JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
The Autophagy-Related Marker LC3 Can Predict Prognosis in Human Hepatocellular Carcinoma.
PLoS ONE
PUBLISHED: 01-01-2013
Defects of autophagy and endoplasmic reticulum (ER) stress are related to many diseases and tumors. However, only a few studies have examined hepatocellular carcinoma (HCC) as related to these processes. Therefore, in this study, we investigated the expression and extent of autophagy and ER stress-related markers in HCC and their influence on clinical characteristics and prognosis for each protein.
Authors: Eleftherios Karanasios, Eloise Stapleton, Simon A. Walker, Maria Manifava, Nicholas T. Ktistakis.
Published: 07-27-2013
ABSTRACT
Autophagy is a cellular response triggered by the lack of nutrients, especially the absence of amino acids. Autophagy is defined by the formation of double membrane structures, called autophagosomes, that sequester cytoplasm, long-lived proteins and protein aggregates, defective organelles, and even viruses or bacteria. Autophagosomes eventually fuse with lysosomes leading to bulk degradation of their content, with the produced nutrients being recycled back to the cytoplasm. Therefore, autophagy is crucial for cell homeostasis, and dysregulation of autophagy can lead to disease, most notably neurodegeneration, ageing and cancer. Autophagosome formation is a very elaborate process, for which cells have allocated a specific group of proteins, called the core autophagy machinery. The core autophagy machinery is functionally complemented by additional proteins involved in diverse cellular processes, e.g. in membrane trafficking, in mitochondrial and lysosomal biology. Coordination of these proteins for the formation and degradation of autophagosomes constitutes the highly dynamic and sophisticated response of autophagy. Live cell imaging allows one to follow the molecular contribution of each autophagy-related protein down to the level of a single autophagosome formation event and in real time, therefore this technique offers a high temporal and spatial resolution. Here we use a cell line stably expressing GFP-DFCP1, to establish a spatial and temporal context for our analysis. DFCP1 marks omegasomes, which are precursor structures leading to autophagosomes formation. A protein of interest (POI) can be marked with either a red or cyan fluorescent tag. Different organelles, like the ER, mitochondria and lysosomes, are all involved in different steps of autophagosome formation, and can be marked using a specific tracker dye. Time-lapse microscopy of autophagy in this experimental set up, allows information to be extracted about the fourth dimension, i.e. time. Hence we can follow the contribution of the POI to autophagy in space and time.
18 Related JoVE Articles!
Play Button
Generation of Subcutaneous and Intrahepatic Human Hepatocellular Carcinoma Xenografts in Immunodeficient Mice
Authors: Sharif U. Ahmed, Murtuza Zair, Kui Chen, Matthew Iu, Feng He, Oyedele Adeyi, Sean P. Cleary, Anand Ghanekar.
Institutions: University Health Network, University Health Network, University Health Network.
In vivo experimental models of hepatocellular carcinoma (HCC) that recapitulate the human disease provide a valuable platform for research into disease pathophysiology and for the preclinical evaluation of novel therapies. We present a variety of methods to generate subcutaneous or orthotopic human HCC xenografts in immunodeficient mice that could be utilized in a variety of research applications. With a focus on the use of primary tumor tissue from patients undergoing surgical resection as a starting point, we describe the preparation of cell suspensions or tumor fragments for xenografting. We describe specific techniques to xenograft these tissues i) subcutaneously; or ii) intrahepatically, either by direct implantation of tumor cells or fragments into the liver, or indirectly by injection of cells into the mouse spleen. We also describe the use of partial resection of the native mouse liver at the time of xenografting as a strategy to induce a state of active liver regeneration in the recipient mouse that may facilitate the intrahepatic engraftment of primary human tumor cells. The expected results of these techniques are illustrated. The protocols described have been validated using primary human HCC samples and xenografts, which typically perform less robustly than the well-established human HCC cell lines that are widely used and frequently cited in the literature. In comparison with cell lines, we discuss factors which may contribute to the relatively low chance of primary HCC engraftment in xenotransplantation models and comment on technical issues that may influence the kinetics of xenograft growth. We also suggest methods that should be applied to ensure that xenografts obtained accurately resemble parent HCC tissues.
Medicine, Issue 79, Liver Neoplasms, Hepatectomy, animal models, hepatocellular carcinoma, xenograft, cancer, liver, subcutaneous, intrahepatic, orthotopic, mouse, human, immunodeficient
50544
Play Button
Dual-phase Cone-beam Computed Tomography to See, Reach, and Treat Hepatocellular Carcinoma during Drug-eluting Beads Transarterial Chemo-embolization
Authors: Vania Tacher, MingDe Lin, Nikhil Bhagat, Nadine Abi Jaoudeh, Alessandro Radaelli, Niels Noordhoek, Bart Carelsen, Bradford J. Wood, Jean-François Geschwind.
Institutions: The Johns Hopkins Hospital, Philips Research North America, National Institutes of Health, Philips Healthcare.
The advent of cone-beam computed tomography (CBCT) in the angiography suite has been revolutionary in interventional radiology. CBCT offers 3 dimensional (3D) diagnostic imaging in the interventional suite and can enhance minimally-invasive therapy beyond the limitations of 2D angiography alone. The role of CBCT has been recognized in transarterial chemo-embolization (TACE) treatment of hepatocellular carcinoma (HCC). The recent introduction of a CBCT technique: dual-phase CBCT (DP-CBCT) improves intra-arterial HCC treatment with drug-eluting beads (DEB-TACE). DP-CBCT can be used to localize liver tumors with the diagnostic accuracy of multi-phasic multidetector computed tomography (M-MDCT) and contrast enhanced magnetic resonance imaging (CE-MRI) (See the tumor), to guide intra-arterially guidewire and microcatheter to the desired location for selective therapy (Reach the tumor), and to evaluate treatment success during the procedure (Treat the tumor). The purpose of this manuscript is to illustrate how DP-CBCT is used in DEB-TACE to see, reach, and treat HCC.
Medicine, Issue 82, Carcinoma, Hepatocellular, Tomography, X-Ray Computed, Surgical Procedures, Minimally Invasive, Digestive System Diseases, Diagnosis, Therapeutics, Surgical Procedures, Operative, Equipment and Supplies, Transarterial chemo-embolization, Hepatocellular carcinoma, Dual-phase cone-beam computed tomography, 3D roadmap, Drug-Eluting Beads
50795
Play Button
Chemically-blocked Antibody Microarray for Multiplexed High-throughput Profiling of Specific Protein Glycosylation in Complex Samples
Authors: Chen Lu, Joshua L. Wonsidler, Jianwei Li, Yanming Du, Timothy Block, Brian Haab, Songming Chen.
Institutions: Institute for Hepatitis and Virus Research, Thomas Jefferson University , Drexel University College of Medicine, Van Andel Research Institute, Serome Biosciences Inc..
In this study, we describe an effective protocol for use in a multiplexed high-throughput antibody microarray with glycan binding protein detection that allows for the glycosylation profiling of specific proteins. Glycosylation of proteins is the most prevalent post-translational modification found on proteins, and leads diversified modifications of the physical, chemical, and biological properties of proteins. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases. However, current methods to study protein glycosylation typically are too complicated or expensive for use in most normal laboratory or clinical settings and a more practical method to study protein glycosylation is needed. The new protocol described in this study makes use of a chemically blocked antibody microarray with glycan-binding protein (GBP) detection and significantly reduces the time, cost, and lab equipment requirements needed to study protein glycosylation. In this method, multiple immobilized glycoprotein-specific antibodies are printed directly onto the microarray slides and the N-glycans on the antibodies are blocked. The blocked, immobilized glycoprotein-specific antibodies are able to capture and isolate glycoproteins from a complex sample that is applied directly onto the microarray slides. Glycan detection then can be performed by the application of biotinylated lectins and other GBPs to the microarray slide, while binding levels can be determined using Dylight 549-Streptavidin. Through the use of an antibody panel and probing with multiple biotinylated lectins, this method allows for an effective glycosylation profile of the different proteins found in a given human or animal sample to be developed. Introduction Glycosylation of protein, which is the most ubiquitous post-translational modification on proteins, modifies the physical, chemical, and biological properties of a protein, and plays a fundamental role in various biological processes1-6. Because the glycosylation machinery is particularly susceptible to disease progression and malignant transformation, aberrant glycosylation has been recognized as early detection biomarkers for cancer and other diseases 7-12. In fact, most current cancer biomarkers, such as the L3 fraction of α-1 fetoprotein (AFP) for hepatocellular carcinoma 13-15, and CA199 for pancreatic cancer 16, 17 are all aberrant glycan moieties on glycoproteins. However, methods to study protein glycosylation have been complicated, and not suitable for routine laboratory and clinical settings. Chen et al. has recently invented a chemically blocked antibody microarray with a glycan-binding protein (GBP) detection method for high-throughput and multiplexed profile glycosylation of native glycoproteins in a complex sample 18. In this affinity based microarray method, multiple immobilized glycoprotein-specific antibodies capture and isolate glycoproteins from the complex mixture directly on the microarray slide, and the glycans on each individual captured protein are measured by GBPs. Because all normal antibodies contain N-glycans which could be recognized by most GBPs, the critical step of this method is to chemically block the glycans on the antibodies from binding to GBP. In the procedure, the cis-diol groups of the glycans on the antibodies were first oxidized to aldehyde groups by using NaIO4 in sodium acetate buffer avoiding light. The aldehyde groups were then conjugated to the hydrazide group of a cross-linker, 4-(4-N-MaleimidoPhenyl)butyric acid Hydrazide HCl (MPBH), followed by the conjugation of a dipeptide, Cys-Gly, to the maleimide group of the MPBH. Thus, the cis-diol groups on glycans of antibodies were converted into bulky none hydroxyl groups, which hindered the lectins and other GBPs bindings to the capture antibodies. This blocking procedure makes the GBPs and lectins bind only to the glycans of captured proteins. After this chemically blocking, serum samples were incubated with the antibody microarray, followed by the glycans detection by using different biotinylated lectins and GBPs, and visualized with Cy3-streptavidin. The parallel use of an antibody panel and multiple lectin probing provides discrete glycosylation profiles of multiple proteins in a given sample 18-20. This method has been used successfully in multiple different labs 1, 7, 13, 19-31. However, stability of MPBH and Cys-Gly, complicated and extended procedure in this method affect the reproducibility, effectiveness and efficiency of the method. In this new protocol, we replaced both MPBH and Cys-Gly with one much more stable reagent glutamic acid hydrazide (Glu-hydrazide), which significantly improved the reproducibility of the method, simplified and shorten the whole procedure so that the it can be completed within one working day. In this new protocol, we describe the detailed procedure of the protocol which can be readily adopted by normal labs for routine protein glycosylation study and techniques which are necessary to obtain reproducible and repeatable results.
Molecular Biology, Issue 63, Glycoproteins, glycan-binding protein, specific protein glycosylation, multiplexed high-throughput glycan blocked antibody microarray
3791
Play Button
Single Drosophila Ommatidium Dissection and Imaging
Authors: Vera Volpi, Daniel Mackay, Manolis Fanto.
Institutions: King's College London.
The fruit fly Drosophila melanogaster has made invaluable contributions to neuroscience research and has been used widely as a model for neurodegenerative diseases because of its powerful genetics1. The fly eye in particular has been the organ of choice for neurodegeneration research, being the most accessible and life-dispensable part of the Drosophila nervous system. However the major caveat of intact eyes is the difficulty, because of the intense autofluorescence of the pigment, in imaging intracellular events, such as autophagy dynamics2, which are paramount to understanding of neurodegeneration. We have recently used the dissection and culture of single ommatidia3 that has been essential for our understanding of autophagic dysfunctions in a fly model of Dentatorubro-Pallidoluysian Atrophy (DRPLA)3, 4. We now report a comprehensive description of this technique (Fig. 1), adapted from electrophysiological studies5, which is likely to expand dramatically the possibility of fly models for neurodegeneration. This method can be adapted to image live subcellular events and to monitor effective drug administration onto photoreceptor cells (Fig. 2). If used in combination with mosaic techniques6-8, the responses of genetically different cells can be assayed in parallel (Fig. 2).
Neuroscience, Issue 54, Drosophila, cell biology, neuroscience, autophagy
2882
Play Button
A Fluorescence Microscopy Assay for Monitoring Mitophagy in the Yeast Saccharomyces cerevisiae
Authors: Dalibor Mijaljica, Mark Prescott, Rodney J. Devenish.
Institutions: Monash University.
Autophagy is important for turnover of cellular components under a range of different conditions. It serves an essential homeostatic function as well as a quality control mechanism that can target and selectively degrade cellular material including organelles1-4. For example, damaged or redundant mitochondria (Fig. 1), not disposed of by autophagy, can represent a threat to cellular homeostasis and cell survival. In the yeast, Saccharomyces cerevisiae, nutrient deprivation (e.g., nitrogen starvation) or damage can promote selective turnover of mitochondria by autophagy in a process termed mitophagy 5-9. We describe a simple fluorescence microscopy approach to assess autophagy. For clarity we restrict our description here to show how the approach can be used to monitor mitophagy in yeast cells. The assay makes use of a fluorescent reporter, Rosella, which is a dual-emission biosensor comprising a relatively pH-stable red fluorescent protein linked to a pH-sensitive green fluorescent protein. The operation of this reporter relies on differences in pH between the vacuole (pH ~ 5.0-5.5) and mitochondria (pH ~ 8.2) in living cells. Under growing conditions, wild type cells exhibit both red and green fluorescence distributed in a manner characteristic of the mitochondria. Fluorescence emission is not associated with the vacuole. When subjected to nitrogen starvation, a condition which induces mitophagy, in addition to red and green fluorescence labeling the mitochondria, cells exhibit the accumulation of red, but not green fluorescence, in the acidic vacuolar lumen representing the delivery of mitochondria to the vacuole. Scoring cells with red, but not green fluorescent vacuoles can be used as a measure of mitophagic activity in cells5,10-12.
Cell Biology, Issue 53, autophagy, microscopy, mitochondria, nucleus, yeast
2779
Play Button
Cecal Ligation and Puncture-induced Sepsis as a Model To Study Autophagy in Mice
Authors: Ilias I. Siempos, Hilaire C. Lam, Yan Ding, Mary E. Choi, Augustine M. K. Choi, Stefan W. Ryter.
Institutions: Brigham and Women's Hospital, Brigham and Women's Hospital, Harvard Medical School, University of Athens Medical School, Evangelismos Hospital, Athens, Greece.
Experimental sepsis can be induced in mice using the cecal ligation and puncture (CLP) method, which causes polymicrobial sepsis. Here, a protocol is provided to induce sepsis of varying severity in mice using the CLP technique. Autophagy is a fundamental tissue response to stress and pathogen invasion. Two current protocols to assess autophagy in vivo in the context of experimental sepsis are also presented here. (I) Transgenic mice expressing green fluorescence protein (GFP)-LC3 fusion protein are subjected to CLP. Localized enhancement of GFP signal (puncta), as assayed either by immunohistochemical or confocal assays, can be used to detect enhanced autophagosome formation and, thus, altered activation of the autophagy pathway. (II) Enhanced autophagic vacuole (autophagosome) formation per unit tissue area (as a marker of autophagy stimulation) can be quantified using electron microscopy. The study of autophagic responses to sepsis is a critical component of understanding the mechanisms by which tissues respond to infection. Research findings in this area may ultimately contribute towards understanding the pathogenesis of sepsis, which represents a major problem in critical care medicine.
Infection, Issue 84, autophagosome, Autophagy, cecal ligation and puncture, mice, sepsis
51066
Play Button
Quantitative Analysis of Autophagy using Advanced 3D Fluorescence Microscopy
Authors: Chun A. Changou, Deanna L. Wolfson, Balpreet Singh Ahluwalia, Richard J. Bold, Hsing-Jien Kung, Frank Y.S. Chuang.
Institutions: University of California, Davis , University of California, Davis , University of Tromsø, University of California, Davis , University of California, Davis , University of California, Davis .
Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine1. This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)1,10. Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)1,2,3. Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation4,5. Although the essential components of this pathway are well-characterized6,7,8,9, many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy11,12. Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early stages of autophagy induction. With commercially available digital image analysis applications, we can readily obtain statistical information about autophagosome and lysosome number, size, distribution, and degree of colocalization from any imaged cell. This information allows us to precisely track the progress of autophagy in living cells and enables our continued investigation into the role of autophagy in cancer chemotherapy.
Cellular Biology, Issue 75, Biochemistry, Molecular Biology, Medicine, Cancer Biology, Biophysics, Chemical Biology, Proteins, Microscopy, Fluorescence, autophagy, arginine deiminase, prostate cancer, deconvolution microscopy, super-resolution structured-illumination microscopy, live cell imaging, tumors, autophagosomes, lysosomes, cells, cell culture, microscopy, imaging, visualization
50047
Play Button
Isolation of CD133+ Liver Stem Cells for Clonal Expansion
Authors: C. Bart Rountree, Wei Ding, Hein Dang, Colleen VanKirk, Gay M. Crooks.
Institutions: Pennsylvania State College of Medicine, Pennsylvania State College of Medicine, University of California Los Angeles, School of Medicine.
Liver stem cell, or oval cells, proliferate during chronic liver injury, and are proposed to differentiate into both hepatocytes and cholangiocytes. In addition, liver stem cells are hypothesized to be the precursors for a subset of liver cancer, Hepatocellular carcinoma. One of the primary challenges to stem cell work in any solid organ like the liver is the isolation of a rare population of cells for detailed analysis. For example, the vast majority of cells in the liver are hepatocytes (parenchymal fraction), which are significantly larger than non-parenchymal cells. By enriching the specific cellular compartments of the liver (i.e. parenchymal and non-parenchymal fractions), and selecting for CD45 negative cells, we are able to enrich the starting population of stem cells by over 600-fold.The proceduresdetailed in this report allow for a relatively rare population of cells from a solid organ to be sorted efficiently. This process can be utilized to isolateliver stem cells from normal murine liver as well as chronic liver injury models, which demonstrate increased liver stem cell proliferation. This method has clear advantages over standard immunohistochemistry of frozen or formalin fixed liver as functional studies using live cells can be performed after initial co-localization experiments. To accomplish the procedure outlined in this report, a working relationship with a research based flow-cytometry core is strongly encouraged as the details of FACS isolation are highly dependent on specialized instrumentation and a strong working knowledge of basic flow-cytometry procedures. The specific goal of this process is to isolate a population of liver stem cells that can be clonally expanded in vitro.
Developmental Biology, Issue 56, CD133, liver stem cell, oval cell, liver cancer stem cell, stem cell, cell isolation, non-parenchymal fraction of liver, flow cytometry
3183
Play Button
Live Cell Calcium Imaging Combined with siRNA Mediated Gene Silencing Identifies Ca2+ Leak Channels in the ER Membrane and their Regulatory Mechanisms
Authors: Sven Lang, Nico Schäuble, Adolfo Cavalié, Richard Zimmermann.
Institutions: Saarland University, Saarland University.
In mammalian cells, the endoplasmic reticulum (ER) plays a key role in protein biogenesis as well as in calcium signalling1. The heterotrimeric Sec61 complex in the ER membrane provides an aqueous path for newly-synthesized polypeptides into the lumen of the ER. Recent work from various laboratories suggested that this heterotrimeric complex may also form transient Ca2+ leak channels2-8. The key observation for this notion was that release of nascent polypeptides from the ribosome and Sec61 complex by puromycin leads to transient release of Ca2+ from the ER. Furthermore, it had been observed in vitro that the ER luminal protein BiP is involved in preventing ion permeability at the level of the Sec61 complex9,10. We have established an experimental system that allows us to directly address the role of the Sec61 complex as potential Ca2+ leak channel and to characterize its putative regulatory mechanisms11-13. This system combines siRNA mediated gene silencing and live cell Ca2+ imaging13. Cells are treated with siRNAs that are directed against the coding and untranslated region (UTR), respectively, of the SEC61A1 gene or a negative control siRNA. In complementation analysis, the cells are co-transfected with an IRES-GFP vector that allows the siRNA-resistant expression of the wildtype SEC61A1 gene. Then the cells are loaded with the ratiometric Ca2+-indicator FURA-2 to monitor simultaneously changes in the cytosolic Ca2+ concentration in a number of cells via a fluorescence microscope. The continuous measurement of cytosolic Ca2+ also allows the evaluation of the impact of various agents, such as puromycin, small molecule inhibitors, and thapsigargin on Ca2+ leakage. This experimental system gives us the unique opportunities to i) evaluate the contribution of different ER membrane proteins to passive Ca2+ efflux from the ER in various cell types, ii) characterize the proteins and mechanisms that limit this passive Ca2+ efflux, and iii) study the effects of disease linked mutations in the relevant components.
Cell Biology, Issue 53, Cellular calcium homeostasis, calmodulin, complementation, endoplasmic reticulum, ER calcium leakage, gene silencing, IQ motif, mutant analysis, Sec61 complex
2730
Play Button
Mitochondria-associated ER Membranes (MAMs) and Glycosphingolipid Enriched Microdomains (GEMs): Isolation from Mouse Brain
Authors: Ida Annunziata, Annette Patterson, Alessandra d'Azzo.
Institutions: St Jude Children's Research Hospital.
Intracellular organelles are highly dynamic structures with varying shape and composition, which are subjected to cell-specific intrinsic and extrinsic cues. Their membranes are often juxtaposed at defined contact sites, which become hubs for the exchange of signaling molecules and membrane components1,2,3,4. The inter-organellar membrane microdomains that are formed between the endoplasmic reticulum (ER) and the mitochondria at the opening of the IP3-sensitive Ca2+ channel are known as the mitochondria associated-ER membranes or MAMs4,5,6. The protein/lipid composition and biochemical properties of these membrane contact sites have been extensively studied particularly in relation to their role in regulating intracellular Ca2+ 4,5,6. The ER serves as the primary store of intracellular Ca2+, and in this capacity regulates a myriad of cellular processes downstream of Ca2+ signaling, including post-translational protein folding and protein maturation7. Mitochondria, on the other hand, maintain Ca2+ homeostasis, by buffering cytosolic Ca2+ concentration thereby preventing the initiation of apoptotic pathways downstream of Ca2+ unbalance4,8. The dynamic nature of the MAMs makes them ideal sites to dissect basic cellular mechanisms, including Ca2+ signaling and regulation of mitochondrial Ca2+ concentration, lipid biosynthesis and transport, energy metabolism and cell survival 4,9,10,11,12. Several protocols have been described for the purification of these microdomains from liver tissue and cultured cells13,14. Taking previously published methods into account, we have adapted a protocol for the isolation of mitochondria and MAMs from the adult mouse brain. To this procedure we have added an extra purification step, namely a Triton X100 extraction, which enables the isolation of the glycosphingolipid enriched microdomain (GEM) fraction of the MAMs. These GEM preparations share several protein components with caveolae and lipid rafts, derived from the plasma membrane or other intracellular membranes, and are proposed to function as gathering points for the clustering of receptor proteins and for protein–protein interactions4,15.
Neuroscience, Issue 73, Genetics, Cellular Biology, Molecular Biology, Biochemistry, Membrane Microdomains, Endoplasmic Reticulum, Mitochondria, Intracellular Membranes, Glycosphingolipids, Gangliosides, Endoplasmic Reticulum Stress, Cell Biology, Neurosciences, MAMs, GEMs, Mitochondria, ER, membrane microdomains, subcellular fractionation, lipids, brain, mouse, isolation, animal model
50215
Play Button
Isolation of Cellular Lipid Droplets: Two Purification Techniques Starting from Yeast Cells and Human Placentas
Authors: Jaana Mannik, Alex Meyers, Paul Dalhaimer.
Institutions: University of Tennessee, University of Tennessee.
Lipid droplets are dynamic organelles that can be found in most eukaryotic and certain prokaryotic cells. Structurally, the droplets consist of a core of neutral lipids surrounded by a phospholipid monolayer. One of the most useful techniques in determining the cellular roles of droplets has been proteomic identification of bound proteins, which can be isolated along with the droplets. Here, two methods are described to isolate lipid droplets and their bound proteins from two wide-ranging eukaryotes: fission yeast and human placental villous cells. Although both techniques have differences, the main method - density gradient centrifugation - is shared by both preparations. This shows the wide applicability of the presented droplet isolation techniques. In the first protocol, yeast cells are converted into spheroplasts by enzymatic digestion of their cell walls. The resulting spheroplasts are then gently lysed in a loose-fitting homogenizer. Ficoll is added to the lysate to provide a density gradient, and the mixture is centrifuged three times. After the first spin, the lipid droplets are localized to the white-colored floating layer of the centrifuge tubes along with the endoplasmic reticulum (ER), the plasma membrane, and vacuoles. Two subsequent spins are used to remove these other three organelles. The result is a layer that has only droplets and bound proteins. In the second protocol, placental villous cells are isolated from human term placentas by enzymatic digestion with trypsin and DNase I. The cells are homogenized in a loose-fitting homogenizer. Low-speed and medium-speed centrifugation steps are used to remove unbroken cells, cellular debris, nuclei, and mitochondria. Sucrose is added to the homogenate to provide a density gradient and the mixture is centrifuged to separate the lipid droplets from the other cellular fractions. The purity of the lipid droplets in both protocols is confirmed by Western Blot analysis. The droplet fractions from both preps are suitable for subsequent proteomic and lipidomic analysis.
Bioengineering, Issue 86, Lipid droplet, lipid body, fat body, oil body, Yeast, placenta, placental villous cells, isolation, purification, density gradient centrifugation
50981
Play Button
Detection of Toxin Translocation into the Host Cytosol by Surface Plasmon Resonance
Authors: Michael Taylor, Tuhina Banerjee, Neyda VanBennekom, Ken Teter.
Institutions: University of Central Florida.
AB toxins consist of an enzymatic A subunit and a cell-binding B subunit1. These toxins are secreted into the extracellular milieu, but they act upon targets within the eukaryotic cytosol. Some AB toxins travel by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) before entering the cytosol2-4. In the ER, the catalytic A chain dissociates from the rest of the toxin and moves through a protein-conducting channel to reach its cytosolic target5. The translocated, cytosolic A chain is difficult to detect because toxin trafficking to the ER is an extremely inefficient process: most internalized toxin is routed to the lysosomes for degradation, so only a small fraction of surface-bound toxin reaches the Golgi apparatus and ER6-12. To monitor toxin translocation from the ER to the cytosol in cultured cells, we combined a subcellular fractionation protocol with the highly sensitive detection method of surface plasmon resonance (SPR)13-15. The plasma membrane of toxin-treated cells is selectively permeabilized with digitonin, allowing collection of a cytosolic fraction which is subsequently perfused over an SPR sensor coated with an anti-toxin A chain antibody. The antibody-coated sensor can capture and detect pg/mL quantities of cytosolic toxin. With this protocol, it is possible to follow the kinetics of toxin entry into the cytosol and to characterize inhibitory effects on the translocation event. The concentration of cytosolic toxin can also be calculated from a standard curve generated with known quantities of A chain standards that have been perfused over the sensor. Our method represents a rapid, sensitive, and quantitative detection system that does not require radiolabeling or other modifications to the target toxin.
Immunology, Issue 59, Surface plasmon resonance, AB toxin, translocation, endoplasmic reticulum, cell culture, cholera toxin, pertussis toxin
3686
Play Button
Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)
Authors: Samira Samtleben, Juliane Jaepel, Caroline Fecher, Thomas Andreska, Markus Rehberg, Robert Blum.
Institutions: University of Wuerzburg, Max Planck Institute of Neurobiology, Martinsried, Ludwig-Maximilians University of Munich.
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Cellular Biology, Issue 75, Neurobiology, Neuroscience, Molecular Biology, Biochemistry, Biomedical Engineering, Bioengineering, Virology, Medicine, Anatomy, Physiology, Surgery, Endoplasmic Reticulum, ER, Calcium Signaling, calcium store, calcium imaging, calcium indicator, metabotropic signaling, Ca2+, neurons, cells, mouse, animal model, cell culture, targeted esterase induced dye loading, imaging
50317
Play Button
Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen
Authors: Dennis Ma, Jonathan Collins, Tomas Hudlicky, Siyaram Pandey.
Institutions: University of Windsor, Brock University.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Cancer Biology, Issue 63, Medicine, Biochemistry, Breast adenocarcinoma, neuroblastoma, tamoxifen, combination therapy, apoptosis, autophagy
3586
Play Button
Use of Shigella flexneri to Study Autophagy-Cytoskeleton Interactions
Authors: Maria J. Mazon Moya, Emma Colucci-Guyon, Serge Mostowy.
Institutions: Imperial College London, Institut Pasteur, Unité Macrophages et Développement de l'Immunité.
Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent actin-based motility of S. flexneri by compartmentalizing bacteria inside ‘septin cages’ and targeting them to autophagy. These observations indicate that a more complete understanding of septins, a family of filamentous GTP-binding proteins, will provide new insights into the process of autophagy. This report describes protocols to monitor autophagy-cytoskeleton interactions caused by S. flexneri in vitro using tissue culture cells and in vivo using zebrafish larvae. These protocols enable investigation of intracellular mechanisms that control bacterial dissemination at the molecular, cellular, and whole organism level.
Infection, Issue 91, ATG8/LC3, autophagy, cytoskeleton, HeLa cells, p62, septin, Shigella, zebrafish
51601
Play Button
Visualization of Endoplasmic Reticulum Subdomains in Cultured Cells
Authors: Matteo Fossati, Nica Borgese, Sara Francesca Colombo, Maura Francolini.
Institutions: Fondazione Filarete, University of Milan, National Research Council (CNR), "Magna Graecia" University of Catanzaro.
The lipids and proteins in eukaryotic cells are continuously exchanged between cell compartments, although these retain their distinctive composition and functions despite the intense interorganelle molecular traffic. The techniques described in this paper are powerful means of studying protein and lipid mobility and trafficking in vivo and in their physiological environment. Fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) are widely used live-cell imaging techniques for studying intracellular trafficking through the exo-endocytic pathway, the continuity between organelles or subcompartments, the formation of protein complexes, and protein localization in lipid microdomains, all of which can be observed under physiological and pathological conditions. The limitations of these approaches are mainly due to the use of fluorescent fusion proteins, and their potential drawbacks include artifactual over-expression in cells and the possibility of differences in the folding and localization of tagged and native proteins. Finally, as the limit of resolution of optical microscopy (about 200 nm) does not allow investigation of the fine structure of the ER or the specific subcompartments that can originate in cells under stress (i.e. hypoxia, drug administration, the over-expression of transmembrane ER resident proteins) or under pathological conditions, we combine live-cell imaging of cultured transfected cells with ultrastructural analyses based on transmission electron microscopy.
Microbiology, Issue 84, Endoplasmic reticulum (ER), fluorescent proteins (FPs), confocal microscopy, fluorescence recovery after photobleaching (FRAP), fluorescence loss in photobleaching (FLIP), ultrastructure, transmission electron microscopy (TEM)
50985
Play Button
Non-enzymatic, Serum-free Tissue Culture of Pre-invasive Breast Lesions for Spontaneous Generation of Mammospheres
Authors: Virginia Espina, Kirsten H. Edmiston, Lance A. Liotta.
Institutions: George Mason University, Virginia Surgery Associates.
Breast ductal carcinoma in situ (DCIS), by definition, is proliferation of neoplastic epithelial cells within the confines of the breast duct, without breaching the collagenous basement membrane. While DCIS is a non-obligate precursor to invasive breast cancers, the molecular mechanisms and cell populations that permit progression to invasive cancer are not fully known. To determine if progenitor cells capable of invasion existed within the DCIS cell population, we developed a methodology for collecting and culturing sterile human breast tissue at the time of surgery, without enzymatic disruption of tissue. Sterile breast tissue containing ductal segments is harvested from surgically excised breast tissue following routine pathological examination. Tissue containing DCIS is placed in nutrient rich, antibiotic-containing, serum free medium, and transported to the tissue culture laboratory. The breast tissue is further dissected to isolate the calcified areas. Multiple breast tissue pieces (organoids) are placed in a minimal volume of serum free medium in a flask with a removable lid and cultured in a humidified CO2 incubator. Epithelial and fibroblast cell populations emerge from the organoid after 10 - 14 days. Mammospheres spontaneously form on and around the epithelial cell monolayer. Specific cell populations can be harvested directly from the flask without disrupting neighboring cells. Our non-enzymatic tissue culture system reliably reveals cytogenetically abnormal, invasive progenitor cells from fresh human DCIS lesions.
Cancer Biology, Issue 93, Breast, ductal carcinoma in situ, epidermal growth factor, mammosphere, organoid, pre-invasive, primary cell culture, serum-free, spheroid
51926
Play Button
Visualization of Endoplasmic Reticulum Localized mRNAs in Mammalian Cells
Authors: Xianying A. Cui, Alexander F. Palazzo.
Institutions: University of Toronto.
In eukaryotes, most of the messenger RNAs (mRNAs) that encode secreted and membrane proteins are localized to the surface of the endoplasmic reticulum (ER). However, the visualization of these mRNAs can be challenging. This is especially true when only a fraction of the mRNA is ER-associated and their distribution to this organelle is obstructed by non-targeted (i.e. "free") transcripts. In order to monitor ER-associated mRNAs, we have developed a method in which cells are treated with a short exposure to a digitonin extraction solution that selectively permeabilizes the plasma membrane, and thus removes the cytoplasmic contents, while simultaneously maintaining the integrity of the ER. When this method is coupled with fluorescent in situ hybridization (FISH), one can clearly visualize ER-bound mRNAs by fluorescent microscopy. Using this protocol the degree of ER-association for either bulk poly(A) transcripts or specific mRNAs can be assessed and even quantified. In the process, one can use this assay to investigate the nature of mRNA-ER interactions.
Cellular Biology, Issue 70, Biochemistry, Genetics, Molecular Biology, Genomics, mRNA localization, RNA, digitonin extraction, cell fractionation, endoplasmic reticulum, secretion, microscopy, imaging, fluorescent in situ hybridization, FISH, cell biology
50066
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.