JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Fluid-structure interaction-based biomechanical perception model for tactile sensing.
PLoS ONE
PUBLISHED: 01-01-2013
The reproduced tactile sensation of haptic interfaces usually selectively reproduces a certain object attribute, such as the objects material reflected by vibration and its surface shape by a pneumatic nozzle array. Tactile biomechanics investigates the relation between responses to an external load stimulus and tactile perception and guides the design of haptic interface devices via a tactile mechanism. Focusing on the pneumatic haptic interface, we established a fluid-structure interaction-based biomechanical model of responses to static and dynamic loads and conducted numerical simulation and experiments. This model provides a theoretical basis for designing haptic interfaces and reproducing tactile textures.
ABSTRACT
The rubber hand illusion (RHI) is a popular experimental paradigm. Participants view touch on an artificial rubber hand while the participants' own hidden hand is touched. If the viewed and felt touches are given at the same time then this is sufficient to induce the compelling experience that the rubber hand is one's own hand. The RHI can be used to investigate exactly how the brain constructs distinct body representations for one's own body. Such representations are crucial for successful interactions with the external world. To obtain a subjective measure of the RHI, researchers typically ask participants to rate statements such as "I felt as if the rubber hand were my hand". Here we demonstrate how the crossmodal congruency task can be used to obtain an objective behavioral measure within this paradigm. The variant of the crossmodal congruency task we employ involves the presentation of tactile targets and visual distractors. Targets and distractors are spatially congruent (i.e. same finger) on some trials and incongruent (i.e. different finger) on others. The difference in performance between incongruent and congruent trials - the crossmodal congruency effect (CCE) - indexes multisensory interactions. Importantly, the CCE is modulated both by viewing a hand as well as the synchrony of viewed and felt touch which are both crucial factors for the RHI. The use of the crossmodal congruency task within the RHI paradigm has several advantages. It is a simple behavioral measure which can be repeated many times and which can be obtained during the illusion while participants view the artificial hand. Furthermore, this measure is not susceptible to observer and experimenter biases. The combination of the RHI paradigm with the crossmodal congruency task allows in particular for the investigation of multisensory processes which are critical for modulations of body representations as in the RHI.
16 Related JoVE Articles!
Play Button
Irrelevant Stimuli and Action Control: Analyzing the Influence of Ignored Stimuli via the Distractor-Response Binding Paradigm
Authors: Birte Moeller, Hartmut Schächinger, Christian Frings.
Institutions: Trier University, Trier University.
Selection tasks in which simple stimuli (e.g. letters) are presented and a target stimulus has to be selected against one or more distractor stimuli are frequently used in the research on human action control. One important question in these settings is how distractor stimuli, competing with the target stimulus for a response, influence actions. The distractor-response binding paradigm can be used to investigate this influence. It is particular useful to separately analyze response retrieval and distractor inhibition effects. Computer-based experiments are used to collect the data (reaction times and error rates). In a number of sequentially presented pairs of stimulus arrays (prime-probe design), participants respond to targets while ignoring distractor stimuli. Importantly, the factors response relation in the arrays of each pair (repetition vs. change) and distractor relation (repetition vs. change) are varied orthogonally. The repetition of the same distractor then has a different effect depending on response relation (repetition vs. change) between arrays. This result pattern can be explained by response retrieval due to distractor repetition. In addition, distractor inhibition effects are indicated by a general advantage due to distractor repetition. The described paradigm has proven useful to determine relevant parameters for response retrieval effects on human action.
Behavior, Issue 87, stimulus-response binding, distractor-response binding, response retrieval, distractor inhibition, event file, action control, selection task
51571
Play Button
Tactile Conditioning And Movement Analysis Of Antennal Sampling Strategies In Honey Bees (Apis mellifera L.)
Authors: Samir Mujagić, Simon Michael Würth, Sven Hellbach, Volker Dürr.
Institutions: Bielefeld University.
Honey bees (Apis mellifera L.) are eusocial insects and well known for their complex division of labor and associative learning capability1, 2. The worker bees spend the first half of their life inside the dark hive, where they are nursing the larvae or building the regular hexagonal combs for food (e.g. pollen or nectar) and brood3. The antennae are extraordinary multisensory feelers and play a pivotal role in various tactile mediated tasks4, including hive building5 and pattern recognition6. Later in life, each single bee leaves the hive to forage for food. Then a bee has to learn to discriminate profitable food sources, memorize their location, and communicate it to its nest mates7. Bees use different floral signals like colors or odors7, 8, but also tactile cues from the petal surface9 to form multisensory memories of the food source. Under laboratory conditions, bees can be trained in an appetitive learning paradigm to discriminate tactile object features, such as edges or grooves with their antennae10, 11, 12, 13. This learning paradigm is closely related to the classical olfactory conditioning of the proboscis extension response (PER) in harnessed bees14. The advantage of the tactile learning paradigm in the laboratory is the possibility of combining behavioral experiments on learning with various physiological measurements, including the analysis of the antennal movement pattern.
Neuroscience, Issue 70, Physiology, Anatomy, Entomology, Behavior, Sensilla, Bees, behavioral sciences, Sense Organs, Honey bee, Apis mellifera L., Insect antenna, Tactile sampling, conditioning, Proboscis extension response, Motion capture
50179
Play Button
Quantitative Assessment of Cortical Auditory-tactile Processing in Children with Disabilities
Authors: Nathalie L. Maitre, Alexandra P. Key.
Institutions: Vanderbilt University, Vanderbilt University, Vanderbilt University.
Objective and easy measurement of sensory processing is extremely difficult in nonverbal or vulnerable pediatric patients. We developed a new methodology to quantitatively assess children's cortical processing of light touch, speech sounds and the multisensory processing of the 2 stimuli, without requiring active subject participation or causing children discomfort. To accomplish this we developed a dual channel, time and strength calibrated air puff stimulator that allows both tactile stimulation and sham control. We combined this with the use of event-related potential methodology to allow for high temporal resolution of signals from the primary and secondary somatosensory cortices as well as higher order processing. This methodology also allowed us to measure a multisensory response to auditory-tactile stimulation.
Behavior, Issue 83, somatosensory, event related potential, auditory-tactile, multisensory, cortical response, child
51054
Play Button
Fabrication of Carbon Nanotube High-Frequency Nanoelectronic Biosensor for Sensing in High Ionic Strength Solutions
Authors: Girish S. Kulkarni, Zhaohui Zhong.
Institutions: University of Michigan - Ann Arbor.
The unique electronic properties and high surface-to-volume ratios of single-walled carbon nanotubes (SWNT) and semiconductor nanowires (NW) 1-4 make them good candidates for high sensitivity biosensors. When a charged molecule binds to such a sensor surface, it alters the carrier density5 in the sensor, resulting in changes in its DC conductance. However, in an ionic solution a charged surface also attracts counter-ions from the solution, forming an electrical double layer (EDL). This EDL effectively screens off the charge, and in physiologically relevant conditions ~100 millimolar (mM), the characteristic charge screening length (Debye length) is less than a nanometer (nm). Thus, in high ionic strength solutions, charge based (DC) detection is fundamentally impeded6-8. We overcome charge screening effects by detecting molecular dipoles rather than charges at high frequency, by operating carbon nanotube field effect transistors as high frequency mixers9-11. At high frequencies, the AC drive force can no longer overcome the solution drag and the ions in solution do not have sufficient time to form the EDL. Further, frequency mixing technique allows us to operate at frequencies high enough to overcome ionic screening, and yet detect the sensing signals at lower frequencies11-12. Also, the high transconductance of SWNT transistors provides an internal gain for the sensing signal, which obviates the need for external signal amplifier. Here, we describe the protocol to (a) fabricate SWNT transistors, (b) functionalize biomolecules to the nanotube13, (c) design and stamp a poly-dimethylsiloxane (PDMS) micro-fluidic chamber14 onto the device, and (d) carry out high frequency sensing in different ionic strength solutions11.
Bioengineering, Issue 77, Chemical Engineering, Biochemistry, Biophysics, Electrical Engineering, Nanotechnology, Biosensing Techniques, carbon nanotubes (synthesis and properties), bioelectronic instruments (theory and techniques), Carbon nanotube, biosensor, frequency mixing, biotin, streptavidin, poly-dimethylsiloxane
50438
Play Button
In situ Compressive Loading and Correlative Noninvasive Imaging of the Bone-periodontal Ligament-tooth Fibrous Joint
Authors: Andrew T. Jang, Jeremy D. Lin, Youngho Seo, Sergey Etchin, Arno Merkle, Kevin Fahey, Sunita P. Ho.
Institutions: University of California San Francisco, University of California San Francisco, Xradia Inc..
This study demonstrates a novel biomechanics testing protocol. The advantage of this protocol includes the use of an in situ loading device coupled to a high resolution X-ray microscope, thus enabling visualization of internal structural elements under simulated physiological loads and wet conditions. Experimental specimens will include intact bone-periodontal ligament (PDL)-tooth fibrous joints. Results will illustrate three important features of the protocol as they can be applied to organ level biomechanics: 1) reactionary force vs. displacement: tooth displacement within the alveolar socket and its reactionary response to loading, 2) three-dimensional (3D) spatial configuration and morphometrics: geometric relationship of the tooth with the alveolar socket, and 3) changes in readouts 1 and 2 due to a change in loading axis, i.e. from concentric to eccentric loads. Efficacy of the proposed protocol will be evaluated by coupling mechanical testing readouts to 3D morphometrics and overall biomechanics of the joint. In addition, this technique will emphasize on the need to equilibrate experimental conditions, specifically reactionary loads prior to acquiring tomograms of fibrous joints. It should be noted that the proposed protocol is limited to testing specimens under ex vivo conditions, and that use of contrast agents to visualize soft tissue mechanical response could lead to erroneous conclusions about tissue and organ-level biomechanics.
Bioengineering, Issue 85, biomechanics, bone-periodontal ligament-tooth complex, concentric loads, eccentric loads, contrast agent
51147
Play Button
Training Synesthetic Letter-color Associations by Reading in Color
Authors: Olympia Colizoli, Jaap M. J. Murre, Romke Rouw.
Institutions: University of Amsterdam.
Synesthesia is a rare condition in which a stimulus from one modality automatically and consistently triggers unusual sensations in the same and/or other modalities. A relatively common and well-studied type is grapheme-color synesthesia, defined as the consistent experience of color when viewing, hearing and thinking about letters, words and numbers. We describe our method for investigating to what extent synesthetic associations between letters and colors can be learned by reading in color in nonsynesthetes. Reading in color is a special method for training associations in the sense that the associations are learned implicitly while the reader reads text as he or she normally would and it does not require explicit computer-directed training methods. In this protocol, participants are given specially prepared books to read in which four high-frequency letters are paired with four high-frequency colors. Participants receive unique sets of letter-color pairs based on their pre-existing preferences for colored letters. A modified Stroop task is administered before and after reading in order to test for learned letter-color associations and changes in brain activation. In addition to objective testing, a reading experience questionnaire is administered that is designed to probe for differences in subjective experience. A subset of questions may predict how well an individual learned the associations from reading in color. Importantly, we are not claiming that this method will cause each individual to develop grapheme-color synesthesia, only that it is possible for certain individuals to form letter-color associations by reading in color and these associations are similar in some aspects to those seen in developmental grapheme-color synesthetes. The method is quite flexible and can be used to investigate different aspects and outcomes of training synesthetic associations, including learning-induced changes in brain function and structure.
Behavior, Issue 84, synesthesia, training, learning, reading, vision, memory, cognition
50893
Play Button
Haptic/Graphic Rehabilitation: Integrating a Robot into a Virtual Environment Library and Applying it to Stroke Therapy
Authors: Ian Sharp, James Patton, Molly Listenberger, Emily Case.
Institutions: University of Illinois at Chicago and Rehabilitation Institute of Chicago, Rehabilitation Institute of Chicago.
Recent research that tests interactive devices for prolonged therapy practice has revealed new prospects for robotics combined with graphical and other forms of biofeedback. Previous human-robot interactive systems have required different software commands to be implemented for each robot leading to unnecessary developmental overhead time each time a new system becomes available. For example, when a haptic/graphic virtual reality environment has been coded for one specific robot to provide haptic feedback, that specific robot would not be able to be traded for another robot without recoding the program. However, recent efforts in the open source community have proposed a wrapper class approach that can elicit nearly identical responses regardless of the robot used. The result can lead researchers across the globe to perform similar experiments using shared code. Therefore modular "switching out"of one robot for another would not affect development time. In this paper, we outline the successful creation and implementation of a wrapper class for one robot into the open-source H3DAPI, which integrates the software commands most commonly used by all robots.
Bioengineering, Issue 54, robotics, haptics, virtual reality, wrapper class, rehabilitation robotics, neural engineering, H3DAPI, C++
3007
Play Button
Acute and Chronic Tactile Sensory Testing after Spinal Cord Injury in Rats
Authors: Megan Ryan Detloff, Lesley C. Fisher, Rochelle J. Deibert, D. Michele Basso.
Institutions: School of Allied Medical Professions, The Ohio State University, Drexel University College of Medicine.
Spinal cord injury (SCI) impairs sensory systems causing allodynia1-8. To identify cellular and molecular causes of allodynia, sensitive and valid sensory testing in rat SCI models is needed. However, until recently, no single testing approach had been validated for SCI so that standardized methods have not been implemented across labs. Additionally, available testing methods could not be implemented acutely or when severe motor impairments existed, preventing studies of the development of SCI-induced allodynia3. Here we present two validated sensory testing methods using von Frey Hair (VFH) monofilaments which quantify changes in tactile sensory thresholds after SCI4-5. One test is the well-established Up-Down test which demonstrates high sensitivity and specificity across different SCI severities when tested chronically5. The other test is a newly-developed dorsal VFH test that can be applied acutely after SCI when allodynia develops, prior to motor recovery4-5. Each VFH monofilament applies a calibrated force when touched to the skin of the hind paw until it bends. In the up-down method, alternating VFHs of higher or lower forces are used on the plantar L5 dermatome to delineate flexor withdrawal thresholds. Successively higher forces are applied until withdrawal occurs then lower force VFHs are used until withdrawal ceases. The tactile threshold reflects the force required to elicit withdrawal in 50% of the stimuli. For the new test, each VFH is applied to the dorsal L5 dermatome of the paw while the rat is supported by the examiner. The VFH stimulation occurs in ascending order of force until at least 2 of 3 applications at a given force produces paw withdrawal. Tactile sensory threshold is the lowest force to elicit withdrawal 66% of the time. Acclimation, testing and scoring procedures are described. Aberrant trials that require a retest and typical trials are defined. Animal use was approved by Ohio State University Animal Care and Use Committee.
Medicine, Issue 62, Rat, neuropathic pain, allodynia, tactile sensation, spinal cord injury, SCI, von Frey monofilaments
3247
Play Button
Methods to Explore the Influence of Top-down Visual Processes on Motor Behavior
Authors: Jillian Nguyen, Thomas V. Papathomas, Jay H. Ravaliya, Elizabeth B. Torres.
Institutions: Rutgers University, Rutgers University, Rutgers University, Rutgers University, Rutgers University.
Kinesthetic awareness is important to successfully navigate the environment. When we interact with our daily surroundings, some aspects of movement are deliberately planned, while others spontaneously occur below conscious awareness. The deliberate component of this dichotomy has been studied extensively in several contexts, while the spontaneous component remains largely under-explored. Moreover, how perceptual processes modulate these movement classes is still unclear. In particular, a currently debated issue is whether the visuomotor system is governed by the spatial percept produced by a visual illusion or whether it is not affected by the illusion and is governed instead by the veridical percept. Bistable percepts such as 3D depth inversion illusions (DIIs) provide an excellent context to study such interactions and balance, particularly when used in combination with reach-to-grasp movements. In this study, a methodology is developed that uses a DII to clarify the role of top-down processes on motor action, particularly exploring how reaches toward a target on a DII are affected in both deliberate and spontaneous movement domains.
Behavior, Issue 86, vision for action, vision for perception, motor control, reach, grasp, visuomotor, ventral stream, dorsal stream, illusion, space perception, depth inversion
51422
Play Button
A Procedure to Observe Context-induced Renewal of Pavlovian-conditioned Alcohol-seeking Behavior in Rats
Authors: Jean-Marie Maddux, Franca Lacroix, Nadia Chaudhri.
Institutions: Concordia University.
Environmental contexts in which drugs of abuse are consumed can trigger craving, a subjective Pavlovian-conditioned response that can facilitate drug-seeking behavior and prompt relapse in abstinent drug users. We have developed a procedure to study the behavioral and neural processes that mediate the impact of context on alcohol-seeking behavior in rats. Following acclimation to the taste and pharmacological effects of 15% ethanol in the home cage, male Long-Evans rats receive Pavlovian discrimination training (PDT) in conditioning chambers. In each daily (Mon-Fri) PDT session, 16 trials each of two different 10 sec auditory conditioned stimuli occur. During one stimulus, the CS+, 0.2 ml of 15% ethanol is delivered into a fluid port for oral consumption. The second stimulus, the CS-, is not paired with ethanol. Across sessions, entries into the fluid port during the CS+ increase, whereas entries during the CS- stabilize at a lower level, indicating that a predictive association between the CS+ and ethanol is acquired. During PDT each chamber is equipped with a specific configuration of visual, olfactory and tactile contextual stimuli. Following PDT, extinction training is conducted in the same chamber that is now equipped with a different configuration of contextual stimuli. The CS+ and CS- are presented as before, but ethanol is withheld, which causes a gradual decline in port entries during the CS+. At test, rats are placed back into the PDT context and presented with the CS+ and CS- as before, but without ethanol. This manipulation triggers a robust and selective increase in the number of port entries made during the alcohol predictive CS+, with no change in responding during the CS-. This effect, referred to as context-induced renewal, illustrates the powerful capacity of contexts associated with alcohol consumption to stimulate alcohol-seeking behavior in response to Pavlovian alcohol cues.
Behavior, Issue 91, Behavioral neuroscience, alcoholism, relapse, addiction, Pavlovian conditioning, ethanol, reinstatement, discrimination, conditioned approach
51898
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
4375
Play Button
A Tactile Automated Passive-Finger Stimulator (TAPS)
Authors: Daniel Goldreich, Michael Wong, Ryan M. Peters, Ingrid M. Kanics.
Institutions: Duquesne University, McMaster University.
Although tactile spatial acuity tests are used in both neuroscience research and clinical assessment, few automated devices exist for delivering controlled spatially structured stimuli to the skin. Consequently, investigators often apply tactile stimuli manually. Manual stimulus application is time consuming, requires great care and concentration on the part of the investigator, and leaves many stimulus parameters uncontrolled. We describe here a computer-controlled tactile stimulus system, the Tactile Automated Passive-finger Stimulator (TAPS), that applies spatially structured stimuli to the skin, controlling for onset velocity, contact force, and contact duration. TAPS is a versatile, programmable system, capable of efficiently conducting a variety of psychophysical procedures. We describe the components of TAPS, and show how TAPS is used to administer a two-interval forced-choice tactile grating orientation test. Corresponding Author: Daniel Goldreich
Medicine, Neuroscience, Issue 28, tactile, somatosensory, touch, cutaneous, acuity, psychophysics, Bayesian, grating orientation, sensory neuroscience, spatial discrimination
1374
Play Button
Adaptation of a Haptic Robot in a 3T fMRI
Authors: Joseph Snider, Markus Plank, Larry May, Thomas T. Liu, Howard Poizner.
Institutions: University of California, University of California, University of California.
Functional magnetic resonance imaging (fMRI) provides excellent functional brain imaging via the BOLD signal 1 with advantages including non-ionizing radiation, millimeter spatial accuracy of anatomical and functional data 2, and nearly real-time analyses 3. Haptic robots provide precise measurement and control of position and force of a cursor in a reasonably confined space. Here we combine these two technologies to allow precision experiments involving motor control with haptic/tactile environment interaction such as reaching or grasping. The basic idea is to attach an 8 foot end effecter supported in the center to the robot 4 allowing the subject to use the robot, but shielding it and keeping it out of the most extreme part of the magnetic field from the fMRI machine (Figure 1). The Phantom Premium 3.0, 6DoF, high-force robot (SensAble Technologies, Inc.) is an excellent choice for providing force-feedback in virtual reality experiments 5, 6, but it is inherently non-MR safe, introduces significant noise to the sensitive fMRI equipment, and its electric motors may be affected by the fMRI's strongly varying magnetic field. We have constructed a table and shielding system that allows the robot to be safely introduced into the fMRI environment and limits both the degradation of the fMRI signal by the electrically noisy motors and the degradation of the electric motor performance by the strongly varying magnetic field of the fMRI. With the shield, the signal to noise ratio (SNR: mean signal/noise standard deviation) of the fMRI goes from a baseline of ˜380 to ˜330, and ˜250 without the shielding. The remaining noise appears to be uncorrelated and does not add artifacts to the fMRI of a test sphere (Figure 2). The long, stiff handle allows placement of the robot out of range of the most strongly varying parts of the magnetic field so there is no significant effect of the fMRI on the robot. The effect of the handle on the robot's kinematics is minimal since it is lightweight (˜2.6 lbs) but extremely stiff 3/4" graphite and well balanced on the 3DoF joint in the middle. The end result is an fMRI compatible, haptic system with about 1 cubic foot of working space, and, when combined with virtual reality, it allows for a new set of experiments to be performed in the fMRI environment including naturalistic reaching, passive displacement of the limb and haptic perception, adaptation learning in varying force fields, or texture identification 5, 6.
Bioengineering, Issue 56, neuroscience, haptic robot, fMRI, MRI, pointing
3364
Play Button
Creating Objects and Object Categories for Studying Perception and Perceptual Learning
Authors: Karin Hauffen, Eugene Bart, Mark Brady, Daniel Kersten, Jay Hegdé.
Institutions: Georgia Health Sciences University, Georgia Health Sciences University, Georgia Health Sciences University, Palo Alto Research Center, Palo Alto Research Center, University of Minnesota .
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2. Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings. First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints. Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases. Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or 'tuned'). This allows one to formulate the underlying object recognition tasks in quantitative terms. Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called 'digital embryos' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics15,16. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects9,13. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be 'printed' as haptic objects using a conventional 3-D prototyper. We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a 'proof of principle' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have. Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.
Neuroscience, Issue 69, machine learning, brain, classification, category learning, cross-modal perception, 3-D prototyping, inference
3358
Play Button
Oscillation and Reaction Board Techniques for Estimating Inertial Properties of a Below-knee Prosthesis
Authors: Jeremy D. Smith, Abbie E. Ferris, Gary D. Heise, Richard N. Hinrichs, Philip E. Martin.
Institutions: University of Northern Colorado, Arizona State University, Iowa State University.
The purpose of this study was two-fold: 1) demonstrate a technique that can be used to directly estimate the inertial properties of a below-knee prosthesis, and 2) contrast the effects of the proposed technique and that of using intact limb inertial properties on joint kinetic estimates during walking in unilateral, transtibial amputees. An oscillation and reaction board system was validated and shown to be reliable when measuring inertial properties of known geometrical solids. When direct measurements of inertial properties of the prosthesis were used in inverse dynamics modeling of the lower extremity compared with inertial estimates based on an intact shank and foot, joint kinetics at the hip and knee were significantly lower during the swing phase of walking. Differences in joint kinetics during stance, however, were smaller than those observed during swing. Therefore, researchers focusing on the swing phase of walking should consider the impact of prosthesis inertia property estimates on study outcomes. For stance, either one of the two inertial models investigated in our study would likely lead to similar outcomes with an inverse dynamics assessment.
Bioengineering, Issue 87, prosthesis inertia, amputee locomotion, below-knee prosthesis, transtibial amputee
50977
Play Button
Electrophysiological Measurements and Analysis of Nociception in Human Infants
Authors: L. Fabrizi, A. Worley, D. Patten, S. Holdridge, L. Cornelissen, J. Meek, S. Boyd, R. Slater.
Institutions: University College London, Great Ormond Street Hospital, University College Hospital, University of Oxford.
Pain is an unpleasant sensory and emotional experience. Since infants cannot verbally report their experiences, current methods of pain assessment are based on behavioural and physiological body reactions, such as crying, body movements or changes in facial expression. While these measures demonstrate that infants mount a response following noxious stimulation, they are limited: they are based on activation of subcortical somatic and autonomic motor pathways that may not be reliably linked to central sensory processing in the brain. Knowledge of how the central nervous system responds to noxious events could provide an insight to how nociceptive information and pain is processed in newborns. The heel lancing procedure used to extract blood from hospitalised infants offers a unique opportunity to study pain in infancy. In this video we describe how electroencephalography (EEG) and electromyography (EMG) time-locked to this procedure can be used to investigate nociceptive activity in the brain and spinal cord. This integrative approach to the measurement of infant pain has the potential to pave the way for an effective and sensitive clinical measurement tool.
Neuroscience, Issue 58, pain, infant, electrophysiology, human development
3118
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.