JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Binding, Transcytosis and Biodistribution of Anti-PECAM-1 Iron Oxide Nanoparticles for Brain-Targeted Delivery.
PLoS ONE
PUBLISHED: 01-01-2013
Characterize the flux of platelet-endothelial cell adhesion molecule (PECAM-1) antibody-coated superparamagnetic iron oxide nanoparticles (IONPs) across the blood-brain barrier (BBB) and its biodistribution in vitro and in vivo.
Authors: Chun-Hsien Wu, Konstantin Sokolov.
Published: 08-22-2014
ABSTRACT
Magnetic and plasmonic properties combined in a single nanoparticle provide a synergy that is advantageous in a number of biomedical applications including contrast enhancement in novel magnetomotive imaging modalities, simultaneous capture and detection of circulating tumor cells (CTCs), and multimodal molecular imaging combined with photothermal therapy of cancer cells. These applications have stimulated significant interest in development of protocols for synthesis of magneto-plasmonic nanoparticles with optical absorbance in the near-infrared (NIR) region and a strong magnetic moment. Here, we present a novel protocol for synthesis of such hybrid nanoparticles that is based on an oil-in-water microemulsion method. The unique feature of the protocol described herein is synthesis of magneto-plasmonic nanoparticles of various sizes from primary blocks which also have magneto-plasmonic characteristics. This approach yields nanoparticles with a high density of magnetic and plasmonic functionalities which are uniformly distributed throughout the nanoparticle volume. The hybrid nanoparticles can be easily functionalized by attaching antibodies through the Fc moiety leaving the Fab portion that is responsible for antigen binding available for targeting.
21 Related JoVE Articles!
Play Button
Registered Bioimaging of Nanomaterials for Diagnostic and Therapeutic Monitoring
Authors: Michael Boska, Yutong Liu, Mariano Uberti, Balarininvasa R. Sajja, Shantanu Balkundi, JoEllyn McMillan, Howard E. Gendelman.
Institutions: University of Nebraska Medical Center, University of Nebraska Medical Center.
Nanomedications can be carried by blood borne monocyte-macrophages into the reticuloendothelial system (RES; spleen, liver, lymph nodes) and to end organs. The latter include the lung, RES, and brain and are operative during human immunodeficiency virus type one (HIV-1) infection. Macrophage entry into tissues is notable in areas of active HIV-1 replication and sites of inflammation. In order to assess the potential of macrophages as nanocarriers, superparamagnetic iron-oxide and/or drug laden particles coated with surfactants were parenterally injected into HIV-1 encephalitic mice. This was done to quantitatively assess particle and drug biodistribution. Magnetic resonance imaging (MRI) test results were validated by histological coregistration and enhanced image processing. End organ disease as typified by altered brain histology were assessed by MRI. The demonstration of robust migration of nanoformulations into areas of focal encephalitis provides '"proof of concept" for the use of advanced bioimaging techniques to monitor macrophage migration. Importantly, histopathological aberrations in brain correlate with bioimaging parameters making the general utility of MRI in studies of cell distribution in disease feasible. We posit that using such methods can provide a real time index of disease burden and therapeutic efficacy with translational potential to humans.
Infectious Disease, Issue 46, neuroimaging, mouse, magnetic resonance imaging, magnetic resonance spectroscopy
2459
Play Button
Synthesis of an In vivo MRI-detectable Apoptosis Probe
Authors: Justin Lam, Paul C. Simpson, Phillip C. Yang, Rajesh Dash.
Institutions: Stanford University Medical Center, University of California, San Francisco , San Francisco VAMC.
Cellular apoptosis is a prominent feature of many diseases, and this programmed cell death typically occurs before clinical manifestations of disease are evident. A means to detect apoptosis in its earliest, reversible stages would afford a pre-clinical 'window' during which preventive or therapeutic measures could be taken to protect the heart from permanent damage. We present herein a simple and robust method to conjugate human Annexin V (ANX), which avidly binds to cells in the earliest, reversible stages of apoptosis, to superparamagnetic iron oxide (SPIO) nanoparticles, which serve as an MRI-detectable contrast agent. The conjugation method begins with an oxidation of the SPIO nanoparticles, which oxidizes carboxyl groups on the polysaccharide shell of SPIO. Purified ANX protein is then added in the setting of a sodium borate solution to facilitate covalent interaction of ANX with SPIO in a reducing buffer. A final reduction step with sodium borohydride is performed to complete the reduction, and then the reaction is quenched. Unconjugated ANX is removed from the mix by microcentrifuge filtration. The size and purity of the ANX-SPIO product is verified by dynamic light scattering (DLS). This method does not require addition to, or modification of, the polysaccharide SPIO shell, as opposed to cross-linked iron oxide particle conjugation methods or biotin-labeled nanoparticles. As a result, this method represents a simple, robust approach that may be extended to conjugation of other proteins of interest.
Molecular Biology, Issue 65, Biomedical Engineering, conjugation, annexin, iron oxide, nanoparticle, MRI, molecular imaging
3775
Play Button
Implantation of Ferumoxides Labeled Human Mesenchymal Stem Cells in Cartilage Defects
Authors: Alexander J. Nedopil, Lydia G. Mandrussow, Heike E. Daldrup-Link.
Institutions: Medical Center, University of California San Francisco.
The field of tissue engineering integrates the principles of engineering, cell biology and medicine towards the regeneration of specific cells and functional tissue. Matrix associated stem cell implants (MASI) aim to regenerate cartilage defects due to arthritic or traumatic joint injuries. Adult mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the chondrogenic lineage and have shown promising results for cell-based articular cartilage repair technologies. Autologous MSCs can be isolated from a variety of tissues, can be expanded in cell cultures without losing their differentiation potential, and have demonstrated chondrogenic differentiation in vitro and in vivo1, 2. In order to provide local retention and viability of transplanted MSCs in cartilage defects, a scaffold is needed, which also supports subsequent differentiation and proliferation. The architecture of the scaffold guides tissue formation and permits the extracellular matrix, produced by the stem cells, to expand. Previous investigations have shown that a 2% agarose scaffold may support the development of stable hyaline cartilage and does not induce immune responses3. Long term retention of transplanted stem cells in MASI is critical for cartilage regeneration. Labeling of MSCs with iron oxide nanoparticles allows for long-term in vivo tracking with non-invasive MR imaging techniques4. This presentation will demonstrate techniques for labeling MSCs with iron oxide nanoparticles, the generation of cell-agarose constructs and implantation of these constructs into cartilage defects. The labeled constructs can be tracked non-invasively with MR-Imaging.
Cellular Biology, Issue 38, Stem cells, cartilage defect, agarose, scaffold, tissue engineering, implantation, MASI
1793
Play Button
Isolation and Culture of Pulmonary Endothelial Cells from Neonatal Mice
Authors: Magdalena Sobczak, Jillian Dargatz, Magdalena Chrzanowska-Wodnicka.
Institutions: BloodCenter of Wisconsin.
Endothelial cells provide a useful research model in many areas of vascular biology. Since its first isolation 1, human umbilical vein endothelial cells (HUVECs) have shown to be convenient, easy to obtain and culture, and thus are the most widely studied endothelial cells. However, for research focused on processes like angiogenesis, permeability or many others, microvascular endothelial cells (ECs) are a much more physiologically relevant model to study 2. Furthermore, ECs isolated from knockout mice provide a useful tool for analysis of protein function ex vivo. Several approaches to isolate and culture microvascular ECs of different origin have been reported to date 3-7, but consistent isolation and culture of pure ECs is still a major technical problem in many laboratories. Here, we provide a step-by-step protocol on a reliable and relatively simple method of isolating and culturing mouse lung endothelial cells (MLECs). In this approach, lung tissue obtained from 6- to 8-day old pups is first cut into pieces, digested with collagenase/dispase (C/D) solution and dispersed mechanically into single-cell suspension. MLECS are purified from cell suspension using positive selection with anti-PECAM-1 antibody conjugated to Dynabeads using a Magnetic Particle Concentrator (MPC). Such purified cells are cultured on gelatin-coated tissue culture (TC) dishes until they become confluent. At that point, cells are further purified using Dynabeads coupled to anti-ICAM-2 antibody. MLECs obtained with this protocol exhibit a cobblestone phenotype, as visualized by phase-contrast light microscopy, and their endothelial phenotype has been confirmed using FACS analysis with anti-VE-cadherin 8 and anti-VEGFR2 9 antibodies and immunofluorescent staining of VE-cadherin. In our hands, this two-step isolation procedure consistently and reliably yields a pure population of MLECs, which can be further cultured. This method will enable researchers to take advantage of the growing number of knockout and transgenic mice to directly correlate in vivo studies with results of in vitro experiments performed on isolated MLECs and thus help to reveal molecular mechanisms of vascular phenotypes observed in vivo.
Cellular Biology, Issue 46, Endothelium, lung, microvascular cells, mouse, isolation, angiogenesis, vascular permeability, adherens junctions
2316
Play Button
Polymalic Acid-based Nano Biopolymers for Targeting of Multiple Tumor Markers: An Opportunity for Personalized Medicine?
Authors: Julia Y. Ljubimova, Hui Ding, Jose Portilla-Arias, Rameshwar Patil, Pallavi R. Gangalum, Alexandra Chesnokova, Satoshi Inoue, Arthur Rekechenetskiy, Tala Nassoura, Keith L. Black, Eggehard Holler.
Institutions: Cedars-Sinai Medical Center.
Tumors with similar grade and morphology often respond differently to the same treatment because of variations in molecular profiling. To account for this diversity, personalized medicine is developed for silencing malignancy associated genes. Nano drugs fit these needs by targeting tumor and delivering antisense oligonucleotides for silencing of genes. As drugs for the treatment are often administered repeatedly, absence of toxicity and negligible immune response are desirable. In the example presented here, a nano medicine is synthesized from the biodegradable, non-toxic and non-immunogenic platform polymalic acid by controlled chemical ligation of antisense oligonucleotides and tumor targeting molecules. The synthesis and treatment is exemplified for human Her2-positive breast cancer using an experimental mouse model. The case can be translated towards synthesis and treatment of other tumors.
Chemistry, Issue 88, Cancer treatment, personalized medicine, polymalic acid, nanodrug, biopolymer, targeting, host compatibility, biodegradability
50668
Play Button
Therapeutic Gene Delivery and Transfection in Human Pancreatic Cancer Cells using Epidermal Growth Factor Receptor-targeted Gelatin Nanoparticles
Authors: Jing Xu, Mansoor Amiji.
Institutions: Northeastern University.
More than 32,000 patients are diagnosed with pancreatic cancer in the United States per year and the disease is associated with very high mortality 1. Urgent need exists to develop novel clinically-translatable therapeutic strategies that can improve on the dismal survival statistics of pancreatic cancer patients. Although gene therapy in cancer has shown a tremendous promise, the major challenge is in the development of safe and effective delivery system, which can lead to sustained transgene expression. Gelatin is one of the most versatile natural biopolymer, widely used in food and pharmaceutical products. Previous studies from our laboratory have shown that type B gelatin could physical encapsulate DNA, which preserved the supercoiled structure of the plasmid and improved transfection efficiency upon intracellular delivery. By thiolation of gelatin, the sulfhydryl groups could be introduced into the polymer and would form disulfide bond within nanoparticles, which stabilizes the whole complex and once disulfide bond is broken due to the presence of glutathione in cytosol, payload would be released 2-5. Poly(ethylene glycol) (PEG)-modified GENS, when administered into the systemic circulation, provides long-circulation times and preferentially targets to the tumor mass due to the hyper-permeability of the neovasculature by the enhanced permeability and retention effect 6. Studies have shown over-expression of the epidermal growth factor receptor (EGFR) on Panc-1 human pancreatic adenocarcinoma cells 7. In order to actively target pancreatic cancer cell line, EGFR specific peptide was conjugated on the particle surface through a PEG spacer.8 Most anti-tumor gene therapies are focused on administration of the tumor suppressor genes, such as wild-type p53 (wt-p53), to restore the pro-apoptotic function in the cells 9. The p53 mechanism functions as a critical signaling pathway in cell growth, which regulates apoptosis, cell cycle arrest, metabolism and other processes 10. In pancreatic cancer, most cells have mutations in p53 protein, causing the loss of apoptotic activity. With the introduction of wt-p53, the apoptosis could be repaired and further triggers cell death in cancer cells 11. Based on the above rationale, we have designed EGFR targeting peptide-modified thiolated gelatin nanoparticles for wt-p53 gene delivery and evaluated delivery efficiency and transfection in Panc-1 cells.
Bioengineering, Issue 59, Gelatin Nanoparticle, Gene Therapy, Targeted Delivery, Pancreatic Cancer, Epidermal Growth Factor Receptor, EGFR
3612
Play Button
In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions
Authors: Grant E. Johnson, K. Don Dasitha Gunaratne, Julia Laskin.
Institutions: Pacific Northwest National Laboratory.
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.
Chemistry, Issue 88, soft landing, mass selected ions, electrospray, secondary ion mass spectrometry, infrared spectroscopy, organometallic, catalysis
51344
Play Button
Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition
Authors: A. Wouter Maijenburg, Eddy J.B. Rodijk, Michiel G. Maas, Johan E. ten Elshof.
Institutions: University of Twente.
Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution.
Physics, Issue 87, Multicomponent nanowires, electrochemistry, sol-gel processes, photocatalysis, photochemistry, H2 evolution
51547
Play Button
Laser-induced Breakdown Spectroscopy: A New Approach for Nanoparticle's Mapping and Quantification in Organ Tissue
Authors: Lucie Sancey, Vincent Motto-Ros, Shady Kotb, Xiaochun Wang, François Lux, Gérard Panczer, Jin Yu, Olivier Tillement.
Institutions: CNRS - Université Lyon 1, CNRS - Université Lyon 1, CNRS - Université Lyon 1.
Emission spectroscopy of laser-induced plasma was applied to elemental analysis of biological samples. Laser-induced breakdown spectroscopy (LIBS) performed on thin sections of rodent tissues: kidneys and tumor, allows the detection of inorganic elements such as (i) Na, Ca, Cu, Mg, P, and Fe, naturally present in the body and (ii) Si and Gd, detected after the injection of gadolinium-based nanoparticles. The animals were euthanized 1 to 24 hr after intravenous injection of particles. A two-dimensional scan of the sample, performed using a motorized micrometric 3D-stage, allowed the infrared laser beam exploring the surface with a lateral resolution less than 100 μm. Quantitative chemical images of Gd element inside the organ were obtained with sub-mM sensitivity. LIBS offers a simple and robust method to study the distribution of inorganic materials without any specific labeling. Moreover, the compatibility of the setup with standard optical microscopy emphasizes its potential to provide multiple images of the same biological tissue with different types of response: elemental, molecular, or cellular.
Physics, Issue 88, Microtechnology, Nanotechnology, Tissues, Diagnosis, Inorganic Chemistry, Organic Chemistry, Physical Chemistry, Plasma Physics, laser-induced breakdown spectroscopy, nanoparticles, elemental mapping, chemical images of organ tissue, quantification, biomedical measurement, laser-induced plasma, spectrochemical analysis, tissue mapping
51353
Play Button
Platelet Adhesion and Aggregation Under Flow using Microfluidic Flow Cells
Authors: Carolyn G. Conant, Michael A. Schwartz, Tanner Nevill, Cristian Ionescu-Zanetti.
Institutions: Fluxion Biosciences, Inc..
Platelet aggregation occurs in response to vascular injury where the extracellular matrix below the endothelium has been exposed. The platelet adhesion cascade takes place in the presence of shear flow, a factor not accounted for in conventional (static) well-plate assays. This article reports on a platelet-aggregation assay utilizing a microfluidic well-plate format to emulate physiological shear flow conditions. Extracellular proteins, collagen I or von Willebrand factor are deposited within the microfluidic channel using active perfusion with a pneumatic pump. The matrix proteins are then washed with buffer and blocked to prepare the microfluidic channel for platelet interactions. Whole blood labeled with fluorescent dye is perfused through the channel at various flow rates in order to achieve platelet activation and aggregation. Inhibitors of platelet aggregation can be added prior to the flow cell experiment to generate IC50 dose response data.
Medicine, Issue 32, thrombus formation, anti-thrombotic, microfluidic, whole blood assay, IC50, drug screening, platelet, adhesion
1644
Play Button
Labeling Stem Cells with Ferumoxytol, an FDA-Approved Iron Oxide Nanoparticle
Authors: Rosalinda T. Castaneda, Aman Khurana, Ramsha Khan, Heike E. Daldrup-Link.
Institutions: Molecular Imaging Program at Stanford (MIPS) , Stanford University .
Stem cell based therapies offer significant potential for the field of regenerative medicine. However, much remains to be understood regarding the in vivo kinetics of transplanted cells. A non-invasive method to repetitively monitor transplanted stem cells in vivo would allow investigators to directly monitor stem cell transplants and identify successful or unsuccessful engraftment outcomes. A wide range of stem cells continues to be investigated for countless applications. This protocol focuses on 3 different stem cell populations: human embryonic kidney 293 (HEK293) cells, human mesenchymal stem cells (hMSC) and induced pluripotent stem (iPS) cells. HEK 293 cells are derived from human embryonic kidney cells grown in culture with sheared adenovirus 5 DNA. These cells are widely used in research because they are easily cultured, grow quickly and are easily transfected. hMSCs are found in adult marrow. These cells can be replicated as undifferentiated cells while maintaining multipotency or the potential to differentiate into a limited number of cell fates. hMSCs can differentiate to lineages of mesenchymal tissues, including osteoblasts, adipocytes, chondrocytes, tendon, muscle, and marrow stroma. iPS cells are genetically reprogrammed adult cells that have been modified to express genes and factors similar to defining properties of embryonic stem cells. These cells are pluripotent meaning they have the capacity to differentiate into all cell lineages 1. Both hMSCs and iPS cells have demonstrated tissue regenerative capacity in-vivo. Magnetic resonance (MR) imaging together with the use of superparamagnetic iron oxide (SPIO) nanoparticle cell labels have proven effective for in vivo tracking of stem cells due to the near microscopic anatomical resolution, a longer blood half-life that permits longitudinal imaging and the high sensitivity for cell detection provided by MR imaging of SPIO nanoparticles 2-4. In addition, MR imaging with the use of SPIOs is clinically translatable. SPIOs are composed of an iron oxide core with a dextran, carboxydextran or starch surface coat that serves to contain the bioreactive iron core from plasma components. These agents create local magnetic field inhomogeneities that lead to a decreased signal on T2-weighted MR images 5. Unfortunately, SPIOs are no longer being manufactured. Second generation, ultrasmall SPIOs (USPIO), however, offer a viable alternative. Ferumoxytol (FerahemeTM) is one USPIO composed of a non-stoichiometric magnetite core surrounded by a polyglucose sorbitol carboxymethylether coat. The colloidal, particle size of ferumoxytol is 17-30 nm as determined by light scattering. The molecular weight is 750 kDa, and the relaxivity constant at 2T MRI field is 58.609 mM-1 sec-1 strength4. Ferumoxytol was recently FDA-approved as an iron supplement for treatment of iron deficiency in patients with renal failure 6. Our group has applied this agent in an “off label” use for cell labeling applications. Our technique demonstrates efficient labeling of stem cells with ferumoxytol that leads to significant MR signal effects of labeled cells on MR images. This technique may be applied for non-invasive monitoring of stem cell therapies in pre-clinical and clinical settings.
Medicine, Issue 57, USPIO, cell labeling, MR imaging, MRI, molecular imaging, iron oxides, ferumoxytol, cellular imaging, nanoparticles
3482
Play Button
Labeling hESCs and hMSCs with Iron Oxide Nanoparticles for Non-Invasive in vivo Tracking with MR Imaging
Authors: Tobias D. Henning, Sophie Boddington, Heike E. Daldrup-Link.
Institutions: Contrast Agent Research Group at the Center for Molecular and Functional Imaging, Department of Radiology, University of California San Francisco.
In recent years, stem cell research has led to a better understanding of developmental biology, various diseases and its potential impact on regenerative medicine. A non-invasive method to monitor the transplanted stem cells repeatedly in vivo would greatly enhance our ability to understand the mechanisms that control stem cell death and identify trophic factors and signaling pathways that improve stem cell engraftment. MR imaging has been proven to be an effective tool for the in vivo depiction of stem cells with near microscopic anatomical resolution. In order to detect stem cells with MR, the cells have to be labeled with cell specific MR contrast agents. For this purpose, iron oxide nanoparticles, such as superparamagnetic iron oxide particles (SPIO), are applied, because of their high sensitivity for cell detection and their excellent biocompatibility. SPIO particles are composed of an iron oxide core and a dextran, carboxydextran or starch coat, and function by creating local field inhomogeneities, that cause a decreased signal on T2-weighted MR images. This presentation will demonstrate techniques for labeling of stem cells with clinically applicable MR contrast agents for subsequent non-invasive in vivo tracking of the labeled cells with MR imaging.
Cell Biology, Issue 13, cell labeling, stem cell, MR imaging, cell tracking, iron oxide, contrast agents, mesenchymal stem cells
685
Play Button
Generation of an Immortalized Murine Brain Microvascular Endothelial Cell Line as an In Vitro Blood Brain Barrier Model
Authors: Malgorzata Burek, Ellaine Salvador, Carola Y. Förster.
Institutions: University of Wurzburg.
Epithelial and endothelial cells (EC) are building paracellular barriers which protect the tissue from the external and internal environment. The blood-brain barrier (BBB) consisting of EC, astrocyte end-feet, pericytes and the basal membrane is responsible for the protection and homeostasis of the brain parenchyma. In vitro BBB models are common tools to study the structure and function of the BBB at the cellular level. A considerable number of different in vitro BBB models have been established for research in different laboratories to date. Usually, the cells are obtained from bovine, porcine, rat or mouse brain tissue (discussed in detail in the review by Wilhelm et al. 1). Human tissue samples are available only in a restricted number of laboratories or companies 2,3. While primary cell preparations are time consuming and the EC cultures can differ from batch to batch, the establishment of immortalized EC lines is the focus of scientific interest. Here, we present a method for establishing an immortalized brain microvascular EC line from neonatal mouse brain. We describe the procedure step-by-step listing the reagents and solutions used. The method established by our lab allows the isolation of a homogenous immortalized endothelial cell line within four to five weeks. The brain microvascular endothelial cell lines termed cEND 4 (from cerebral cortex) and cerebEND 5 (from cerebellar cortex), were isolated according to this procedure in the Förster laboratory and have been effectively used for explanation of different physiological and pathological processes at the BBB. Using cEND and cerebEND we have demonstrated that these cells respond to glucocorticoid- 4,6-9 and estrogen-treatment 10 as well as to pro-infammatory mediators, such as TNFalpha 5,8. Moreover, we have studied the pathology of multiple sclerosis 11 and hypoxia 12,13 on the EC-level. The cEND and cerebEND lines can be considered as a good tool for studying the structure and function of the BBB, cellular responses of ECs to different stimuli or interaction of the EC with lymphocytes or cancer cells.
Immunology, Issue 66, Neuroscience, Blood-brain barrier, in vitro cell culture models, brain, microvascular endothelial cells, immortalization, cEND
4022
Play Button
Isolation of Primary Murine Brain Microvascular Endothelial Cells
Authors: Tobias Ruck, Stefan Bittner, Lisa Epping, Alexander M. Herrmann, Sven G. Meuth.
Institutions: University of Münster, Interdisciplinary Center for Clinical Research (IZKF) Münster, University of Münster.
The blood-brain-barrier is ultrastructurally assembled by a monolayer of brain microvascular endothelial cells (BMEC) interconnected by a junctional complex of tight and adherens junctions. Together with other cell-types such as astrocytes or pericytes, they form the neurovascular unit (NVU), which specifically regulates the interchange of fluids, molecules and cells between the peripheral blood and the CNS. Through this complex and dynamic system BMECs are involved in various processes maintaining the homeostasis of the CNS. A dysfunction of the BBB is observed as an essential step in the pathogenesis of many severe CNS diseases. However, specific and targeted therapies are very limited, as the underlying mechanisms are still far from being understood. Animal and in vitro models have been extensively used to gain in-depth understanding of complex physiological and pathophysiological processes. By reduction and simplification it is possible to focus the investigation on the subject of interest and to exclude a variety of confounding factors. However, comparability and transferability are also reduced in model systems, which have to be taken into account for evaluation. The most common animal models are based on mice, among other reasons, mainly due to the constantly increasing possibilities of methodology. In vitro studies of isolated murine BMECs might enable an in-depth analysis of their properties and of the blood-brain-barrier under physiological and pathophysiological conditions. Further insights into the complex mechanisms at the BBB potentially provide the basis for new therapeutic strategies. This protocol describes a method to isolate primary murine microvascular endothelial cells by a sequence of physical and chemical purification steps. Special considerations for purity and cultivation of MBMECs as well as quality control, potential applications and limitations are discussed.
Neuroscience, Issue 93, Blood brain barrier, central nervous system, endothelial cells, immune cell trafficking, neuroinflammation, neurodegeneration, neurovascular unit
52204
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
Models and Methods to Evaluate Transport of Drug Delivery Systems Across Cellular Barriers
Authors: Rasa Ghaffarian, Silvia Muro.
Institutions: University of Maryland, University of Maryland.
Sub-micrometer carriers (nanocarriers; NCs) enhance efficacy of drugs by improving solubility, stability, circulation time, targeting, and release. Additionally, traversing cellular barriers in the body is crucial for both oral delivery of therapeutic NCs into the circulation and transport from the blood into tissues, where intervention is needed. NC transport across cellular barriers is achieved by: (i) the paracellular route, via transient disruption of the junctions that interlock adjacent cells, or (ii) the transcellular route, where materials are internalized by endocytosis, transported across the cell body, and secreted at the opposite cell surface (transyctosis). Delivery across cellular barriers can be facilitated by coupling therapeutics or their carriers with targeting agents that bind specifically to cell-surface markers involved in transport. Here, we provide methods to measure the extent and mechanism of NC transport across a model cell barrier, which consists of a monolayer of gastrointestinal (GI) epithelial cells grown on a porous membrane located in a transwell insert. Formation of a permeability barrier is confirmed by measuring transepithelial electrical resistance (TEER), transepithelial transport of a control substance, and immunostaining of tight junctions. As an example, ~200 nm polymer NCs are used, which carry a therapeutic cargo and are coated with an antibody that targets a cell-surface determinant. The antibody or therapeutic cargo is labeled with 125I for radioisotope tracing and labeled NCs are added to the upper chamber over the cell monolayer for varying periods of time. NCs associated to the cells and/or transported to the underlying chamber can be detected. Measurement of free 125I allows subtraction of the degraded fraction. The paracellular route is assessed by determining potential changes caused by NC transport to the barrier parameters described above. Transcellular transport is determined by addressing the effect of modulating endocytosis and transcytosis pathways.
Bioengineering, Issue 80, Antigens, Enzymes, Biological Therapy, bioengineering (general), Pharmaceutical Preparations, Macromolecular Substances, Therapeutics, Digestive System and Oral Physiological Phenomena, Biological Phenomena, Cell Physiological Phenomena, drug delivery systems, targeted nanocarriers, transcellular transport, epithelial cells, tight junctions, transepithelial electrical resistance, endocytosis, transcytosis, radioisotope tracing, immunostaining
50638
Play Button
Improved Method for the Preparation of a Human Cell-based, Contact Model of the Blood-Brain Barrier
Authors: Be'eri Niego, Robert L. Medcalf.
Institutions: Monash University.
The blood-brain barrier (BBB) comprises impermeable but adaptable brain capillaries which tightly control the brain environment. Failure of the BBB has been implied in the etiology of many brain pathologies, creating a need for development of human in vitro BBB models to assist in clinically-relevant research. Among the numerous BBB models thus far described, a static (without flow), contact BBB model, where astrocytes and brain endothelial cells (BECs) are cocultured on the opposite sides of a porous membrane, emerged as a simplified yet authentic system to simulate the BBB with high throughput screening capacity. Nevertheless the generation of such model presents few technical challenges. Here, we describe a protocol for preparation of a contact human BBB model utilizing a novel combination of primary human BECs and immortalized human astrocytes. Specifically, we detail an innovative method for cell-seeding on inverted inserts as well as specify insert staining techniques and exemplify how we use our model for BBB-related research.
Bioengineering, Issue 81, Blood-brain barrier, model, cell culture, astrocytes, brain endothelial cells, insert, membranes
50934
Play Button
Stretch in Brain Microvascular Endothelial Cells (cEND) as an In Vitro Traumatic Brain Injury Model of the Blood Brain Barrier
Authors: Ellaine Salvador, Winfried Neuhaus, Carola Foerster.
Institutions: Zentrum für operative Medizin der Universität Würzburg, University of Vienna.
Due to the high mortality incident brought about by traumatic brain injury (TBI), methods that would enable one to better understand the underlying mechanisms involved in it are useful for treatment. There are both in vivo and in vitro methods available for this purpose. In vivo models can mimic actual head injury as it occurs during TBI. However, in vivo techniques may not be exploited for studies at the cell physiology level. Hence, in vitro methods are more advantageous for this purpose since they provide easier access to the cells and the extracellular environment for manipulation. Our protocol presents an in vitro model of TBI using stretch injury in brain microvascular endothelial cells. It utilizes pressure applied to the cells cultured in flexible-bottomed wells. The pressure applied may easily be controlled and can produce injury that ranges from low to severe. The murine brain microvascular endothelial cells (cEND) generated in our laboratory is a well-suited model for the blood brain barrier (BBB) thus providing an advantage to other systems that employ a similar technique. In addition, due to the simplicity of the method, experimental set-ups are easily duplicated. Thus, this model can be used in studying the cellular and molecular mechanisms involved in TBI at the BBB.
Medicine, Issue 80, stretch injury, traumatic brain injury, blood-brain barrier, brain microvascular endothelial cells (cEND)
50928
Play Button
Real-time Imaging of Endothelial Cell-cell Junctions During Neutrophil Transmigration Under Physiological Flow
Authors: Jeffrey Kroon, Anna E. Daniel, Mark Hoogenboezem, Jaap D. van Buul.
Institutions: Sanquin Research and Landsteiner Laboratory, AMC at University of Amsterdam.
During inflammation, leukocytes leave the circulation and cross the endothelium to fight invading pathogens in underlying tissues. This process is known as leukocyte transendothelial migration. Two routes for leukocytes to cross the endothelial monolayer have been described: the paracellular route, i.e., through the cell-cell junctions and the transcellular route, i.e., through the endothelial cell body. However, it has been technically difficult to discriminate between the para- and transcellular route. We developed a simple in vitro assay to study the distribution of endogenous VE-cadherin and PECAM-1 during neutrophil transendothelial migration under physiological flow conditions. Prior to neutrophil perfusion, endothelial cells were briefly treated with fluorescently-labeled antibodies against VE-cadherin and PECAM-1. These antibodies did not interfere with the function of both proteins, as was determined by electrical cell-substrate impedance sensing and FRAP measurements. Using this assay, we were able to follow the distribution of endogenous VE-cadherin and PECAM-1 during transendothelial migration under flow conditions and discriminate between the para- and transcellular migration routes of the leukocytes across the endothelium.
Immunology, Issue 90, Leukocytes, Human Umbilical Vein Endothelial Cells (HUVECs), transmigration, VE-cadherin, PECAM-1, endothelium, transcellular, paracellular
51766
Play Button
Magnetic Tweezers for the Measurement of Twist and Torque
Authors: Jan Lipfert, Mina Lee, Orkide Ordu, Jacob W. J. Kerssemakers, Nynke H. Dekker.
Institutions: Delft University of Technology.
Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque while maintaining a constant stretching force. Here, it is illustrated how such a “conventional” magnetic tweezers experimental configuration can, through a straightforward modification of its field configuration to minimize the magnitude of the transverse field, be adapted to measure the degree of twist in a biological molecule. The resulting configuration is termed the freely-orbiting magnetic tweezers. Additionally, it is shown how further modification of the field configuration can yield a transverse field with a magnitude intermediate between that of the “conventional” magnetic tweezers and the freely-orbiting magnetic tweezers, which makes it possible to directly measure the torque stored in a biological molecule. This configuration is termed the magnetic torque tweezers. The accompanying video explains in detail how the conversion of conventional magnetic tweezers into freely-orbiting magnetic tweezers and magnetic torque tweezers can be accomplished, and demonstrates the use of these techniques. These adaptations maintain all the strengths of conventional magnetic tweezers while greatly expanding the versatility of this powerful instrument.
Bioengineering, Issue 87, magnetic tweezers, magnetic torque tweezers, freely-orbiting magnetic tweezers, twist, torque, DNA, single-molecule techniques
51503
Play Button
Microfluidic On-chip Capture-cycloaddition Reaction to Reversibly Immobilize Small Molecules or Multi-component Structures for Biosensor Applications
Authors: Carlos Tassa, Monty Liong, Scott Hilderbrand, Jason E. Sandler, Thomas Reiner, Edmund J. Keliher, Ralph Weissleder, Stanley Y. Shaw.
Institutions: Massachusetts General Hospital.
Methods for rapid surface immobilization of bioactive small molecules with control over orientation and immobilization density are highly desirable for biosensor and microarray applications. In this Study, we use a highly efficient covalent bioorthogonal [4+2] cycloaddition reaction between trans-cyclooctene (TCO) and 1,2,4,5-tetrazine (Tz) to enable the microfluidic immobilization of TCO/Tz-derivatized molecules. We monitor the process in real-time under continuous flow conditions using surface plasmon resonance (SPR). To enable reversible immobilization and extend the experimental range of the sensor surface, we combine a non-covalent antigen-antibody capture component with the cycloaddition reaction. By alternately presenting TCO or Tz moieties to the sensor surface, multiple capture-cycloaddition processes are now possible on one sensor surface for on-chip assembly and interaction studies of a variety of multi-component structures. We illustrate this method with two different immobilization experiments on a biosensor chip; a small molecule, AP1497 that binds FK506-binding protein 12 (FKBP12); and the same small molecule as part of an immobilized and in situ-functionalized nanoparticle.
Chemistry, Issue 79, Organic Chemicals, Macromolecular Substances, Chemistry and Materials (General), Surface Plasmon Resonance, Bioorthogonal Chemistry, Diels-Alder Cycloaddition Reaction, Small Molecule Immobilization, Binding Kinetics, Immobilized Nanoparticles
50772
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.