipoxygenase, transgenic, gene-environment interactions, mouse, Parkinson's disease, neurodegeneration, neuroinflammation
50960
Play Button
Laser-Induced Chronic Ocular Hypertension Model on SD Rats
Authors: Kin Chiu, Raymond Chang, Kwok-Fai So.
Institutions: The University of Hong Kong - HKU.
Glaucoma is one of the major causes of blindness in the world. Elevated intraocular pressure is a major risk factor. Laser photocoagulation induced ocular hypertension is one of the well established animal models. This video demonstrates how to induce ocular hypertension by Argon laser photocoagulation in rat.
Neuroscience, Issue 10, glaucoma, ocular hypertension, rat
549
Play Button
Spatio-Temporal Manipulation of Small GTPase Activity at Subcellular Level and on Timescale of Seconds in Living Cells
Authors: Robert DeRose, Christopher Pohlmeyer, Nobuhiro Umeda, Tasuku Ueno, Tetsuo Nagano, Scot Kuo, Takanari Inoue.
Institutions: Johns Hopkins University, University of Tokyo, Johns Hopkins University.
Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events1, 2. Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time3. In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac4, Cdc424, RhoA4 and Ras5, in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells6. Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level6.
Bioengineering, Issue 61, Small GTPase, rapamycin, caged compound, spatiotemporal control, heterodimerization, FKBP, FRB, light irradiation
3794
Play Button
Mouse Fetal Liver Culture System to Dissect Target Gene Functions at the Early and Late Stages of Terminal Erythropoiesis
Authors: Baobing Zhao, Yang Mei, Jing Yang, Peng Ji.
Institutions: Northwestern University.
Erythropoiesis involves a dynamic process that begins with committed erythroid burst forming units (BFU-Es) followed by rapidly dividing erythroid colony forming units (CFU-Es). After CFU-Es, cells are morphologically recognizable and generally termed terminal erythroblasts. One of the challenges for the study of terminal erythropoiesis is the lack of experimental approaches to dissect gene functions in a chronological manner. In this protocol, we describe a unique strategy to determine gene functions in the early and late stages of terminal erythropoiesis. In this system, mouse fetal liver TER119 (mature erythroid cell marker) negative erythroblasts were purified and transduced with exogenous expression of cDNAs or small hairpin RNAs (shRNAs) for the genes of interest. The cells were subsequently cultured in medium containing growth factors other than erythropoietin (Epo) to maintain their progenitor stage for 12 hr while allowing the exogenous cDNAs or shRNAs to express. The cells were changed to Epo medium after 12 hr to induce cell differentiation and proliferation while the exogenous genetic materials were already expressed. This protocol facilitates analysis of gene functions in the early stage of terminal erythropoiesis. To study late stage terminal erythropoiesis, cells were immediately cultured in Epo medium after transduction. In this way, the cells were already differentiated to the late stage of terminal erythropoiesis when the transduced genetic materials were expressed. We recommend a general application of this strategy that would help understand detailed gene functions in different stages of terminal erythropoiesis.
Immunology, Issue 91, erythropoiesis, cell culture, erythroblast, differentiation, erythropoietin, fetal liver, enucleation
51894
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Mechanical Stimulation-induced Calcium Wave Propagation in Cell Monolayers: The Example of Bovine Corneal Endothelial Cells
Authors: Catheleyne D'hondt, Bernard Himpens, Geert Bultynck.
Institutions: KU Leuven.
Intercellular communication is essential for the coordination of physiological processes between cells in a variety of organs and tissues, including the brain, liver, retina, cochlea and vasculature. In experimental settings, intercellular Ca2+-waves can be elicited by applying a mechanical stimulus to a single cell. This leads to the release of the intracellular signaling molecules IP3 and Ca2+ that initiate the propagation of the Ca2+-wave concentrically from the mechanically stimulated cell to the neighboring cells. The main molecular pathways that control intercellular Ca2+-wave propagation are provided by gap junction channels through the direct transfer of IP3 and by hemichannels through the release of ATP. Identification and characterization of the properties and regulation of different connexin and pannexin isoforms as gap junction channels and hemichannels are allowed by the quantification of the spread of the intercellular Ca2+-wave, siRNA, and the use of inhibitors of gap junction channels and hemichannels. Here, we describe a method to measure intercellular Ca2+-wave in monolayers of primary corneal endothelial cells loaded with Fluo4-AM in response to a controlled and localized mechanical stimulus provoked by an acute, short-lasting deformation of the cell as a result of touching the cell membrane with a micromanipulator-controlled glass micropipette with a tip diameter of less than 1 μm. We also describe the isolation of primary bovine corneal endothelial cells and its use as model system to assess Cx43-hemichannel activity as the driven force for intercellular Ca2+-waves through the release of ATP. Finally, we discuss the use, advantages, limitations and alternatives of this method in the context of gap junction channel and hemichannel research.
Cellular Biology, Issue 77, Molecular Biology, Medicine, Biomedical Engineering, Biophysics, Immunology, Ophthalmology, Gap Junctions, Connexins, Connexin 43, Calcium Signaling, Ca2+, Cell Communication, Paracrine Communication, Intercellular communication, calcium wave propagation, gap junctions, hemichannels, endothelial cells, cell signaling, cell, isolation, cell culture
50443
Play Button
Identification of a Murine Erythroblast Subpopulation Enriched in Enucleating Events by Multi-spectral Imaging Flow Cytometry
Authors: Diamantis G. Konstantinidis, Suvarnamala Pushkaran, Katie Giger, Stefanos Manganaris, Yi Zheng, Theodosia A. Kalfa.
Institutions: University of Cincinnati College of Medicine, IBM.
Erythropoiesis in mammals concludes with the dramatic process of enucleation that results in reticulocyte formation. The mechanism of enucleation has not yet been fully elucidated. A common problem encountered when studying the localization of key proteins and structures within enucleating erythroblasts by microscopy is the difficulty to observe a sufficient number of cells undergoing enucleation. We have developed a novel analysis protocol using multiparameter high-speed cell imaging in flow (Multi-Spectral Imaging Flow Cytometry), a method that combines immunofluorescent microscopy with flow cytometry, in order to identify efficiently a significant number of enucleating events, that allows to obtain measurements and perform statistical analysis. We first describe here two in vitro erythropoiesis culture methods used in order to synchronize murine erythroblasts and increase the probability of capturing enucleation at the time of evaluation. Then, we describe in detail the staining of erythroblasts after fixation and permeabilization in order to study the localization of intracellular proteins or lipid rafts during enucleation by multi-spectral imaging flow cytometry. Along with size and DNA/Ter119 staining which are used to identify the orthochromatic erythroblasts, we utilize the parameters “aspect ratio” of a cell in the bright-field channel that aids in the recognition of elongated cells and “delta centroid XY Ter119/Draq5” that allows the identification of cellular events in which the center of Ter119 staining (nascent reticulocyte) is far apart from the center of Draq5 staining (nucleus undergoing extrusion), thus indicating a cell about to enucleate. The subset of the orthochromatic erythroblast population with high delta centroid and low aspect ratio is highly enriched in enucleating cells.
Basic Protocol, Issue 88, Erythropoiesis, Erythroblast enucleation, Reticulocyte, Multi-Spectral Imaging Flow Cytometry, FACS, Multiparameter high-speed cell imaging in flow, Aspect ratio, Delta centroid XY
50990
Play Button
Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis
Authors: Kevin G. Chen, Rebecca S. Hamilton, Pamela G. Robey, Barbara S. Mallon.
Institutions: National Institutes of Health, National Institutes of Health.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
Stem Cell Biology, Issue 89, Pluripotent stem cells, human embryonic stem cells, induced pluripotent stem cells, cell culture, non-colony type monolayer, single cell, plating efficiency, Rho-associated kinase, Y-27632, transfection, transduction
51519
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
A Manual Small Molecule Screen Approaching High-throughput Using Zebrafish Embryos
Authors: Shahram Jevin Poureetezadi, Eric K. Donahue, Rebecca A. Wingert.
Institutions: University of Notre Dame.
Zebrafish have become a widely used model organism to investigate the mechanisms that underlie developmental biology and to study human disease pathology due to their considerable degree of genetic conservation with humans. Chemical genetics entails testing the effect that small molecules have on a biological process and is becoming a popular translational research method to identify therapeutic compounds. Zebrafish are specifically appealing to use for chemical genetics because of their ability to produce large clutches of transparent embryos, which are externally fertilized. Furthermore, zebrafish embryos can be easily drug treated by the simple addition of a compound to the embryo media. Using whole-mount in situ hybridization (WISH), mRNA expression can be clearly visualized within zebrafish embryos. Together, using chemical genetics and WISH, the zebrafish becomes a potent whole organism context in which to determine the cellular and physiological effects of small molecules. Innovative advances have been made in technologies that utilize machine-based screening procedures, however for many labs such options are not accessible or remain cost-prohibitive. The protocol described here explains how to execute a manual high-throughput chemical genetic screen that requires basic resources and can be accomplished by a single individual or small team in an efficient period of time. Thus, this protocol provides a feasible strategy that can be implemented by research groups to perform chemical genetics in zebrafish, which can be useful for gaining fundamental insights into developmental processes, disease mechanisms, and to identify novel compounds and signaling pathways that have medically relevant applications.
Developmental Biology, Issue 93, zebrafish, chemical genetics, chemical screen, in vivo small molecule screen, drug discovery, whole mount in situ hybridization (WISH), high-throughput screening (HTS), high-content screening (HCS)
52063
Play Button
RhoC GTPase Activation Assay
Authors: Michelle Lucey, Heather Unger, Kenneth L. van Golen.
Institutions: University of Delaware.
RhoC GTPase has 91% homology to RhoA GTPase. Because of its prevalence in cells, many reagents and techniques for RhoA GTPase have been developed. However, RhoC GTPase is expressed in metastatic cancer cells at relatively low levels. Therefore, few RhoC-specific reagents have been developed. We have adapted a Rho activation assay to detect RhoC GTPase. This technique utilizes a GST-Rho binding domain fusion protein to pull out active RhoC GTPase. In addition, we can harvest total protein at the beginning of the assay to determine levels of total (GTP and GDP bound) RhoC GTPase. This allows for the determination of active versus total RhoC GTPase in the cell. Several commercial versions of this procedure have been developed however, the commercial kits are optimized for RhoA GTPase and typically do not work well for RhoC GTPase. Parts of the assay have been modified as well as development of a RhoC-specific antibody.
neuroscience, Issue 42, brain, mouse, transplantation, labeling
2083
Play Button
Isolation of Pulmonary Artery Smooth Muscle Cells from Neonatal Mice
Authors: Keng Jin Lee, Lyubov Czech, Gregory B. Waypa, Kathryn N. Farrow.
Institutions: Northwestern University Feinberg School of Medicine.
Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al.26 that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.
Basic Protocol, Issue 80, Muscle, Smooth, Vascular, Cardiovascular Abnormalities, Hypertension, Pulmonary, vascular smooth muscle, pulmonary hypertension, development, phosphodiesterases, cGMP, immunostaining
50889
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.