JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Initial Cell Seeding Density Influences Pancreatic Endocrine Development During in vitro Differentiation of Human Embryonic Stem Cells.
PLoS ONE
PUBLISHED: 01-01-2013
Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers, and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells, to date in vitro-derived glucose-responsive beta-cells have remained an elusive goal. With the objective of increasing the in vitro formation of pancreatic endocrine cells, we examined the effect of varying initial cell seeding density from 1.3 x 10(4) cells/cm(2) to 5.3 x 10(4) cells/cm(2) followed by a 21-day pancreatic endocrine differentiation protocol. Low density-seeded cells were found to be biased toward the G2/M phases of the cell cycle and failed to efficiently differentiate into SOX17-CXCR4 co-positive definitive endoderm cells leaving increased numbers of OCT4 positive cells in day 4 cultures. Moderate density cultures effectively formed definitive endoderm and progressed to express PDX1 in approximately 20% of the culture. High density cultures contained approximately double the numbers of PDX1 positive pancreatic progenitor cells and also showed increased expression of MNX1, PTF1a, NGN3, ARX, and PAX4 compared to cultures seeded at moderate density. The cultures seeded at high density displayed increased formation of polyhormonal pancreatic endocrine cell populations co-expressing insulin, glucagon and somatostatin. The maturation process giving rise to these endocrine cell populations followed the expected cascade of pancreatic progenitor marker (PDX1 and MNX1) expression, followed by pancreatic endocrine specification marker expression (BRN4, PAX4, ARX, NEUROD1, NKX6.1 and NKX2.2) and then pancreatic hormone expression (insulin, glucagon and somatostatin). Taken together these data suggest that initial cell seeding density plays an important role in both germ layer specification and pancreatic progenitor commitment, which precedes pancreatic endocrine cell formation. This work highlights the need to examine standard culture variables such as seeding density when optimizing hESC differentiation protocols.
Authors: Ana D. Lopez, Ayse G. Kayali, Alberto Hayek, Charles C. King.
Published: 05-18-2014
ABSTRACT
For almost 30 years, scientists have demonstrated that human fetal ICCs transplanted under the kidney capsule of nude mice matured into functioning endocrine cells, as evidenced by a significant increase in circulating human C-peptide following glucose stimulation1-9. However in vitro, genesis of insulin producing cells from human fetal ICCs is low10; results reminiscent of recent experiments performed with human embryonic stem cells (hESC), a renewable source of cells that hold great promise as a potential therapeutic treatment for type 1 diabetes. Like ICCs, transplantation of partially differentiated hESC generate glucose responsive, insulin producing cells, but in vitro genesis of insulin producing cells from hESC is much less robust11-17. A complete understanding of the factors that influence the growth and differentiation of endocrine precursor cells will likely require data generated from both ICCs and hESC. While a number of protocols exist to generate insulin producing cells from hESC in vitro11-22, far fewer exist for ICCs10,23,24. Part of that discrepancy likely comes from the difficulty of working with human fetal pancreas. Towards that end, we have continued to build upon existing methods to isolate fetal islets from human pancreases with gestational ages ranging from 12 to 23 weeks, grow the cells as a monolayer or in suspension, and image for cell proliferation, pancreatic markers and human hormones including glucagon and C-peptide. ICCs generated by the protocol described below result in C-peptide release after transplantation under the kidney capsule of nude mice that are similar to C-peptide levels obtained by transplantation of fresh tissue6. Although the examples presented here focus upon the pancreatic endoderm proliferation and β cell genesis, the protocol can be employed to study other aspects of pancreatic development, including exocrine, ductal, and other hormone producing cells.
18 Related JoVE Articles!
Play Button
In Vitro Pancreas Organogenesis from Dispersed Mouse Embryonic Progenitors
Authors: Chiara Greggio, Filippo De Franceschi, Manuel Figueiredo-Larsen, Anne Grapin-Botton.
Institutions: Swiss Institute for Experimental Cancer Research, University of Copenhagen.
The pancreas is an essential organ that regulates glucose homeostasis and secretes digestive enzymes. Research on pancreas embryogenesis has led to the development of protocols to produce pancreatic cells from stem cells 1. The whole embryonic organ can be cultured at multiple stages of development 2-4. These culture methods have been useful to test drugs and to image developmental processes. However the expansion of the organ is very limited and morphogenesis is not faithfully recapitulated since the organ flattens. We propose three-dimensional (3D) culture conditions that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the composition of the culture medium it is possible to generate either hollow spheres, mainly composed of pancreatic progenitors expanding in their initial state, or, complex organoids which progress to more mature expanding progenitors and differentiate into endocrine, acinar and ductal cells and which spontaneously self-organize to resemble the embryonic pancreas. We show here that the in vitro process recapitulates many aspects of natural pancreas development. This culture system is suitable to investigate how cells cooperate to form an organ by reducing its initial complexity to few progenitors. It is a model that reproduces the 3D architecture of the pancreas and that is therefore useful to study morphogenesis, including polarization of epithelial structures and branching. It is also appropriate to assess the response to mechanical cues of the niche such as stiffness and the effects on cell´s tensegrity.
Developmental Biology, Issue 89, Pancreas, Progenitors, Branching Epithelium, Development, Organ Culture, 3D Culture, Diabetes, Differentiation, Morphogenesis, Cell organization, Beta Cell.
51725
Play Button
A Quantitative Assay for Insulin-expressing Colony-forming Progenitors
Authors: Michael Winkler, Nancy Trieu, Tao Feng, Liang Jin, Stephanie Walker, Lipi Singh, Hsun Teresa Ku.
Institutions: California State University Channel Islands, Beckman Research Institute of City of Hope, Beckman Research Institute of City of Hope.
The field of pancreatic stem and progenitor cell biology has been hampered by a lack of in vitro functional and quantitative assays that allow for the analysis of the single cell. Analyses of single progenitors are of critical importance because they provide definitive ways to unequivocally demonstrate the lineage potential of individual progenitors. Although methods have been devised to generate "pancreatospheres" in suspension culture from single cells, several limitations exist. First, it is time-consuming to perform single cell deposition for a large number of cells, which in turn commands large volumes of culture media and space. Second, numeration of the resulting pancreatospheres is labor-intensive, especially when the frequency of the pancreatosphere-initiating progenitors is low. Third, the pancreatosphere assay is not an efficient method to allow both the proliferation and differentiation of pancreatic progenitors in the same culture well, restricting the usefulness of the assay. To overcome these limitations, a semi-solid media based colony assay for pancreatic progenitors has been developed and is presented in this report. This method takes advantage of an existing concept from the hematopoietic colony assay, in which methylcellulose is used to provide viscosity to the media, allowing the progenitor cells to stay in three-dimensional space as they undergo proliferation as well as differentiation. To enrich insulin-expressing colony-forming progenitors from a heterogeneous population, we utilized cells that express neurogenin (Ngn) 3, a pancreatic endocrine progenitor cell marker. Murine embryonic stem (ES) cell-derived Ngn3 expressing cells tagged with the enhanced green fluorescent protein reporter were sorted and as many as 25,000 cells per well were plated into low-attachment 24-well culture dishes. Each well contained 500 μL of semi-solid media with the following major components: methylcellulose, Matrigel, nicotinamide, exendin-4, activin βB, and conditioned media collected from murine ES cell-derived pancreatic-like cells. After 8 to 12 days of culture, insulin-expressing colonies with distinctive morphology were formed and could be further analyzed for pancreatic gene expression using quantitative RT-PCR and immunoflourescent staining to determine the lineage composition of each colony. In summary, our colony assay allows easy detection and quantification of functional progenitors within a heterogeneous population of cells. In addition, the semi-solid media format allows uniform presentation of extracellular matrix components and growth factors to cells, enabling progenitors to proliferate and differentiate in vitro. This colony assay provides unique opportunities for mechanistic studies of pancreatic progenitor cells at the single cell level.
Developmental Biology, Issue 57, Pancreas, insulin-expressing cells, embryonic stem cells, colony assay, progenitor cells, 3-dimensional culture, semi-solid media, Matrigel, methylcellulose
3148
Play Button
Endothelial Cell Co-culture Mediates Maturation of Human Embryonic Stem Cell to Pancreatic Insulin Producing Cells in a Directed Differentiation Approach
Authors: Maria Jaramillo, Ipsita Banerjee.
Institutions: University of Pittsburgh, University of Pittsburgh.
Embryonic stem cells (ESC) have two main characteristics: they can be indefinitely propagated in vitro in an undifferentiated state and they are pluripotent, thus having the potential to differentiate into multiple lineages. Such properties make ESCs extremely attractive for cell based therapy and regenerative treatment applications 1. However for its full potential to be realized the cells have to be differentiated into mature and functional phenotypes, which is a daunting task. A promising approach in inducing cellular differentiation is to closely mimic the path of organogenesis in the in vitro setting. Pancreatic development is known to occur in specific stages 2, starting with endoderm, which can develop into several organs, including liver and pancreas. Endoderm induction can be achieved by modulation of the nodal pathway through addition of Activin A 3 in combination with several growth factors 4-7. Definitive endoderm cells then undergo pancreatic commitment by inhibition of sonic hedgehog inhibition, which can be achieved in vitro by addition of cyclopamine 8. Pancreatic maturation is mediated by several parallel events including inhibition of notch signaling; aggregation of pancreatic progenitors into 3-dimentional clusters; induction of vascularization; to name a few. By far the most successful in vitro maturation of ESC derived pancreatic progenitor cells have been achieved through inhibition of notch signaling by DAPT supplementation 9. Although successful, this results in low yield of the mature phenotype with reduced functionality. A less studied area is the effect of endothelial cell signaling in pancreatic maturation, which is increasingly being appreciated as an important contributing factor in in-vivo pancreatic islet maturation 10,11. The current study explores such effect of endothelial cell signaling in maturation of human ESC derived pancreatic progenitor cells into insulin producing islet-like cells. We report a multi-stage directed differentiation protocol where the human ESCs are first induced towards endoderm by Activin A along with inhibition of PI3K pathway. Pancreatic specification of endoderm cells is achieved by inhibition of sonic hedgehog signaling by Cyclopamine along with retinoid induction by addition of Retinoic Acid. The final stage of maturation is induced by endothelial cell signaling achieved by a co-culture configuration. While several endothelial cells have been tested in the co-culture, herein we present our data with rat heart microvascular endothelial Cells (RHMVEC), primarily for the ease of analysis.
Stem Cell Biology, Issue 61, Human embryonic stem cells, Endothelial cells, Pancreatic differentiation, Co-culture
3759
Play Button
Coculture Analysis of Extracellular Protein Interactions Affecting Insulin Secretion by Pancreatic Beta Cells
Authors: Charles Zhang, Arthur T. Suckow, Steven D. Chessler.
Institutions: University of California, San Diego, Janssen Research & Development, University of California, San Diego.
Interactions between cell-surface proteins help coordinate the function of neighboring cells. Pancreatic beta cells are clustered together within pancreatic islets and act in a coordinated fashion to maintain glucose homeostasis. It is becoming increasingly clear that interactions between transmembrane proteins on the surfaces of adjacent beta cells are important determinants of beta-cell function. Elucidation of the roles of particular transcellular interactions by knockdown, knockout or overexpression studies in cultured beta cells or in vivo necessitates direct perturbation of mRNA and protein expression, potentially affecting beta-cell health and/or function in ways that could confound analyses of the effects of specific interactions. These approaches also alter levels of the intracellular domains of the targeted proteins and may prevent effects due to interactions between proteins within the same cell membrane to be distinguished from the effects of transcellular interactions. Here a method for determining the effect of specific transcellular interactions on the insulin secreting capacity and responsiveness of beta cells is presented. This method is applicable to beta-cell lines, such as INS-1 cells, and to dissociated primary beta cells. It is based on coculture models developed by neurobiologists, who found that exposure of cultured neurons to specific neuronal proteins expressed on HEK293 (or COS) cell layers identified proteins important for driving synapse formation. Given the parallels between the secretory machinery of neuronal synapses and of beta cells, we reasoned that beta-cell functional maturation might be driven by similar transcellular interactions. We developed a system where beta cells are cultured on a layer of HEK293 cells expressing a protein of interest. In this model, the beta-cell cytoplasm is untouched while extracellular protein-protein interactions are manipulated. Although we focus here primarily on studies of glucose-stimulated insulin secretion, other processes can be analyzed; for example, changes in gene expression as determined by immunoblotting or qPCR.
Medicine, Issue 76, Cellular Biology, Molecular Biology, Biomedical Engineering, Immunology, Hepatology, Islets of Langerhans, islet, Insulin, Coculture, pancreatic beta cells, INS-1 cells, extracellular contact, transmembrane protein, transcellular interactions, insulin secretion, diabetes, cell culture
50365
Play Button
Assessing Replication and Beta Cell Function in Adenovirally-transduced Isolated Rodent Islets
Authors: Patrick T. Fueger, Angelina M. Hernandez, Yi-Chun Chen, E. Scott Colvin.
Institutions: Indiana University School of Medicine, Indiana University School of Medicine.
Glucose homeostasis is primarily controlled by the endocrine hormones insulin and glucagon, secreted from the pancreatic beta and alpha cells, respectively. Functional beta cell mass is determined by the anatomical beta cell mass as well as the ability of the beta cells to respond to a nutrient load. A loss of functional beta cell mass is central to both major forms of diabetes 1-3. Whereas the declining functional beta cell mass results from an autoimmune attack in type 1 diabetes, in type 2 diabetes, this decrement develops from both an inability of beta cells to secrete insulin appropriately and the destruction of beta cells from a cadre of mechanisms. Thus, efforts to restore functional beta cell mass are paramount to the better treatment of and potential cures for diabetes. Efforts are underway to identify molecular pathways that can be exploited to stimulate the replication and enhance the function of beta cells. Ideally, therapeutic targets would improve both beta cell growth and function. Perhaps more important though is to identify whether a strategy that stimulates beta cell growth comes at the cost of impairing beta cell function (such as with some oncogenes) and vice versa. By systematically suppressing or overexpressing the expression of target genes in isolated rat islets, one can identify potential therapeutic targets for increasing functional beta cell mass 4-6. Adenoviral vectors can be employed to efficiently overexpress or knockdown proteins in isolated rat islets 4,7-15. Here, we present a method to manipulate gene expression utilizing adenoviral transduction and assess islet replication and beta cell function in isolated rat islets (Figure 1). This method has been used previously to identify novel targets that modulate beta cell replication or function 5,6,8,9,16,17.
Medicine, Issue 64, Physiology, beta cell, gene expression, islet, diabetes, insulin secretion, proliferation, adenovirus, rat
4080
Play Button
Derivation of T Cells In Vitro from Mouse Embryonic Stem Cells
Authors: Martina Kučerová-Levisohn, Jordana Lovett, Armin Lahiji, Roxanne Holmes, Juan Carlos Zúñiga-Pflücker, Benjamin D. Ortiz.
Institutions: City University of New York, University of Toronto.
The OP9/OP9-DL1 co-culture system has become a well-established method for deriving differentiated blood cell types from embryonic and hematopoietic progenitors of both mouse and human origin. It is now used to address a growing variety of complex genetic, cellular and molecular questions related to hematopoiesis, and is at the cutting edge of efforts to translate these basic findings to therapeutic applications. The procedures are straightforward and routinely yield robust results. However, achieving successful hematopoietic differentiation in vitro requires special attention to the details of reagent and cell culture maintenance. Furthermore, the protocol features technique sensitive steps that, while not difficult, take care and practice to master. Here we focus on the procedures for differentiation of T lymphocytes from mouse embryonic stem cells (mESC). We provide a detailed protocol with discussions of the critical steps and parameters that enable reproducibly robust cellular differentiation in vitro. It is in the interest of the field to consider wider adoption of this technology, as it has the potential to reduce animal use, lower the cost and shorten the timelines of both basic and translational experimentation.
Immunology, Issue 92, mouse, embryonic stem cells, in vitro differentiation, OP9 cells, Delta-like 1 (Dll-1) ligand, Notch, hematopoiesis, lymphocytes, T cells
52119
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
51354
Play Button
Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis
Authors: Kevin G. Chen, Rebecca S. Hamilton, Pamela G. Robey, Barbara S. Mallon.
Institutions: National Institutes of Health, National Institutes of Health.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
Stem Cell Biology, Issue 89, Pluripotent stem cells, human embryonic stem cells, induced pluripotent stem cells, cell culture, non-colony type monolayer, single cell, plating efficiency, Rho-associated kinase, Y-27632, transfection, transduction
51519
Play Button
Isolation and Culture of Mouse Primary Pancreatic Acinar Cells
Authors: Johann Gout, Roxane M. Pommier, David F. Vincent, Bastien Kaniewski, Sylvie Martel, Ulrich Valcourt, Laurent Bartholin.
Institutions: Centre de Recherche en Cancérologie de Lyon, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Université Lyon 1, Centre Léon Bérard.
This protocol permits rapid isolation (in less than 1 hr) of murine pancreatic acini, making it possible to maintain them in culture for more than one week. More than 20 x 106 acinar cells can be obtained from a single murine pancreas. This protocol offers the possibility to independently process as many as 10 pancreases in parallel. Because it preserves acinar architecture, this model is well suited for studying the physiology of the exocrine pancreas in vitro in contrast to cell lines established from pancreatic tumors, which display many genetic alterations resulting in partial or total loss of their acinar differentiation.
Cancer Biology, Issue 78, Cellular Biology, Molecular Biology, Biomedical Engineering, Medicine, Anatomy, Physiology, Surgery, Oncology, Pancreas, Exocrine, Cells, Cultured, Mice, Primary Cell Culture, Exocrine pancreas, Cell culture, Primary acinar cells, Mouse, pancreatic cancer, cancer, tumor, tissue, animal model
50514
Play Button
Computer-assisted Large-scale Visualization and Quantification of Pancreatic Islet Mass, Size Distribution and Architecture
Authors: Abraham Kim, German Kilimnik, Charles Guo, Joshua Sung, Junghyo Jo, Vipul Periwal, Piotr Witkowski, Philip Dilorio, Manami Hara.
Institutions: University of Chicago, National Institutes of Health, University of Chicago, University of Massachusetts.
The pancreatic islet is a unique micro-organ composed of several hormone secreting endocrine cells such as beta-cells (insulin), alpha-cells (glucagon), and delta-cells (somatostatin) that are embedded in the exocrine tissues and comprise 1-2% of the entire pancreas. There is a close correlation between body and pancreas weight. Total beta-cell mass also increases proportionately to compensate for the demand for insulin in the body. What escapes this proportionate expansion is the size distribution of islets. Large animals such as humans share similar islet size distributions with mice, suggesting that this micro-organ has a certain size limit to be functional. The inability of large animal pancreata to generate proportionately larger islets is compensated for by an increase in the number of islets and by an increase in the proportion of larger islets in their overall islet size distribution. Furthermore, islets exhibit a striking plasticity in cellular composition and architecture among different species and also within the same species under various pathophysiological conditions. In the present study, we describe novel approaches for the analysis of biological image data in order to facilitate the automation of analytic processes, which allow for the analysis of large and heterogeneous data collections in the study of such dynamic biological processes and complex structures. Such studies have been hampered due to technical difficulties of unbiased sampling and generating large-scale data sets to precisely capture the complexity of biological processes of islet biology. Here we show methods to collect unbiased "representative" data within the limited availability of samples (or to minimize the sample collection) and the standard experimental settings, and to precisely analyze the complex three-dimensional structure of the islet. Computer-assisted automation allows for the collection and analysis of large-scale data sets and also assures unbiased interpretation of the data. Furthermore, the precise quantification of islet size distribution and spatial coordinates (i.e. X, Y, Z-positions) not only leads to an accurate visualization of pancreatic islet structure and composition, but also allows us to identify patterns during development and adaptation to altering conditions through mathematical modeling. The methods developed in this study are applicable to studies of many other systems and organisms as well.
Cellular Biology, Issue 49, beta-cells, islets, large-scale analysis, pancreas
2471
Play Button
Feeder-free Derivation of Neural Crest Progenitor Cells from Human Pluripotent Stem Cells
Authors: Nadja Zeltner, Fabien G. Lafaille, Faranak Fattahi, Lorenz Studer.
Institutions: Sloan-Kettering Institute for Cancer Research, The Rockefeller University.
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.
Neuroscience, Issue 87, Embryonic Stem Cells (ESCs), Pluripotent Stem Cells, Induced Pluripotent Stem Cells (iPSCs), Neural Crest, Peripheral Nervous System (PNS), pluripotent stem cells, neural crest cells, in vitro differentiation, disease modeling, differentiation protocol, human embryonic stem cells, human pluripotent stem cells
51609
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
51278
Play Button
A Method for Mouse Pancreatic Islet Isolation and Intracellular cAMP Determination
Authors: Joshua C. Neuman, Nathan A. Truchan, Jamie W. Joseph, Michelle E. Kimple.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison, University of Waterloo.
Uncontrolled glycemia is a hallmark of diabetes mellitus and promotes morbidities like neuropathy, nephropathy, and retinopathy. With the increasing prevalence of diabetes, both immune-mediated type 1 and obesity-linked type 2, studies aimed at delineating diabetes pathophysiology and therapeutic mechanisms are of critical importance. The β-cells of the pancreatic islets of Langerhans are responsible for appropriately secreting insulin in response to elevated blood glucose concentrations. In addition to glucose and other nutrients, the β-cells are also stimulated by specific hormones, termed incretins, which are secreted from the gut in response to a meal and act on β-cell receptors that increase the production of intracellular cyclic adenosine monophosphate (cAMP). Decreased β-cell function, mass, and incretin responsiveness are well-understood to contribute to the pathophysiology of type 2 diabetes, and are also being increasingly linked with type 1 diabetes. The present mouse islet isolation and cAMP determination protocol can be a tool to help delineate mechanisms promoting disease progression and therapeutic interventions, particularly those that are mediated by the incretin receptors or related receptors that act through modulation of intracellular cAMP production. While only cAMP measurements will be described, the described islet isolation protocol creates a clean preparation that also allows for many other downstream applications, including glucose stimulated insulin secretion, [3H]-thymidine incorporation, protein abundance, and mRNA expression.
Physiology, Issue 88, islet, isolation, insulin secretion, β-cell, diabetes, cAMP production, mouse
50374
Play Button
High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry
Authors: Subarna Bhattacharya, Paul W. Burridge, Erin M. Kropp, Sandra L. Chuppa, Wai-Meng Kwok, Joseph C. Wu, Kenneth R. Boheler, Rebekah L. Gundry.
Institutions: Medical College of Wisconsin, Stanford University School of Medicine, Medical College of Wisconsin, Hong Kong University, Johns Hopkins University School of Medicine, Medical College of Wisconsin.
There is an urgent need to develop approaches for repairing the damaged heart, discovering new therapeutic drugs that do not have toxic effects on the heart, and improving strategies to accurately model heart disease. The potential of exploiting human induced pluripotent stem cell (hiPSC) technology to generate cardiac muscle “in a dish” for these applications continues to generate high enthusiasm. In recent years, the ability to efficiently generate cardiomyogenic cells from human pluripotent stem cells (hPSCs) has greatly improved, offering us new opportunities to model very early stages of human cardiac development not otherwise accessible. In contrast to many previous methods, the cardiomyocyte differentiation protocol described here does not require cell aggregation or the addition of Activin A or BMP4 and robustly generates cultures of cells that are highly positive for cardiac troponin I and T (TNNI3, TNNT2), iroquois-class homeodomain protein IRX-4 (IRX4), myosin regulatory light chain 2, ventricular/cardiac muscle isoform (MLC2v) and myosin regulatory light chain 2, atrial isoform (MLC2a) by day 10 across all human embryonic stem cell (hESC) and hiPSC lines tested to date. Cells can be passaged and maintained for more than 90 days in culture. The strategy is technically simple to implement and cost-effective. Characterization of cardiomyocytes derived from pluripotent cells often includes the analysis of reference markers, both at the mRNA and protein level. For protein analysis, flow cytometry is a powerful analytical tool for assessing quality of cells in culture and determining subpopulation homogeneity. However, technical variation in sample preparation can significantly affect quality of flow cytometry data. Thus, standardization of staining protocols should facilitate comparisons among various differentiation strategies. Accordingly, optimized staining protocols for the analysis of IRX4, MLC2v, MLC2a, TNNI3, and TNNT2 by flow cytometry are described.
Cellular Biology, Issue 91, human induced pluripotent stem cell, flow cytometry, directed differentiation, cardiomyocyte, IRX4, TNNI3, TNNT2, MCL2v, MLC2a
52010
Play Button
Staining Protocols for Human Pancreatic Islets
Authors: Martha L. Campbell-Thompson, Tiffany Heiple, Emily Montgomery, Li Zhang, Lynda Schneider.
Institutions: University of Florida .
Estimates of islet area and numbers and endocrine cell composition in the adult human pancreas vary from several hundred thousand to several million and beta mass ranges from 500 to 1500 mg 1-3. With this known heterogeneity, a standard processing and staining procedure was developed so that pancreatic regions were clearly defined and islets characterized using rigorous histopathology and immunolocalization examinations. Standardized procedures for processing human pancreas recovered from organ donors are described in part 1 of this series. The pancreas is processed into 3 main regions (head, body, tail) followed by transverse sections. Transverse sections from the pancreas head are further divided, as indicated based on size, and numbered alphabetically to denote subsections. This standardization allows for a complete cross sectional analysis of the head region including the uncinate region which contains islets composed primarily of pancreatic polypeptide cells to the tail region. The current report comprises part 2 of this series and describes the procedures used for serial sectioning and histopathological characterization of the pancreatic paraffin sections with an emphasis on islet endocrine cells, replication, and T-cell infiltrates. Pathology of pancreatic sections is intended to characterize both exocrine, ductular, and endocrine components. The exocrine compartment is evaluated for the presence of pancreatitis (active or chronic), atrophy, fibrosis, and fat, as well as the duct system, particularly in relationship to the presence of pancreatic intraductal neoplasia4. Islets are evaluated for morphology, size, and density, endocrine cells, inflammation, fibrosis, amyloid, and the presence of replicating or apoptotic cells using H&E and IHC stains. The final component described in part 2 is the provision of the stained slides as digitized whole slide images. The digitized slides are organized by case and pancreas region in an online pathology database creating a virtual biobank. Access to this online collection is currently provided to over 200 clinicians and scientists involved in type 1 diabetes research. The online database provides a means for rapid and complete data sharing and for investigators to select blocks for paraffin or frozen serial sections.
Medicine, Issue 63, Physiology, type 1 diabetes, histology, H&E, immunohistochemistry, insulin, beta-cells, glucagon, alpha-cells, pancreatic polypeptide, islet, pancreas, spleen, organ donor
4068
Play Button
A System for ex vivo Culturing of Embryonic Pancreas
Authors: Kristin M. Petzold, Francesca M. Spagnoli.
Institutions: Max-Delbrück-Center for Molecular Medicine.
The pancreas controls vital functions of our body, including the production of digestive enzymes and regulation of blood sugar levels1. Although in the past decade many studies have contributed to a solid foundation for understanding pancreatic organogenesis, important gaps persist in our knowledge of early pancreas formation2. A complete understanding of these early events will provide insight into the development of this organ, but also into incurable diseases that target the pancreas, such as diabetes or pancreatic cancer. Finally, this information will generate a blueprint for developing cell-replacement therapies in the context of diabetes. During embryogenesis, the pancreas originates from distinct embryonic outgrowths of the dorsal and ventral foregut endoderm at embryonic day (E) 9.5 in the mouse embryo3,4. Both outgrowths evaginate into the surrounding mesenchyme as solid epithelial buds, which undergo proliferation, branching and differentiation to generate a fully mature organ2,5,6. Recent evidences have suggested that growth and differentiation of pancreatic cell lineages, including the insulin-producing β-cells, depends on proper tissue-architecture, epithelial remodeling and cell positioning within the branching pancreatic epithelium7,8. However, how branching morphogenesis occurs and is coordinated with proliferation and differentiation in the pancreas is largely unknown. This is in part due to the fact that current knowledge about these developmental processes has relied almost exclusively on analysis of fixed specimens, while morphogenetic events are highly dynamic. Here, we report a method for dissecting and culturing mouse embryonic pancreatic buds ex vivo on glass bottom dishes, which allow direct visualization of the developing pancreas (Figure 1). This culture system is ideally devised for confocal laser scanning microscopy and, in particular, live-cell imaging. Pancreatic explants can be prepared not only from wild-type mouse embryos, but also from genetically engineered mouse strains (e.g. transgenic or knockout), allowing real-time studies of mutant phenotypes. Moreover, this ex vivo culture system is valuable to study the effects of chemical compounds on pancreatic development, enabling to obtain quantitative data about proliferation and growth, elongation, branching, tubulogenesis and differentiation. In conclusion, the development of an ex vivo pancreatic explant culture method combined with high-resolution imaging provides a strong platform for observing morphogenetic and differentiation events as they occur within the developing mouse embryo.
Developmental Biology, Issue 66, Molecular Biology, Cellular Biology, Medicine, Physiology, pancreas, organ culture, epithelial morphogenesis, confocal microscopy, live imaging
3979
Play Button
Enrichment and Purging of Human Embryonic Stem Cells by Detection of Cell Surface Antigens Using the Monoclonal Antibodies TG30 and GCTM-2
Authors: Juan Carlos Polanco, Bei Wang, Qi Zhou, Hun Chy, Carmel O'Brien, Andrew L. Laslett.
Institutions: CSIRO.
Human embryonic stem cells (hESC) can self-renew indefinitely in vitro, and with the appropriate cues can be induced to differentiate into potentially all somatic cell lineages. Differentiated hESC derivatives can potentially be used in transplantation therapies to treat a variety of cell-degenerative diseases. However, hESC differentiation protocols usually yield a mixture of differentiated target and off-target cell types as well as residual undifferentiated cells. For the translation of differentiated hESC-derivatives from the laboratory to the clinic, it is important to be able to discriminate between undifferentiated (pluripotent) and differentiated cells, and generate methods to separate these populations. Safe application of hESC-derived somatic cell types can only be accomplished with pluripotent stem cell-free populations, as residual hESCs could induce tumors known as teratomas following transplantation. Towards this end, here we describe a methodology to detect pluripotency associated cell surface antigens with the monoclonal antibodies TG30 (CD9) and GCTM-2 via fluorescence activated cell sorting (FACS) for the identification of pluripotent TG30Hi-GCTM-2Hi hESCs using positive selection. Using negative selection with our TG30/GCTM-2 FACS methodology, we were able to detect and purge undifferentiated hESCs in populations undergoing very early-stage differentiation (TG30Neg-GCTM-2Neg). In a further study, pluripotent stem cell-free samples of differentiated TG30Neg-GCTM-2Neg cells selected using our TG30/GCTM-2 FACS protocol did not form teratomas once transplanted into immune-compromised mice, supporting the robustness of our protocol. On the other hand, TG30/GCTM-2 FACS-mediated consecutive passaging of enriched pluripotent TG30Hi-GCTM-2Hi hESCs did not affect their ability to self-renew in vitro or their intrinsic pluripotency. Therefore, the characteristics of our TG30/GCTM-2 FACS methodology provide a sensitive assay to obtain highly enriched populations of hPSC as inputs for differentiation assays and to rid potentially tumorigenic (or residual) hESC from derivative cell populations.
Stem Cell Biology, Issue 82, Stem cells, cell surface antigens, antibodies, FACS, purging stem cells, differentiation, pluripotency, teratoma, human embryonic stem cells (hESC)
50856
Play Button
Regulatory T cells: Therapeutic Potential for Treating Transplant Rejection and Type I Diabetes
Authors: Jeffry A. Bluestone.
Institutions: University of California, San Francisco - UCSF.
Issue 7, Immunology, Pancreatic Islets, Cell Culture, Diabetes, Ficoll Gradient, Translational Research
257
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.