JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The Survival Condition and Immunoregulatory Function of Adipose Stromal Vascular Fraction (SVF) in the Early Stage of Nonvascularized Adipose Transplantation.
PUBLISHED: 01-01-2013
Adipose tissue transplantation is one of the standard procedures for soft-tissue augmentation, reconstruction, and rejuvenation. However, it is unknown as to how the graft survives after transplantation. We thus seek out to investigate the roles of different cellular components in the survival of graft.
Authors: Kazuyuki Nagai, Shintaro Yagi, Shinji Uemoto, Rene H. Tolba.
Published: 03-07-2013
Orthotopic liver transplantation (OLT) in rats using a whole or partial graft is an indispensable experimental model for transplantation research, such as studies on graft preservation and ischemia-reperfusion injury 1,2, immunological responses 3,4, hemodynamics 5,6, and small-for-size syndrome 7. The rat OLT is among the most difficult animal models in experimental surgery and demands advanced microsurgical skills that take a long time to learn. Consequently, the use of this model has been limited. Since the reliability and reproducibility of results are key components of the experiments in which such complex animal models are used, it is essential for surgeons who are involved in rat OLT to be trained in well-standardized and sophisticated procedures for this model. While various techniques and modifications of OLT in rats have been reported 8 since the first model was described by Lee et al. 9 in 1973, the elimination of the hepatic arterial reconstruction 10 and the introduction of the cuff anastomosis technique by Kamada et al. 11 were a major advancement in this model, because they simplified the reconstruction procedures to a great degree. In the model by Kamada et al., the hepatic rearterialization was also eliminated. Since rats could survive without hepatic arterial flow after liver transplantation, there was considerable controversy over the value of hepatic arterialization. However, the physiological superiority of the arterialized model has been increasingly acknowledged, especially in terms of preserving the bile duct system 8,12 and the liver integrity 8,13,14. In this article, we present detailed surgical procedures for a rat model of OLT with hepatic arterial reconstruction using a 50% partial graft after ex vivo liver resection. The reconstruction procedures for each vessel and the bile duct are performed by the following methods: a 7-0 polypropylene continuous suture for the supra- and infrahepatic vena cava; a cuff technique for the portal vein; and a stent technique for the hepatic artery and the bile duct.
29 Related JoVE Articles!
Play Button
Orthotopic Hind-Limb Transplantation in Rats
Authors: Robert Sucher, Rupert Oberhuber, Christian Margreiter, Guido Rumberg, Rishi Jindal, WP Andrew Lee, Raimund Margreiter, Johann Pratschke, Stefan Schneeberger, Gerald Brandacher.
Institutions: Innsbruck Medical University, University of Pittsburgh Medical Center.
Composite tissue allotransplantation (CTA) now represents a valid therapeutic option after the loss of a hand, forearm or digits and has become a novel therapeutic entity in reconstructive surgery. However, long term high-dose multi-drug immunosuppressive therapy is required to ensure graft survival, bearing the risk of serious side effects which halters broader application. Further progression in this field may depend on better understanding of basic immunology and ischemia reperfusion injury in composite tissue grafts. To date, orthotopic hind limb transplantation in rats has been the preferred rodent model for reconstructive transplantation (RT), however, it is an extremely demanding procedure that requires extraordinary microsurgical skills for reattachment of vasculature, bones, muscles and nerves. We have introduced the vascular cuff anastomosis technique to this model, providing a rapid and reliable approach to rat hind limb transplantation. This technique simplifies and shortens the surgical procedure and enables surgeons with basic microsurgical experience to successfully perform the operation with high survival and low complication rates. The technique seems to be well suited for immunological as well as ischemia reperfusion injury (IRI) studies.
JoVE Immunology, Issue 41, rat, hind limb, composite tissue, reconstructive transplantation
Play Button
Assessing Signaling Properties of Ectodermal Epithelia During Craniofacial Development
Authors: Diane Hu, Ralph S. Marcucio.
Institutions: University of California San Francisco.
The accessibility of avian embryos has helped experimental embryologists understand the fates of cells during development and the role of tissue interactions that regulate patterning and morphogenesis of vertebrates (e.g., 1, 2, 3, 4). Here, we illustrate a method that exploits this accessibility to test the signaling and patterning properties of ectodermal tissues during facial development. In these experiments, we create quail-chick 5 or mouse-chick 6 chimeras by transplanting the surface cephalic ectoderm that covers the upper jaw from quail or mouse onto either the same region or an ectopic region of chick embryos. The use of quail as donor tissue for transplantation into chicks was developed to take advantage of a nucleolar marker present in quail but not chick cells, thus allowing investigators to distinguish host and donor tissues 7. Similarly, a repetitive element is present in the mouse genome and is expressed ubiquitously, which allows us to distinguish host and donor tissues in mouse-chick chimeras 8. The use of mouse ectoderm as donor tissue will greatly extend our understanding of these tissue interactions, because this will allow us to test the signaling properties of ectoderm derived from various mutant embryos.
Developmental Biology, Issue 49, Quail-chick chimera, Ectoderm transplant, FEZ, Mouse-chick chimera
Play Button
Manufacturing Devices and Instruments for Easier Rat Liver Transplantation
Authors: Graziano Oldani, Stephanie Lacotte, Lorenzo Orci, Philippe Morel, Gilles Mentha, Christian Toso.
Institutions: University of Geneva Hospitals, University of Pavia , University of Geneva, University of Geneva Hospitals.
Orthotopic rat liver transplantation is a popular model, which has been shown in a recent JoVE paper with the use of the "quick-linker" device. This technique allows for easier venous cuff-anatomoses after a reasonable learning curve. The device is composed of two handles, which are carved out from scalpel blades, one approximator, which is obtained by modifying Kocher's forceps, and cuffs designed from fine-bore polyethylene tubing. The whole process can be performed at a low-cost using common laboratory material. The present report provides a step-by-step protocol for the design of the required pieces and includes stencils.
Medicine, Issue 75, Biomedical Engineering, Bioengineering, Mechanical Engineering, Anatomy, Physiology, Surgery, Tissue Engineering, Liver Transplantation, Liver, transplantation, rat, quick-linker, orthotopic, graft, cuff, clinical techniques, animal model
Play Button
Heterotopic Heart Transplantation in Mice
Authors: Fengchun Liu, Sang Mo Kang.
Institutions: University of California, San Francisco - UCSF.
The mouse heterotopic heart transplantation has been used widely since it was introduced by Drs. Corry and Russell in 1973. It is particularly valuable for studying rejection and immune response now that newer transgenic and gene knockout mice are available, and a large number of immunologic reagents have been developed. The heart transplant model is less stringent than the skin transplant models, although technically more challenging. We have developed a modified technique and have completed over 1000 successful cases of heterotopic heart transplantation in mice. When making anastomosis of the ascending aorta and abdominal aorta, two stay sutures are placed at the proximal and distal apexes of recipient abdominal aorta with the donor s ascending aorta, then using 11-0 suture for anastomosis on both side of aorta with continuing sutures. The stay sutures make the anastomosis easier and 11-0 is an ideal suture size to avoid bleeding and thrombosis. When making anastomosis of pulmonary artery and inferior vena cava, two stay sutures are made at the proximal apex and distal apex of the recipient s inferior vena cava with the donor s pulmonary artery. The left wall of the inferior vena cava and donor s pulmonary artery is closed with continuing sutures in the inside of the inferior vena cava after, one knot with the proximal apex stay suture the right wall of the inferior vena cava and the donor s pulmonary artery are closed with continuing sutures outside the inferior vena cave with 10-0 sutures. This method is easier to perform because anastomosis is made just on the one side of the inferior vena cava and 10-0 sutures is the right size to avoid bleeding and thrombosis. In this article, we provide details of the technique to supplement the video.
Developmental Biology, Issue 6, Microsurgical Techniques, Heart Transplant, Allograft Rejection Model
Play Button
Manual Isolation of Adipose-derived Stem Cells from Human Lipoaspirates
Authors: Min Zhu, Sepideh Heydarkhan-Hagvall, Marc Hedrick, Prosper Benhaim, Patricia Zuk.
Institutions: Cytori Therapeutics Inc, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA, David Geffen School of Medicine at UCLA.
In 2001, researchers at the University of California, Los Angeles, described the isolation of a new population of adult stem cells from liposuctioned adipose tissue that they initially termed Processed Lipoaspirate Cells or PLA cells. Since then, these stem cells have been renamed as Adipose-derived Stem Cells or ASCs and have gone on to become one of the most popular adult stem cells populations in the fields of stem cell research and regenerative medicine. Thousands of articles now describe the use of ASCs in a variety of regenerative animal models, including bone regeneration, peripheral nerve repair and cardiovascular engineering. Recent articles have begun to describe the myriad of uses for ASCs in the clinic. The protocol shown in this article outlines the basic procedure for manually and enzymatically isolating ASCs from large amounts of lipoaspirates obtained from cosmetic procedures. This protocol can easily be scaled up or down to accommodate the volume of lipoaspirate and can be adapted to isolate ASCs from fat tissue obtained through abdominoplasties and other similar procedures.
Cellular Biology, Issue 79, Adipose Tissue, Stem Cells, Humans, Cell Biology, biology (general), enzymatic digestion, collagenase, cell isolation, Stromal Vascular Fraction (SVF), Adipose-derived Stem Cells, ASCs, lipoaspirate, liposuction
Play Button
Isolation of Adipose Tissue Immune Cells
Authors: Jeb S. Orr, Arion J. Kennedy, Alyssa H. Hasty.
Institutions: Vanderbilt University School of Medicine.
The discovery of increased macrophage infiltration in the adipose tissue (AT) of obese rodents and humans has led to an intensification of interest in immune cell contribution to local and systemic insulin resistance. Isolation and quantification of different immune cell populations in lean and obese AT is now a commonly utilized technique in immunometabolism laboratories; yet extreme care must be taken both in stromal vascular cell isolation and in the flow cytometry analysis so that the data obtained is reliable and interpretable. In this video we demonstrate how to mince, digest, and isolate the immune cell-enriched stromal vascular fraction. Subsequently, we show how to antibody label macrophages and T lymphocytes and how to properly gate on them in flow cytometry experiments. Representative flow cytometry plots from low fat-fed lean and high fat-fed obese mice are provided. A critical element of this analysis is the use of antibodies that do not fluoresce in channels where AT macrophages are naturally autofluorescent, as well as the use of proper compensation controls.
Immunology, Issue 75, Cellular Biology, Molecular Biology, Biophysics, Physiology, Anatomy, Biomedical Engineering, Surgery, Metabolic Diseases, Diabetes Mellitus, diabetes, Endocrine System Diseases, adipose tissue, AT, stromal vascular fraction, macrophage, lymphocyte, T cells, adipocyte, inflammation, obesity, cell, isolation, FACS, flow cytometry, mice, animal model
Play Button
Repair of a Critical-sized Calvarial Defect Model Using Adipose-derived Stromal Cells Harvested from Lipoaspirate
Authors: David D. Lo, Jeong S. Hyun, Michael T. Chung, Daniel T. Montoro, Andrew Zimmermann, Monica M. Grova, Min Lee, Derrick C. Wan, Michael T. Longaker.
Institutions: Stanford University , Duke University , Saint Joseph Mercy Hospital, University of California, San Francisco , University of California, Los Angeles .
Craniofacial skeletal repair and regeneration offers the promise of de novo tissue formation through a cell-based approach utilizing stem cells. Adipose-derived stromal cells (ASCs) have proven to be an abundant source of multipotent stem cells capable of undergoing osteogenic, chondrogenic, adipogenic, and myogenic differentiation. Many studies have explored the osteogenic potential of these cells in vivo with the use of various scaffolding biomaterials for cellular delivery. It has been demonstrated that by utilizing an osteoconductive, hydroxyapatite-coated poly(lactic-co-glycolic acid) (HA-PLGA) scaffold seeded with ASCs, a critical-sized calvarial defect, a defect that is defined by its inability to undergo spontaneous healing over the lifetime of the animal, can be effectively show robust osseous regeneration. This in vivo model demonstrates the basis of translational approaches aimed to regenerate the bone tissue - the cellular component and biological matrix. This method serves as a model for the ultimate clinical application of a progenitor cell towards the repair of a specific tissue defect.
Medicine, Issue 68, Stem Cells, Skeletal Tissue Engineering, Calvarial Defect, Scaffold, Tissue Regeneration, adipose-derived stromal cells
Play Button
Isolation and Differentiation of Stromal Vascular Cells to Beige/Brite Cells
Authors: Ulrike Liisberg Aune, Lauren Ruiz, Shingo Kajimura.
Institutions: University of California, San Francisco , University of Copenhagen, Denmark, National Institute of Nutrition and Seafood Research, Bergen, Norway.
Brown adipocytes have the ability to uncouple the respiratory chain in mitochondria and dissipate chemical energy as heat. Development of UCP1-positive brown adipocytes in white adipose tissues (so called beige or brite cells) is highly induced by a variety of environmental cues such as chronic cold exposure or by PPARγ agonists, therefore, this cell type has potential as a therapeutic target for obesity treatment. Although most immortalized adipocyte lines cannot recapitulate the process of "browning" of white fat in culture, primary adipocytes isolated from stromal vascular fraction in subcutaneous white adipose tissue (WAT) provide a reliable cellular system to study the molecular control of beige/brite cell development. Here we describe a protocol for effective isolation of primary preadipocytes and for inducing differentiation to beige/brite cells in culture. The browning effect can be assessed by the expression of brown fat-selective markers such as UCP1.
Cellular Biology, Issue 73, Medicine, Anatomy, Physiology, Molecular Biology, Surgery, Adipose Tissue, Adipocytes, Transcription Factors, Cell Differentiation, Obesity, Diabetes, brown adipose tissue, beige/brite cells, primary adipocytes, stromal-vascular fraction, differentiation, uncoupling protein 1, rosiglitazone, differentiation, cells, isolation, fat, animal model
Play Button
Generation of Lymph Node-fat Pad Chimeras for the Study of Lymph Node Stromal Cell Origin
Authors: Cecile Benezech, Jorge H. Caamano.
Institutions: University of Birmingham, University of Edinburgh.
The stroma is a key component of the lymph node structure and function. However, little is known about its origin, exact cellular composition and the mechanisms governing its formation. Lymph nodes are always encapsulated in adipose tissue and we recently demonstrated the importance of this relation for the formation of lymph node stroma. Adipocyte precursor cells migrate into the lymph node during its development and upon engagement of the Lymphotoxin-b receptor switch off adipogenesis and differentiate into lymphoid stromal cells (Bénézech et al.14). Based on the lymphoid stroma potential of adipose tissue, we present a method using a lymph node/fat pad chimera that allows the lineage tracing of lymph node stromal cell precursors. We show how to isolate newborn lymph nodes and EYFP+ embryonic adipose tissue and make a LN/ EYFP+ fat pad chimera. After transfer under the kidney capsule of a host mouse, the lymph node incorporates local adipose tissue precursor cells and finishes its formation. Progeny analysis of EYFP+ fat pad cells in the resulting lymph nodes can be performed by flow-cytometric analysis of enzymatically digested lymph nodes or by immunofluorescence analysis of lymph nodes cryosections. By using fat pads from different knockout mouse models, this method will provide an efficient way of analyzing the origin of the different lymph node stromal cell populations.
Immunology, Issue 82, Adipose Tissue, Mesenchymal Stromal Cells, Immune System, Lymphoid Tissue, Lymph Nodes, Lymph node development, lymph node stromal cells, lymph node transplantation, immune responses, adipose tissue, adipose tissue stromal cells, stem cells
Play Button
Isolation of Blood-vessel-derived Multipotent Precursors from Human Skeletal Muscle
Authors: William C.W. Chen, Arman Saparov, Mirko Corselli, Mihaela Crisan, Bo Zheng, Bruno Péault, Johnny Huard.
Institutions: University of Pittsburgh, University of Pittsburgh, Nazarbayev University, University of California at Los Angeles, Erasmus MC Stem Cell Institute, Oregon Health & Science University, Queen's Medical Research Institute and University of Edinburgh, University of California at Los Angeles, University of Pittsburgh.
Since the discovery of mesenchymal stem/stromal cells (MSCs), the native identity and localization of MSCs have been obscured by their retrospective isolation in culture. Recently, using fluorescence-activated cell sorting (FACS), we and other researchers prospectively identified and purified three subpopulations of multipotent precursor cells associated with the vasculature of human skeletal muscle. These three cell populations: myogenic endothelial cells (MECs), pericytes (PCs), and adventitial cells (ACs), are localized respectively to the three structural layers of blood vessels: intima, media, and adventitia. All of these human blood-vessel-derived stem cell (hBVSC) populations not only express classic MSC markers but also possess mesodermal developmental potentials similar to typical MSCs. Previously, MECs, PCs, and ACs have been isolated through distinct protocols and subsequently characterized in separate studies. The current isolation protocol, through modifications to the isolation process and adjustments in the selective cell surface markers, allows us to simultaneously purify all three hBVSC subpopulations by FACS from a single human muscle biopsy. This new method will not only streamline the isolation of multiple BVSC subpopulations but also facilitate future clinical applications of hBVSCs for distinct therapeutic purposes.
Cellular Biology, Issue 90, Blood Vessel; Pericyte; Adventitial Cell; Myogenic Endothelial Cell; Multipotent Precursor
Play Button
Engineering a Bilayered Hydrogel to Control ASC Differentiation
Authors: Shanmugasundaram Natesan, David O. Zamora, Laura J. Suggs, Robert J. Christy.
Institutions: United States Army Institute of Surgical Research, The University of Texas at Austin.
Natural polymers over the years have gained more importance because of their host biocompatibility and ability to interact with cells in vitro and in vivo. An area of research that holds promise in regenerative medicine is the combinatorial use of novel biomaterials and stem cells. A fundamental strategy in the field of tissue engineering is the use of three-dimensional scaffold (e.g., decellularized extracellular matrix, hydrogels, micro/nano particles) for directing cell function. This technology has evolved from the discovery that cells need a substrate upon which they can adhere, proliferate, and express their differentiated cellular phenotype and function 2-3. More recently, it has also been determined that cells not only use these substrates for adherence, but also interact and take cues from the matrix substrate (e.g., extracellular matrix, ECM)4. Therefore, the cells and scaffolds have a reciprocal connection that serves to control tissue development, organization, and ultimate function. Adipose-derived stem cells (ASCs) are mesenchymal, non-hematopoetic stem cells present in adipose tissue that can exhibit multi-lineage differentiation and serve as a readily available source of cells (i.e. pre-vascular endothelia and pericytes). Our hypothesis is that adipose-derived stem cells can be directed toward differing phenotypes simultaneously by simply co-culturing them in bilayered matrices1. Our laboratory is focused on dermal wound healing. To this end, we created a single composite matrix from the natural biomaterials, fibrin, collagen, and chitosan that can mimic the characteristics and functions of a dermal-specific wound healing ECM environment.
Bioengineering, Issue 63, Biomedical Engineering, Tissue Engineering, chitosan, microspheres, collagen, hydrogel, PEG fibrin, cell delivery, adipose-derived stem cells, ASC, CSM
Play Button
Localization, Identification, and Excision of Murine Adipose Depots
Authors: Adrien Mann, Allie Thompson, Nathan Robbins, Andra L. Blomkalns.
Institutions: University of Cincinnati College of Medicine.
Obesity has increased dramatically in the last few decades and affects over one third of the adult US population. The economic effect of obesity in 2005 reached a staggering sum of $190.2 billion in direct medical costs alone. Obesity is a major risk factor for a wide host of diseases. Historically, little was known regarding adipose and its major and essential functions in the body. Brown and white adipose are the two main types of adipose but current literature has identified a new type of fat called brite or beige adipose. Research has shown that adipose depots have specific metabolic profiles and certain depots allow for a propensity for obesity and other related disorders. The goal of this protocol is to provide researchers the capacity to identify and excise adipose depots that will allow for the analysis of different factorial effects on adipose; as well as the beneficial or detrimental role adipose plays in disease and overall health. Isolation and excision of adipose depots allows investigators to look at gross morphological changes as well as histological changes. The adipose isolated can also be used for molecular studies to evaluate transcriptional and translational change or for in vitro experimentation to discover targets of interest and mechanisms of action. This technique is superior to other published techniques due to the design allowing for isolation of multiple depots with simplicity and minimal contamination.
Medicine, Issue 94, adipose, surgical, excision, subcutaneous adipose tissue (SQ), perivascular adipose tissue (PVAT), visceral adipose tissue (VAT), brown adipose tissue (BAT), white adipose tissue (WAT)
Play Button
Cerenkov Luminescence Imaging of Interscapular Brown Adipose Tissue
Authors: Xueli Zhang, Chaincy Kuo, Anna Moore, Chongzhao Ran.
Institutions: Massachusetts General Hospital/Harvard Medical School, China Pharmaceutical University, Perkin Elmer.
Brown adipose tissue (BAT), widely known as a “good fat” plays pivotal roles for thermogenesis in mammals. This special tissue is closely related to metabolism and energy expenditure, and its dysfunction is one important contributor for obesity and diabetes. Contrary to previous belief, recent PET/CT imaging studies indicated the BAT depots are still present in human adults. PET imaging clearly shows that BAT has considerably high uptake of 18F-FDG under certain conditions. In this video report, we demonstrate that Cerenkov luminescence imaging (CLI) with 18F-FDG can be used to optically image BAT in small animals. BAT activation is observed after intraperitoneal injection of norepinephrine (NE) and cold treatment, and depression of BAT is induced by long anesthesia. Using multiple-filter Cerenkov luminescence imaging, spectral unmixing and 3D imaging reconstruction are demonstrated. Our results suggest that CLI with 18F-FDG is a practical technique for imaging BAT in small animals, and this technique can be used as a cheap, fast, and alternative imaging tool for BAT research.
Medicine, Issue 92, Cerenkov luminescence imaging, brown adipose tissue, 18F-FDG, optical imaging, in vivo imaging, spectral unmixing
Play Button
Bioluminescence Imaging for Assessment of Immune Responses Following Implantation of Engineered Heart Tissue (EHT)
Authors: Lenard Conradi, Christiane Pahrmann, Stephanie Schmidt, Tobias Deuse, Arne Hansen, Alexandra Eder, Hermann Reichenspurner, Robert C. Robbins, Thomas Eschenhagen, Sonja Schrepfer.
Institutions: University Heart Center Hamburg, University Heart Center Hamburg, Stanford University School of Medicine.
Various techniques of cardiac tissue engineering have been pursued in the past decades including scaffolding strategies using either native or bioartificial scaffold materials, entrapment of cardiac myocytes in hydrogels such as fibrin or collagen and stacking of myocyte monolayers 1. These concepts aim at restoration of compromised cardiac function (e.g. after myocardial infarction) or as experimental models (e.g. predictive toxicology and substance screening or disease modelling). Precise monitoring of cell survival after implantation of engineered heart tissue (EHT) has now become possible using in-vivo bioluminescence imaging (BLI) techniques 2. Here we describe the generation of fibrin-based EHT from a transgenic rat strain with ubiquitous expression of firefly luciferase (ROSA/luciferase-LEW Tg; 3). Implantation is performed into the greater omentum of different rat strains to assess immune responses of the recipient organism following EHT implantation. Comparison of results generated by BLI and the Enzyme Linked Immuno Spot Technique (ELISPOT) confirm the usability of BLI for the assessment of immune responses.
Bioengineering, Issue 52, Engineered heart tissue, bioluminescence imaging, rejection, rats, immune response
Play Button
Orthotopic Aortic Transplantation: A Rat Model to Study the Development of Chronic Vasculopathy
Authors: Mandy Stubbendorff, Tobias Deuse, Anna Hammel, Robert C. Robbins, Hermann Reichenspurner, Sonja Schrepfer.
Institutions: University Hospital Hamburg, Stanford University School of Medicine.
Research models of chronic rejection are essential to investigate pathobiological and pathophysiological processes during the development of transplant vasculopathy (TVP). The commonly used animal model for cardiovascular chronic rejection studies is the heterotopic heart transplant model performed in laboratory rodents. This model is used widely in experiments since Ono and Lindsey (3) published their technique. To analyze the findings in the blood vessels, the heart has to be sectioned and all vessels have to be measured. Another method to investigate chronic rejection in cardiovascular questionings is the aortic transplant model (1, 2). In the orthotopic aortic transplant model, the aorta can easily be histologically evaluated (2). The PVG-to-ACI model is especially useful for CAV studies, since acute vascular rejection is not a major confounding factor and Cyclosporin A (CsA) treatment does not prevent the development of CAV, similar to what we find in the clinical setting (4). A7-day period of CsA is required in this model to prevent acute rejection and to achieve long-term survival with the development of TVP. This model can also be used to investigate acute cellular rejection and media necrosis in xenogeneic models (5).
Medicine, Issue 46, chronic rejection, transplantation, rat, transplant vasculopathy
Play Button
Transplantation of Tail Skin to Study Allogeneic CD4 T Cell Responses in Mice
Authors: Mathias Schmaler, Maria A. S. Broggi, Simona W. Rossi.
Institutions: University of Basel and University Hospital Basel.
The study of T cell responses and their consequences during allo-antigen recognition requires a model that enables one to distinguish between donor and host T cells, to easily monitor the graft, and to adapt the system in order to answer different immunological questions. Medawar and colleagues established allogeneic tail-skin transplantation in mice in 1955. Since then, the skin transplantation model has been continuously modified and adapted to answer specific questions. The use of tail-skin renders this model easy to score for graft rejection, requires neither extensive preparation nor deep anesthesia, is applicable to animals of all genetic background, discourages ischemic necrosis, and permits chemical and biological intervention. In general, both CD4+ and CD8+ allogeneic T cells are responsible for the rejection of allografts since they recognize mismatched major histocompatibility antigens from different mouse strains. Several models have been described for activating allogeneic T cells in skin-transplanted mice. The identification of major histocompatibility complex (MHC) class I and II molecules in different mouse strains including C57BL/6 mice was an important step toward understanding and studying T cell-mediated alloresponses. In the tail-skin transplantation model described here, a three-point mutation (I-Abm12) in the antigen-presenting groove of the MHC-class II (I-Ab) molecule is sufficient to induce strong allogeneic CD4+ T cell activation in C57BL/6 mice. Skin grafts from I-Abm12 mice on C57BL/6 mice are rejected within 12-15 days, while syngeneic grafts are accepted for up to 100 days. The absence of T cells (CD3-/- and Rag2-/- mice) allows skin graft acceptance up to 100 days, which can be overcome by transferring 2 x 104 wild type or transgenic T cells. Adoptively transferred T cells proliferate and produce IFN-γ in I-Abm12-transplanted Rag2-/- mice.
Immunology, Issue 89, Tail-skin transplantation, I-Abm12 mismatch, CD4+ T cell, ABM, Rejection, Tolerance
Play Button
Murine Corneal Transplantation: A Model to Study the Most Common Form of Solid Organ Transplantation
Authors: Xiao-Tang Yin, Deena A. Tajfirouz, Patrick M. Stuart.
Institutions: Saint Louis University.
Corneal transplantation is the most common form of organ transplantation in the United States with between 45,000 and 55,000 procedures performed each year. While several animal models exist for this procedure and mice are the species that is most commonly used. The reasons for using mice are the relative cost of using this species, the existence of many genetically defined strains that allow for the study of immune responses, and the existence of an extensive array of reagents that can be used to further define responses in this species. This model has been used to define factors in the cornea that are responsible for the relative immune privilege status of this tissue that enables corneal allografts to survive acute rejection in the absence of immunosuppressive therapy. It has also been used to define those factors that are most important in rejection of such allografts. Consequently, much of what we know concerning mechanisms of both corneal allograft acceptance and rejection are due to studies using a murine model of corneal transplantation. In addition to describing a model for acute corneal allograft rejection, we also present for the first time a model of late-term corneal allograft rejection.
Immunology, Issue 93, Transplantation, Allograft Responses, Immune Privilege, Cornea, Inflammatory cells, T cells, Macrophages
Play Button
Heterotopic Auxiliary Rat Liver Transplantation With Flow-regulated Portal Vein Arterialization in Acute Hepatic Failure
Authors: Karina Schleimer, Johannes Kalder, Jochen Grommes, Houman Jalaie, Samir Tawadros, Andreas Greiner, Michael Jacobs, Maria Kokozidou.
Institutions: University Hospital RWTH Aachen.
In acute hepatic failure auxiliary liver transplantation is an interesting alternative approach. The aim is to provide a temporary support until the failing native liver has regenerated.1-3 The APOLT-method, the orthotopic implantation of auxiliary segments- averts most of the technical problems. However this method necessitates extensive resections of both the native liver and the graft.4 In 1998, Erhard developed the heterotopic auxiliary liver transplantation (HALT) utilizing portal vein arterialization (PVA) (Figure 1). This technique showed promising initial clinical results.5-6 We developed a HALT-technique with flow-regulated PVA in the rat to examine the influence of flow-regulated PVA on graft morphology and function (Figure 2). A liver graft reduced to 30 % of its original size, was heterotopically implanted in the right renal region of the recipient after explantation of the right kidney.  The infra-hepatic caval vein of the graft was anastomosed with the infrahepatic caval vein of the recipient. The arterialization of the donor’s portal vein was carried out via the recipient’s right renal artery with the stent technique. The blood-flow regulation of the arterialized portal vein was achieved with the use of a stent with an internal diameter of 0.3 mm. The celiac trunk of the graft was end-to-side anastomosed with the recipient’s aorta and the bile duct was implanted into the duodenum. A subtotal resection of the native liver was performed to induce acute hepatic failure. 7 In this manner 112 transplantations were performed. The perioperative survival rate was 90% and the 6-week survival rate was 80%. Six weeks after operation, the native liver regenerated, showing an increase in weight from 2.3±0.8 g to 9.8±1 g. At this time, the graft’s weight decreased from 3.3±0.8 g to 2.3±0.8 g. We were able to obtain promising long-term results in terms of graft morphology and function. HALT with flow-regulated PVA reliably bridges acute hepatic failure until the native liver regenerates.
Medicine, Issue 91, auxiliary liver transplantation, rat, portal vein arterialization, flow-regulation, acute hepatic failure
Play Button
A Modified Heterotopic Swine Hind Limb Transplant Model for Translational Vascularized Composite Allotransplantation (VCA) Research
Authors: Zuhaib Ibrahim, Damon S. Cooney, Jaimie T. Shores, Justin M. Sacks, Eric G. Wimmers, Steven C. Bonawitz, Chad Gordon, Dawn Ruben, Stefan Schneeberger, W. P. Andrew Lee, Gerald Brandacher.
Institutions: Johns Hopkins University School of Medicine.
Vascularized Composite Allotransplantation (VCA) such as hand and face transplants represent a viable treatment option for complex musculoskeletal trauma and devastating tissue loss. Despite favorable and highly encouraging early and intermediate functional outcomes, rejection of the highly immunogenic skin component of a VCA and potential adverse effects of chronic multi-drug immunosuppression continue to hamper widespread clinical application of VCA. Therefore, research in this novel field needs to focus on translational studies related to unique immunologic features of VCA and to develop novel immunomodulatory strategies for immunomodulation and tolerance induction following VCA without the need for long term immunosuppression. This article describes a reliable and reproducible translational large animal model of VCA that is comprised of an osteomyocutaneous flap in a MHC-defined swine heterotopic hind limb allotransplantation. Briefly, a well-vascularized skin paddle is identified in the anteromedial thigh region using near infrared laser angiography. The underlying muscles, knee joint, distal femur, and proximal tibia are harvested on a femoral vascular pedicle. This allograft can be considered both a VCA and a vascularized bone marrow transplant with its unique immune privileged features. The graft is transplanted to a subcutaneous abdominal pocket in the recipient animal with a skin component exteriorized to the dorsolateral region for immune monitoring. Three surgical teams work simultaneously in a well-coordinated manner to reduce anesthesia and ischemia times, thereby improving efficiency of this model and reducing potential confounders in experimental protocols. This model serves as the groundwork for future therapeutic strategies aimed at reducing and potentially eliminating the need for chronic multi-drug immunosuppression in VCA.
Medicine, Issue 80, Upper Extremity, Swine, Microsurgery, Tissue Transplantation, Transplantation Immunology, Surgical Procedures, Operative, Vascularized Composite Allografts, reconstructive transplantation, translational research, swine, hind limb allotransplantation, bone marrow, osteomyocutaneous, microvascular anastomosis, immunomodulation
Play Button
Planarian Immobilization, Partial Irradiation, and Tissue Transplantation
Authors: Otto C. Guedelhoefer IV, Alejandro Sánchez Alvarado.
Institutions: University of Utah School of Medicine, UCSB, Howard Hughes Medical Institute, Stowers Institute for Medical Research.
The planarian, a freshwater flatworm, has proven to be a powerful system for dissecting metazoan regeneration and stem cell biology1,2. Planarian regeneration of any missing or damaged tissues is made possible by adult stem cells termed neoblasts3. Although these stem cells have been definitively shown to be pluripotent and singularly capable of reconstituting an entire animal4, the heterogeneity within the stem cell population and the dynamics of their cellular behaviors remain largely unresolved. Due to the large number and wide distribution of stem cells throughout the planarian body plan, advanced methods for manipulating subpopulations of stem cells for molecular and functional study in vivo are needed. Tissue transplantation and partial irradiation are two methods by which a subpopulation of planarian stem cells can be isolated for further study. Each technique has distinct advantages. Tissue transplantation allows for the introduction of stem cells, into a naïve host, that are either inherently genetically distinct or have been previously treated pharmacologically. Alternatively, partial irradiation allows for the isolation of stem cells within a host, juxtaposed to tissue devoid of stem cells, without the introduction of a wound or any breech in tissue integrity. Using these two methods, one can investigate the cell autonomous and non-autonomous factors that control stem cell functions, such as proliferation, differentiation, and migration. Both tissue transplantation5,6 and partial irradiation7 have been used historically in defining many of the questions about planarian regeneration that remain under study today. However, these techniques have remained underused due to the laborious and inconsistent nature of previous methods. The protocols presented here represent a large step forward in decreasing the time and effort necessary to reproducibly generate large numbers of grafted or partially irradiated animals with efficacies approaching 100 percent. We cover the culture of large animals, immobilization, preparation for partial irradiation, tissue transplantation, and the optimization of animal recovery. Furthermore, the work described here demonstrates the first application of the partial irradiation method for use with the most widely studied planarian, Schmidtea mediterranea. Additionally, efficient tissue grafting in planaria opens the door for the functional testing of subpopulations of naïve or treated stem cells in repopulation assays, which has long been the gold-standard method of assaying adult stem cell potential in mammals8. Broad adoption of these techniques will no doubt lead to a better understanding of the cellular behaviors of adult stem cells during tissue homeostasis and regeneration.
Developmental Biology, Issue 66, Neuroscience, Molecular Biology, Medicine, transplantation, partial irradiation, rescue, immobilization, planaria, flatworm, stem cell, regeneration
Play Button
Mouse Models for Graft Arteriosclerosis
Authors: Lingfeng Qin, Luyang Yu, Wang Min.
Institutions: Yale University School of Medicine , Yale University School of Medicine .
Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional genetic changes into the vessel donor, both models can be used to assess the effect of specific genes on GA progression. Here, we describe detailed protocols for our mouse GA models.
Medicine, Issue 75, Anatomy, Physiology, Biomedical Engineering, Bioengineering, Cardiology, Pathology, Surgery, Tissue Engineering, Cardiovascular Diseases, vascular biology, graft arteriosclerosis, GA, mouse models, transplantation, graft, vessels, arteries, mouse, animal model, surgical techniques
Play Button
Orthotopic Small Bowel Transplantation in Rats
Authors: Koji Kitamura, Martin W. von Websky, Ichiro Ohsawa, Azin Jaffari, Thomas C. Pech, Tim Vilz, Sven Wehner, Shinji Uemoto, Joerg C. Kalff, Nico Schaefer.
Institutions: University of Bonn, Germany, Kyoto University Hospital.
Small bowel transplantation has become an accepted clinical option for patients with short gut syndrome and failure of parenteral nutrition (irreversible intestinal failure). In specialized centers improved operative and managing strategies have led to excellent short- and intermediate term patient and graft survival while providing high quality of life 1,3. Unlike in the more common transplantation of other solid organs (i.e. heart, liver) many underlying mechanisms of graft function and immunologic alterations induced by intestinal transplantation are not entirely known6,7. Episodes of acute rejection, sepsis and chronic graft failure are the main obstacles still contributing to less favorable long term outcome and hindering a more widespread employment of the procedure despite a growing number of patients on home parenteral nutrition who would potentially benefit from such a transplant. The small intestine contains a large number of passenger leucocytes commonly referred to as part of the gut associated lymphoid system (GALT) this being part of the reason for the high immunogenity of the intestinal graft. The presence and close proximity of many commensals and pathogens in the gut explains the severity of sepsis episodes once graft mucosal integrity is compromised (for example by rejection). To advance the field of intestinal- and multiorgan transplantation more data generated from reliable and feasible animal models is needed. The model provided herein combines both reliability and feasibility once established in a standardized manner and can provide valuable insight in the underlying complex molecular, cellular and functional mechanisms that are triggered by intestinal transplantation. We have successfully used and refined the described procedure over more than 5 years in our laboratory 8-11. The JoVE video-based format is especially useful to demonstrate the complex procedure and avoid initial pitfalls for groups planning to establish an orthotopic rodent model investigating intestinal transplantation.
Medicine, Issue 69, Anatomy, Physiology, Immunology, intestinal transplantation, orthotopic small bowel transplantation, acute rejection, small bowel, surgery, operation, rat
Play Button
Promotion of Survival and Differentiation of Neural Stem Cells with Fibrin and Growth Factor Cocktails after Severe Spinal Cord Injury
Authors: Paul Lu, Lori Graham, Yaozhi Wang, Di Wu, Mark Tuszynski.
Institutions: Veterans Administration Medical Center, San Diego, University of California, San Diego.
Neural stem cells (NSCs) can self-renew and differentiate into neurons and glia. Transplanted NSCs can replace lost neurons and glia after spinal cord injury (SCI), and can form functional relays to re-connect spinal cord segments above and below a lesion. Previous studies grafting neural stem cells have been limited by incomplete graft survival within the spinal cord lesion cavity. Further, tracking of graft cell survival, differentiation, and process extension had not been optimized. Finally, in previous studies, cultured rat NSCs were typically reported to differentiate into glia when grafted to the injured spinal cord, rather than neurons, unless fate was driven to a specific cell type. To address these issues, we developed new methods to improve the survival, integration and differentiation of NSCs to sites of even severe SCI. NSCs were freshly isolated from embryonic day 14 spinal cord (E14) from a stable transgenic Fischer 344 rat line expressing green fluorescent protein (GFP) and were embedded into a fibrin matrix containing growth factors; this formulation aimed to retain grafted cells in the lesion cavity and support cell survival. NSCs in the fibrin/growth factor cocktail were implanted two weeks after thoracic level-3 (T3) complete spinal cord transections, thereby avoiding peak periods of inflammation. Resulting grafts completely filled the lesion cavity and differentiated into both neurons, which extended axons into the host spinal cord over remarkably long distances, and glia. Grafts of cultured human NSCs expressing GFP resulted in similar findings. Thus, methods are defined for improving neural stem cell grafting, survival and analysis of in vivo findings.
Neuroscience, Issue 89, nervous system diseases, wounds and injuries, biological factors, therapeutics, surgical procedures, neural stem cells, transplantation, spinal cord injury, fibrin, growth factors
Play Button
A Method for Murine Islet Isolation and Subcapsular Kidney Transplantation
Authors: Erik J. Zmuda, Catherine A. Powell, Tsonwin Hai.
Institutions: The Ohio State University, The Ohio State University, The Ohio State University.
Since the early pioneering work of Ballinger and Reckard demonstrating that transplantation of islets of Langerhans into diabetic rodents could normalize their blood glucose levels, islet transplantation has been proposed to be a potential treatment for type 1 diabetes 1,2. More recently, advances in human islet transplantation have further strengthened this view 1,3. However, two major limitations prevent islet transplantation from being a widespread clinical reality: (a) the requirement for large numbers of islets per patient, which severely reduces the number of potential recipients, and (b) the need for heavy immunosuppression, which significantly affects the pediatric population of patients due to their vulnerability to long-term immunosuppression. Strategies that can overcome these limitations have the potential to enhance the therapeutic utility of islet transplantation. Islet transplantation under the mouse kidney capsule is a widely accepted model to investigate various strategies to improve islet transplantation. This experiment requires the isolation of high quality islets and implantation of islets to the diabetic recipients. Both procedures require surgical steps that can be better demonstrated by video than by text. Here, we document the detailed steps for these procedures by both video and written protocol. We also briefly discuss different transplantation models: syngeneic, allogeneic, syngeneic autoimmune, and allogeneic autoimmune.
Medicine, Issue 50, islet isolation, islet transplantation, diabetes, murine, pancreas
Play Button
Small Bowel Transplantation In Mice
Authors: Fengchun Liu, Sang-Mo Kang.
Institutions: University of California, San Francisco - UCSF.
Since 1990, the development of tacrolimus-based immunosuppression and improved surgical techniques, the increased array of potent immunosuppressive medications, infection prophylaxis, and suitable patient selection helped improve actuarial graft and patient survival rates for all types of intestine transplantation. Patients with irreversible intestinal failure and complications of parenteral nutrition should now be routinely considered for small intestine transplantation. However, Survival rates for small intestinal transplantation have been slow to improve compares increasingly favorably with renal, liver, heart and lung. The small bowel transplantation is still unsatisfactory compared with other organs. Further progress may depend on better understanding of immunology and physiology of the graft and can be greatly facilitated by animal models. A wider use of mouse small bowel transplantation model is needed in the study of immunology and physiology of the transplantation gut as well as efficient methods in diagnosing early rejection. However, this model is limited to use because the techniques involved is an extremely technically challenging. We have developed a modified technique. When making anastomosis of portal vein and inferior vena cava, two stay sutures are made at the proximal apex and distal apex of the recipient s inferior vena cava with the donor s portal vein. The left wall of the inferior vena cava and donor s portal vein is closed with continuing sutures in the inside of the inferior vena cava after, after one knot with the proximal apex stay suture the right wall of the inferior vena cava and the donor s portal vein are closed with continuing sutures outside the inferior vena cave with 10-0 sutures. This method is easier to perform because anastomosis is made just on the one side of the inferior vena cava and 10-0 sutures is the right size to avoid bleeding and thrombosis. In this article, we provide details of the technique to supplement the video.
Issue 7, Immunology, Transplantation, Transplant Rejection, Small Bowel
Play Button
Murine Renal Transplantation Procedure
Authors: Jiao-Jing Wang, Sara Hockenheimer, Alice A. Bickerstaff, Gregg A. Hadley.
Institutions: The Ohio State University, The Ohio State University.
Renal orthotopic transplantation in mice is a technically challenging procedure. Although the first kidney transplants in mice were performed by Russell et al over 30 years ago (1) and refined by Zhang et al years later (2), few people in the world have mastered this procedure. In our laboratory we have successfully performed 1200 orthotopic kidney transplantations with > 90% survival rate. The key points for success include stringent control of reperfusion injury, bleeding and thrombosis, both during the procedure and post-transplantation, and use of 10-0 instead of 11-0 suture for anastomoses. Post-operative care and treatment of the recipient is extremely important to transplant success and evaluation. All renal graft recipients receive antibiotics in the form of an injection of penicillin immediately post-transplant and sulfatrim in the drinking water continually. Overall animal health is evaluated daily and whole blood creatinine analyses are performed routinely with a portable I-STAT machine to assess graft function.
immunology, Issue 29, mouse, kidney, renal, transplantation, procedure
Play Button
Programming Stem Cells for Therapeutic Angiogenesis Using Biodegradable Polymeric Nanoparticles
Authors: Michael Keeney, Lorenzo Deveza, Fan Yang.
Institutions: Stanford University , Stanford University .
Controlled vascular growth is critical for successful tissue regeneration and wound healing, as well as for treating ischemic diseases such as stroke, heart attack or peripheral arterial diseases. Direct delivery of angiogenic growth factors has the potential to stimulate new blood vessel growth, but is often associated with limitations such as lack of targeting and short half-life in vivo. Gene therapy offers an alternative approach by delivering genes encoding angiogenic factors, but often requires using virus, and is limited by safety concerns. Here we describe a recently developed strategy for stimulating vascular growth by programming stem cells to overexpress angiogenic factors in situ using biodegradable polymeric nanoparticles. Specifically our strategy utilized stem cells as delivery vehicles by taking advantage of their ability to migrate toward ischemic tissues in vivo. Using the optimized polymeric vectors, adipose-derived stem cells were modified to overexpress an angiogenic gene encoding vascular endothelial growth factor (VEGF). We described the processes for polymer synthesis, nanoparticle formation, transfecting stem cells in vitro, as well as methods for validating the efficacy of VEGF-expressing stem cells for promoting angiogenesis in a murine hindlimb ischemia model.
Empty Value, Issue 79, Stem Cells, animal models, bioengineering (general), angiogenesis, biodegradable, non-viral, gene therapy
Play Button
Murine Skin Transplantation
Authors: Kym R. Garrod, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI).
As one of the most stringent and least technically challenging models, skin transplantation is a standard method to assay host T cell responses to MHC-disparate donor antigens. The aim of this video-article is to provide the viewer with a step-by-step visual demonstration of skin transplantation using the mouse model. The protocol is divided into 5 main components: 1) harvesting donor skin; 2) preparing recipient for transplant; 3) skin transplant; 4) bandage removal and monitoring graft rejection; 5) helpful hints. Once proficient, the procedure itself should take <10 min to perform.
Immunology, Issue 11, allograft rejection, skin transplant, mouse
Play Button
Heterotopic and Orthotopic Tracheal Transplantation in Mice used as Models to Study the Development of Obliterative Airway Disease
Authors: Xiaoqin Hua, Tobias Deuse, Karis R. Tang-Quan, Robert C. Robbins, Hermann Reichenspurner, Sonja Schrepfer.
Institutions: University Heart Center Hamburg, University Hospital Hamburg, Stanford University School of Medicine.
Obliterative airway disease (OAD) is the major complication after lung transplantations that limits long term survival (1-7). To study the pathophysiology, treatment and prevention of OAD, different animal models of tracheal transplantation in rodents have been developed (1-7). Here, we use two established models of trachea transplantation, the heterotopic and orthotopic model and demonstrate their advantages and limitations. For the heterotopic model, the donor trachea is wrapped into the greater omentum of the recipient, whereas the donor trachea is anastomosed by end-to-end anastomosis in the orthotopic model. In both models, the development of obliterative lesions histological similar to clinical OAD has been demonstrated (1-7). This video shows how to perform both, the heterotopic as well as the orthotopic tracheal transplantation technique in mice, and compares the time course of OAD development in both models using histology.
Immunology, Issue 35, orthotopic tracheal transplantation, heterotopic tracheal transplantation, obliterative airway disease, mice, luminal obliteration, histology
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.