JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
The adverse effect of selective cyclooxygenase-2 inhibitor on random skin flap survival in rats.
PUBLISHED: 01-01-2013
Cyclooxygenase-2(COX-2) inhibitors provide desired analgesic effects after injury or surgery, but evidences suggested they also attenuate wound healing. The study is to investigate the effect of COX-2 inhibitor on random skin flap survival.
Mitochondrial DNA (mtDNA) defects are an important cause of disease and may underlie aging and aging-related alterations 1,2. The mitochondrial theory of aging suggests a role for mtDNA mutations, which can alter bioenergetics homeostasis and cellular function, in the aging process 3. A wealth of evidence has been compiled in support of this theory 1,4, an example being the mtDNA mutator mouse 5; however, the precise role of mtDNA damage in aging is not entirely understood 6,7. Observing the activity of respiratory enzymes is a straightforward approach for investigating mitochondrial dysfunction. Complex IV, or cytochrome c oxidase (COX), is essential for mitochondrial function. The catalytic subunits of COX are encoded by mtDNA and are essential for assembly of the complex (Figure 1). Thus, proper synthesis and function are largely based on mtDNA integrity 2. Although other respiratory complexes could be investigated, Complexes IV and II are the most amenable to histochemical examination 8,9. Complex II, or succinate dehydrogenase (SDH), is entirely encoded by nuclear DNA (Figure 1), and its activity is typically not affected by impaired mtDNA, although an increase might indicate mitochondrial biogenesis 10-12. The impaired mtDNA observed in mitochondrial diseases, aging, and age-related diseases often leads to the presence of cells with low or absent COX activity 2,12-14. Although COX and SDH activities can be investigated individually, the sequential double-labeling method 15,16 has proved to be advantageous in locating cells with mitochondrial dysfunction 12,17-21. Many of the optimal constitutions of the assay have been determined, such as substrate concentration, electron acceptors/donors, intermediate electron carriers, influence of pH, and reaction time 9,22,23. 3,3'-diaminobenzidine (DAB) is an effective and reliable electron donor 22. In cells with functioning COX, the brown indamine polymer product will localize in mitochondrial cristae and saturate cells 22. Those cells with dysfunctional COX will therefore not be saturated by the DAB product, allowing for the visualization of SDH activity by reduction of nitroblue tetrazolium (NBT), an electron acceptor, to a blue formazan end product 9,24. Cytochrome c and sodium succinate substrates are added to normalize endogenous levels between control and diseased/mutant tissues 9. Catalase is added as a precaution to avoid possible contaminating reactions from peroxidase activity 9,22. Phenazine methosulfate (PMS), an intermediate electron carrier, is used in conjunction with sodium azide, a respiratory chain inhibitor, to increase the formation of the final reaction products 9,25. Despite this information, some critical details affecting the result of this seemly straightforward assay, in addition to specificity controls and advances in the technique, have not yet been presented.
25 Related JoVE Articles!
Play Button
A Novel Technique of Rescuing Capsulorhexis Radial Tear-out using a Cystotome
Authors: Shah M. R. Karim, Chin T. Ong, Mizanur R. Miah, Tamsin Sleep, Abdul Hanifudin.
Institutions: Hairmyres Hospital, NHS Lanarkshire, Royal Devon and Exeter NHS Foundation Trust, National Institute of Ophthalmology, South Devon Healthcare NHS Trust.
Part 1 : Purpose: To demonstrate a capsulorhexis radial tear out rescue technique using a cystotome on a virtual reality cataract surgery simulator and in a human eye. Part 2 : Method: Steps: When a capsulorhexis begins to veer radially towards the periphery beyond the pupillary margin the following steps should be applied without delay. 2.1) Stop further capsulorhexis manoeuvre and reassess the situation. 2.2) Fill the anterior chamber with ophthalmic viscosurgical device (OVD). We recommend mounting the cystotome to a syringe containing OVD so that the anterior chamber can be reinflated rapidly. 2.3) The capsulorhexis flap is then left unfolded on the lens surface. 2.4) The cystotome tip is tilted horizontally to avoid cutting or puncturing the flap and is engaged on the flap near the leading edge of the tear but not too close to the point of tear. 2.5) Gently push or pull the leading edge of tear opposite to the direction of tear. 2.6) The leading tearing edge will start to do a 'U-Turn'. Maintain the tension on the flap until the tearing edge returns to the desired trajectory. Part 3 : Results: Using our technique, a surgeon can respond instantly to radial tear out without having to change surgical instruments. Changing surgical instruments at this critical stage runs a risk of further radial tear due to sudden shallowing of anterior chamber as a result of forward pressure from the vitreous. Our technique also has the advantage of reducing corneal wound distortion and subsequent anterior chamber collapse. Part 4 : Discussion The EYESI Surgical Simulator is a realistic training platform for surgeons to practice complex capsulorhexis tear-out techniques. Capsulorhexis is the most important and complex part of phacoemulsification and endocapsular intraocular lens implantation procedure. A successful cataract surgery depends on achieving a good capsulorhexis. During capsulorhexis, surgeons may face a challenging situation like a capsulorhexis radial tear-out. A surgeon must learn to tackle the problem promptly without making the situation worse. Some other methods of rescuing the situation have been described using a capsulorhexis forceps. However, we believe our method is quicker, more effective and easier to manipulate as demonstrated on the EYESi surgical simulator and on a human eye. Acknowledgments: List acknowledgements and funding sources. We would like to thank Dr. Wael El Gendy, for video clip. Disclosures: describe potential conflicting interests or state We have nothing to disclose. References: 1. Brian C. Little, Jennifer H. Smith, Mark Packer. J Cataract Refract Surg 2006; 32:1420 1422, Issue-9. 2. Neuhann T. Theorie und Operationstechnik der Kapsulorhexis. Klin Monatsbl Augenheilkd. 1987; 1990: 542-545. 3. Gimbel HV, Neuhann T. Development, advantages and methods of the continuous circular capsulorhexis technique. J Cataract Refract Surg. 1990; 16: 31-37. 4. Gimbel HV, Neuhann T. Continuous curvilinear capsulorhexis. (letter) J Cataract Refract Sur. 1991; 17: 110-111.
Medicine, Issue 47, Phacoemulsification surgery, cataract surgery, capsulorhexis, capsulotomy, technique, Continuous curvilinear capsulorhexis, cystotome, capsulorhexis radial tear, capulorhexis COMPLICATION
Play Button
Determining heat and mechanical pain threshold in inflamed skin of human subjects
Authors: Martin S Angst, Martha Tingle, Nicholas G Phillips, Brendan Carvalho.
Institutions: Stanford University School of Medicine.
In a previous article in the Journal of Visualized Experiments we have demonstrated skin microdialysis techniques for the collection of tissue-specific nociceptive and inflammatory biochemicals in humans. In this article we will show pain-testing paradigms that are often used in tandem with microdialysis procedures. Combining pain tests with microdialysis provides the critical link between behavioral and biochemical data that allows identifying key biochemicals responsible for generating and propagating pain. Two models of evoking pain in inflamed skin of human study participants are shown. The first model evokes pain with aid of heat stimuli. Heat evoked pain as described here is predominantly mediated by small, non-myelinated peripheral nociceptive nerve fibers (C-fibers). The second model evokes pain via punctuated pressure stimuli. Punctuated pressure evoked pain is predominantly mediated by small, myelinated peripheral nociceptive nerve fibers (A-delta fibers). The two models are mechanistically distinct and independently examine nociceptive processing by the two major peripheral nerve fiber populations involved in pain signaling. Heat pain is evoked with aid of the TSA II, a commercially available thermo-sensory analyzer (Medoc Advanced Medical Systems, Durham, NC). Stimulus configuration and delivery is handled with aid of specific software. Thermodes vary in size and shape but in principle consist of a metal plate that can be heated or cooled at various rates and for different periods of time. Algorithms assessing heat-evoked pain are manifold. In the experiments shown here, study participants are asked to indicate at what point they start experiencing pain while the thermode in contact with skin is heated at a predetermined rate starting at a temperature that does not evoke pain. The thermode temperature at which a subject starts experiencing pain constitutes the heat pain threshold. Mechanical pain is evoked with punctuated probes. Such probes are commercially available from several manufacturers (von Frey hairs). However, the accuracy of von Frey hairs has been criticized and many investigators use custom made punctuated pressure probes. In the experiments shown here eight custom-made punctuated probes of different weights are applied in consecutive order, a procedure called up-down algorithm, to identify perceptional deflection points, i.e., a change from feeling no pain to feeling pain or vice versa. The average weight causing a perceptional deflection constitutes the mechanical pain threshold.
Medicine, Issue 23, Experimental pain, experimental inflammation, human, skin, heat stimuli, mechanical stimuli, pain threshold, psychophysics, non-myelinated nociceptive nerve fiber, small myelinated nociceptive nerve fiber
Play Button
Visualizing the Effects of a Positive Early Experience, Tactile Stimulation, on Dendritic Morphology and Synaptic Connectivity with Golgi-Cox Staining
Authors: Richelle Mychasiuk, Robbin Gibb, Bryan Kolb.
Institutions: University of Lethbridge.
To generate longer-term changes in behavior, experiences must be producing stable changes in neuronal morphology and synaptic connectivity. Tactile stimulation is a positive early experience that mimics maternal licking and grooming in the rat. Exposing rat pups to this positive experience can be completed easily and cost-effectively by using highly accessible materials such as a household duster. Using a cross-litter design, pups are either stroked or left undisturbed, for 15 min, three times per day throughout the perinatal period. To measure the neuroplastic changes related to this positive early experience, Golgi-Cox staining of brain tissue is utilized. Owing to the fact that Golgi-Cox impregnation stains a discrete number of neurons rather than all of the cells, staining of the rodent brain with Golgi-Cox solution permits the visualization of entire neuronal elements, including the cell body, dendrites, axons, and dendritic spines. The staining procedure is carried out over several days and requires that the researcher pay close attention to detail. However, once staining is completed, the entire brain has been impregnated and can be preserved indefinitely for ongoing analysis. Therefore, Golgi-Cox staining is a valuable resource for studying experience-dependent plasticity.
Neuroscience, Issue 79, Brain, Prefrontal Cortex, Neurons, Massage, Staining and Labeling, mPFC, spine density, methodology, enrichment
Play Button
A Modified Heterotopic Swine Hind Limb Transplant Model for Translational Vascularized Composite Allotransplantation (VCA) Research
Authors: Zuhaib Ibrahim, Damon S. Cooney, Jaimie T. Shores, Justin M. Sacks, Eric G. Wimmers, Steven C. Bonawitz, Chad Gordon, Dawn Ruben, Stefan Schneeberger, W. P. Andrew Lee, Gerald Brandacher.
Institutions: Johns Hopkins University School of Medicine.
Vascularized Composite Allotransplantation (VCA) such as hand and face transplants represent a viable treatment option for complex musculoskeletal trauma and devastating tissue loss. Despite favorable and highly encouraging early and intermediate functional outcomes, rejection of the highly immunogenic skin component of a VCA and potential adverse effects of chronic multi-drug immunosuppression continue to hamper widespread clinical application of VCA. Therefore, research in this novel field needs to focus on translational studies related to unique immunologic features of VCA and to develop novel immunomodulatory strategies for immunomodulation and tolerance induction following VCA without the need for long term immunosuppression. This article describes a reliable and reproducible translational large animal model of VCA that is comprised of an osteomyocutaneous flap in a MHC-defined swine heterotopic hind limb allotransplantation. Briefly, a well-vascularized skin paddle is identified in the anteromedial thigh region using near infrared laser angiography. The underlying muscles, knee joint, distal femur, and proximal tibia are harvested on a femoral vascular pedicle. This allograft can be considered both a VCA and a vascularized bone marrow transplant with its unique immune privileged features. The graft is transplanted to a subcutaneous abdominal pocket in the recipient animal with a skin component exteriorized to the dorsolateral region for immune monitoring. Three surgical teams work simultaneously in a well-coordinated manner to reduce anesthesia and ischemia times, thereby improving efficiency of this model and reducing potential confounders in experimental protocols. This model serves as the groundwork for future therapeutic strategies aimed at reducing and potentially eliminating the need for chronic multi-drug immunosuppression in VCA.
Medicine, Issue 80, Upper Extremity, Swine, Microsurgery, Tissue Transplantation, Transplantation Immunology, Surgical Procedures, Operative, Vascularized Composite Allografts, reconstructive transplantation, translational research, swine, hind limb allotransplantation, bone marrow, osteomyocutaneous, microvascular anastomosis, immunomodulation
Play Button
Real-time Digital Imaging of Leukocyte-endothelial Interaction in Ischemia-reperfusion Injury (IRI) of the Rat Cremaster Muscle
Authors: Jan R. Thiele, Kurt Goerendt, G. Bjoern Stark, Steffen U. Eisenhardt.
Institutions: University of Freiburg Medical Centre.
Ischemia-reperfusion injury (IRI) has been implicated in a large array of pathological conditions such as cerebral stroke, myocardial infarction, intestinal ischemia as well as following transplant and cardiovascular surgery.1 Reperfusion of previously ischemic tissue, while essential for the prevention of irreversible tissue injury, elicits excessive inflammation of the affected tissue. Adjacent to the production of reactive oxygen species, activation of the complement system and increased microvascular permeability, the activation of leukocytes is one of the principle actors in the pathological cascade of inflammatory tissue damage during reperfusion.2, 3 Leukocyte activation is a multistep process consisting of rolling, firm adhesion and transmigration and is mediated by a complex interaction between adhesion molecules in response to chemoattractants such as complement factors, chemokines, or platelet-activating factor.4 While leukocyte rolling in postcapillary venules is predominantly mediated by the interaction of selectins5 with their counter ligands, firm adhesion of leukocytes to the endothelium is selectin-controlled via binding to intercellular adhesion molecules (ICAM) and vascular cellular adhesion molecules (VCAM).6, 7 Gold standard for the in vivo observation of leukocyte-endothelial interaction is the technique of intravital microscopy, first described in 1968.8 Though various models of IRI (ischemia-reperfusion injury) have been described for various organs, 9-12 only few are suitable for direct visualization of leukocyte recruitment in the microvascular bed on a high level of image quality.8 We here promote the digital intravital epifluorescence microscopy of the postcapillary venule in the cremasteric microcirculation of the rat 13 as a convenient method to qualitatively and quantitatively analyze leukocyte recruitment for IRI-research in striated muscle tissue and provide a detailed manual for accomplishing the technique. We further illustrate common pitfalls and provide useful tips which should enable the reader to truly appreciate, and safely perform the method. In a step by step protocol we depict how to get started with respiration controlled anesthesia under sufficient monitoring to keep the animal firmly anesthetized for longer periods of time. We then describe the cremasteric preparation as a thin flat sheet for outstanding optical resolution and provide a protocol for leukocyte imaging in IRI that has been well established in our laboratories.
Medicine, Issue 66, Immunology, Physiology, Molecular Biology, microcirculation, ischemia-reperfusion injury, rat, cremaster muscle, leukocyte activation, intravital microscopy
Play Button
Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS)
Authors: Mauricio F. Villamar, Magdalena Sarah Volz, Marom Bikson, Abhishek Datta, Alexandre F. DaSilva, Felipe Fregni.
Institutions: Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Pontifical Catholic University of Ecuador, Charité University Medicine Berlin, The City College of The City University of New York, University of Michigan.
High-definition transcranial direct current stimulation (HD-tDCS) has recently been developed as a noninvasive brain stimulation approach that increases the accuracy of current delivery to the brain by using arrays of smaller "high-definition" electrodes, instead of the larger pad-electrodes of conventional tDCS. Targeting is achieved by energizing electrodes placed in predetermined configurations. One of these is the 4x1-ring configuration. In this approach, a center ring electrode (anode or cathode) overlying the target cortical region is surrounded by four return electrodes, which help circumscribe the area of stimulation. Delivery of 4x1-ring HD-tDCS is capable of inducing significant neurophysiological and clinical effects in both healthy subjects and patients. Furthermore, its tolerability is supported by studies using intensities as high as 2.0 milliamperes for up to twenty minutes. Even though 4x1 HD-tDCS is simple to perform, correct electrode positioning is important in order to accurately stimulate target cortical regions and exert its neuromodulatory effects. The use of electrodes and hardware that have specifically been tested for HD-tDCS is critical for safety and tolerability. Given that most published studies on 4x1 HD-tDCS have targeted the primary motor cortex (M1), particularly for pain-related outcomes, the purpose of this article is to systematically describe its use for M1 stimulation, as well as the considerations to be taken for safe and effective stimulation. However, the methods outlined here can be adapted for other HD-tDCS configurations and cortical targets.
Medicine, Issue 77, Neurobiology, Neuroscience, Physiology, Anatomy, Biomedical Engineering, Biophysics, Neurophysiology, Nervous System Diseases, Diagnosis, Therapeutics, Anesthesia and Analgesia, Investigative Techniques, Equipment and Supplies, Mental Disorders, Transcranial direct current stimulation, tDCS, High-definition transcranial direct current stimulation, HD-tDCS, Electrical brain stimulation, Transcranial electrical stimulation (tES), Noninvasive Brain Stimulation, Neuromodulation, non-invasive, brain, stimulation, clinical techniques
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
Play Button
The 5-Choice Serial Reaction Time Task: A Task of Attention and Impulse Control for Rodents
Authors: Samuel K. Asinof, Tracie A. Paine.
Institutions: Oberlin College.
This protocol describes the 5-choice serial reaction time task, which is an operant based task used to study attention and impulse control in rodents. Test day challenges, modifications to the standard task, can be used to systematically tax the neural systems controlling either attention or impulse control. Importantly, these challenges have consistent effects on behavior across laboratories in intact animals and can reveal either enhancements or deficits in cognitive function that are not apparent when rats are only tested on the standard task. The variety of behavioral measures that are collected can be used to determine if other factors (i.e., sedation, motivation deficits, locomotor impairments) are contributing to changes in performance. The versatility of the 5CSRTT is further enhanced because it is amenable to combination with pharmacological, molecular, and genetic techniques.
Neuroscience, Issue 90, attention, impulse control, neuroscience, cognition, rodent
Play Button
Optic Nerve Transection: A Model of Adult Neuron Apoptosis in the Central Nervous System
Authors: Mark M. Magharious, Philippe M. D'Onofrio, Paulo D. Koeberle.
Institutions: University of Toronto.
Retinal ganglion cells (RGCs) are CNS neurons that output visual information from the retina to the brain, via the optic nerve. The optic nerve can be accessed within the orbit of the eye and completely transected (axotomized), cutting the axons of the entire RGC population. Optic nerve transection is a reproducible model of apoptotic neuronal cell death in the adult CNS 1-4. This model is particularly attractive because the vitreous chamber of the eye acts as a capsule for drug delivery to the retina, permitting experimental manipulations via intraocular injections. The diffusion of chemicals through the vitreous fluid ensures that they act upon the entire RGC population. Moreover, RGCs can be selectively transfected by applying short interfering RNAs (siRNAs), plasmids, or viral vectors to the cut end of the optic nerve 5-7 or injecting vectors into their target, the superior colliculus 8. This allows researchers to study apoptotic mechanisms in the desired neuronal population without confounding effects on other bystander neurons or surrounding glia. An additional benefit is the ease and accuracy with which cell survival can be quantified after injury. The retina is a flat, layered tissue and RGCs are localized in the innermost layer, the ganglion cell layer. The survival of RGCs can be tracked over time by applying a fluorescent tracer (3% Fluorogold) to the cut end of the optic nerve at the time of axotomy, or by injecting the tracer into the superior colliculus (RGC target) one week prior to axotomy. The tracer is retrogradely transported, labeling the entire RGC population. Because the ganglion cell layer is a monolayer (one cell thick), RGC densities can be quantified in flat-mounted tissue, without the need for stereology. Optic nerve transection leads to the apoptotic death of 90% of injured RGCs within 14 days postaxotomy 9-11. RGC apoptosis has a characteristic time-course whereby cell death is delayed 3-4 days postaxotomy, after which the cells rapidly degenerate. This provides a time window for experimental manipulations directed against pathways involved in apoptosis.
Neuroscience, issue 51, Central Nervous System, Retina, Apoptosis, Retinal Ganglion Cell, Axotomy, Optic Nerve Transection, Rat, Retrograde Labeling, Rat Model
Play Button
The Polyvinyl Alcohol Sponge Model Implantation
Authors: Desirae L. Deskins, Shidrokh Ardestani, Pampee P. Young.
Institutions: Vanderbilt University School of Medicine, The Department of Veterans Affairs Medical Center, Vanderbilt University School of Medicine.
Wound healing is a complicated, multistep process involving many cell types, growth factors and compounds1-3. Because of this complexity, wound healing studies are most comprehensive when carried out in vivo. There are many in vivo models available to study acute wound healing, including incisional, excisional, dead space, and burns. Dead space models are artificial, porous implants which are used to study tissue formation and the effects of substances on the wound. Some of the commonly used dead space models include polyvinyl alcohol (PVA) sponges, steel wire mesh cylinders, expanded polytetrafluoroethylene (ePTFE) material, and the Cellstick1,2. Each dead space model has its own limitations based on its material's composition and implantation methods. The steel wire mesh cylinder model has a lag phase of infiltration after implantation and requires a long amount of time before granulation tissue formation begins1. Later stages of wound healing are best analyzed using the ePTFE model1,4. The Cellstick is a cellulose sponge inside a silicon tube model which is typically used for studying human surgery wounds and wound fluid2. The PVA sponge is limited to acute studies because with time it begins to provoke a foreign body response which causes a giant cell reaction in the animal5. Unlike other materials, PVA sponges are easy to insert and remove, made of inert and non-biodegradable materials and yet are soft enough to be sectioned for histological analysis2,5. In wound healing the PVA sponge is very useful for analyzing granulation tissue formation, collagen deposition, wound fluid composition, and the effects of substances on the healing process1,2,5. In addition to its use in studying a wide array of attributes of wound healing, the PVA sponge has also been used in many other types of studies. It has been utilized to investigate tumor angiogenesis, drug delivery and stem cell survival and engraftment1,2,6,7. With its great alterability, prior extensive use, and reproducible results, the PVA sponge is an ideal model for many studies1,2. Here, we will describe the preparation, implantation and retrieval of PVA sponge disks (Figure 1) in a mouse model of wound healing.
Medicine, Issue 62, Polyvinyl alcohol (PVA) sponge, engraftment, stem cells, granulation tissue, vascularization, tumorgenesis, drug delivery, wound model, physiology
Play Button
Non-Invasive Model of Neuropathogenic Escherichia coli Infection in the Neonatal Rat
Authors: Fatma Dalgakiran, Luci A. Witcomb, Alex J. McCarthy, George M. H. Birchenough, Peter W. Taylor.
Institutions: University College London, University of Gothenburg.
Investigation of the interactions between animal host and bacterial pathogen is only meaningful if the infection model employed replicates the principal features of the natural infection. This protocol describes procedures for the establishment and evaluation of systemic infection due to neuropathogenic Escherichia coli K1 in the neonatal rat. Colonization of the gastrointestinal tract leads to dissemination of the pathogen along the gut-lymph-blood-brain course of infection and the model displays strong age dependency. A strain of E. coli O18:K1 with enhanced virulence for the neonatal rat produces exceptionally high rates of colonization, translocation to the blood compartment and invasion of the meninges following transit through the choroid plexus. As in the human host, penetration of the central nervous system is accompanied by local inflammation and an invariably lethal outcome. The model is of proven utility for studies of the mechanism of pathogenesis, for evaluation of therapeutic interventions and for assessment of bacterial virulence.
Infection, Issue 92, Bacterial infection, neonatal bacterial meningitis, bacteremia, sepsis, animal model, K1 polysaccharide, systemic infection, gastrointestinal tract, age dependency
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
Intraspinal Cell Transplantation for Targeting Cervical Ventral Horn in Amyotrophic Lateral Sclerosis and Traumatic Spinal Cord Injury
Authors: Angelo C. Lepore.
Institutions: Thomas Jefferson University Medical College.
Respiratory compromise due to phrenic motor neuron loss is a debilitating consequence of a large proportion of human traumatic spinal cord injury (SCI) cases 1 and is the ultimate cause of death in patients with the motor neuron disorder, amyotrophic laterals sclerosis (ALS) 2. ALS is a devastating neurological disorder that is characterized by relatively rapid degeneration of upper and lower motor neurons. Patients ultimately succumb to the disease on average 2-5 years following diagnosis because of respiratory paralysis due to loss of phrenic motor neuron innnervation of the diaphragm 3. The vast majority of cases are sporadic, while 10% are of the familial form. Approximately twenty percent of familial cases are linked to various point mutations in the Cu/Zn superoxide dismutase 1 (SOD1) gene on chromosome 21 4. Transgenic mice 4,5 and rats 6 carrying mutant human SOD1 genes (G93A, G37R, G86R, G85R) have been generated, and, despite the existence of other animal models of motor neuron loss, are currently the most highly used models of the disease. Spinal cord injury (SCI) is a heterogeneous set of conditions resulting from physical trauma to the spinal cord, with functional outcome varying according to the type, location and severity of the injury 7. Nevertheless, approximately half of human SCI cases affect cervical regions, resulting in debilitating respiratory dysfunction due to phrenic motor neuron loss and injury to descending bulbospinal respiratory axons 1. A number of animal models of SCI have been developed, with the most commonly used and clinically-relevant being the contusion 8. Transplantation of various classes of neural precursor cells (NPCs) is a promising therapeutic strategy for treatment of traumatic CNS injuries and neurodegeneration, including ALS and SCI, because of the ability to replace lost or dysfunctional CNS cell types, provide neuroprotection, and deliver gene factors of interest 9. Animal models of both ALS and SCI can model many clinically-relevant aspects of these diseases, including phrenic motor neuron loss and consequent respiratory compromise 10,11. In order to evaluate the efficacy of NPC-based strategies on respiratory function in these animal models of ALS and SCI, cellular interventions must be specifically directed to regions containing therapeutically relevant targets such as phrenic motor neurons. We provide a detailed protocol for multi-segmental, intraspinal transplantation of NPCs into the cervical spinal cord ventral gray matter of neurodegenerative models such as SOD1G93A mice and rats, as well as spinal cord injured rats and mice 11.
Medicine, Issue 55, cell transplantation, engraftment, graft, spinal cord, stem cells, precursors, ALS, amyotrophic lateral sclerosis, motor neuron, SCI, spinal cord injury
Play Button
Sex Stratified Neuronal Cultures to Study Ischemic Cell Death Pathways
Authors: Stacy L. Fairbanks, Rebekah Vest, Saurabh Verma, Richard J. Traystman, Paco S. Herson.
Institutions: University of Colorado School of Medicine, Oregon Health & Science University, University of Colorado School of Medicine.
Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome.
Neuroscience, Issue 82, male, female, sex, neuronal culture, ischemia, cell death, neuroprotection
Play Button
Intravital Imaging of Axonal Interactions with Microglia and Macrophages in a Mouse Dorsal Column Crush Injury
Authors: Teresa A. Evans, Deborah S. Barkauskas, Jay T. Myers, Alex Y. Huang.
Institutions: Case Western Reserve University, Case Western Reserve University, Case Western Reserve University.
Traumatic spinal cord injury causes an inflammatory reaction involving blood-derived macrophages and central nervous system (CNS)-resident microglia. Intra-vital two-photon microscopy enables the study of macrophages and microglia in the spinal cord lesion in the living animal. This can be performed in adult animals with a traumatic injury to the dorsal column. Here, we describe methods for distinguishing macrophages from microglia in the CNS using an irradiation bone marrow chimera to obtain animals in which only macrophages or microglia are labeled with a genetically encoded green fluorescent protein. We also describe a injury model that crushes the dorsal column of the spinal cord, thereby producing a simple, easily accessible, rectangular lesion that is easily visualized in an animal through a laminectomy. Furthermore, we will outline procedures to sequentially image the animals at the anatomical site of injury for the study of cellular interactions during the first few days to weeks after injury.
Cellular Biology, Issue 93, Intravital, spinal cord crush injury, chimera, microglia, macrophages, dorsal column crush, axonal dieback
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
In situ Transverse Rectus Abdominis Myocutaneous Flap: A Rat Model of Myocutaneous Ischemia Reperfusion Injury
Authors: Marie-Claire Edmunds, Stephen Wigmore, David Kluth.
Institutions: Royal Infirmary of Edinburgh, Royal Infirmary of Edinburgh.
Free tissue transfer is the gold standard of reconstructive surgery to repair complex defects not amenable to local options or those requiring composite tissue. Ischemia reperfusion injury (IRI) is a known cause of partial free flap failure and has no effective treatment. Establishing a laboratory model of this injury can prove costly both financially as larger mammals are conventionally used and in the expertise required by the technical difficulty of these procedures typically requires employing an experienced microsurgeon. This publication and video demonstrate the effective use of a model of IRI in rats which does not require microsurgical expertise. This procedure is an in situ model of a transverse abdominis myocutaneous (TRAM) flap where atraumatic clamps are utilized to reproduce the ischemia-reperfusion injury associated with this surgery. A laser Doppler Imaging (LDI) scanner is employed to assess flap perfusion and the image processing software, Image J to assess percentage area skin survival as a primary outcome measure of injury.
Medicine, Issue 76, Biomedical Engineering, Immunology, Anatomy, Physiology, Cellular Biology, Hematology, Surgery, Microsurgery, Reconstructive Surgical Procedures, Surgical Procedures, Operative, Myocutaneous flap, preconditioning, ischemia reperfusion injury, rat, animal model
Play Button
Ischemic Tissue Injury in the Dorsal Skinfold Chamber of the Mouse: A Skin Flap Model to Investigate Acute Persistent Ischemia
Authors: Yves Harder, Daniel Schmauss, Reto Wettstein, José T. Egaña, Fabian Weiss, Andrea Weinzierl, Anna Schuldt, Hans-Günther Machens, Michael D. Menger, Farid Rezaeian.
Institutions: Technische Universität München, University Hospital of Basel, University of Saarland, University Hospital Zurich.
Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.
Medicine, Issue 93, flap, ischemia, microcirculation, angiogenesis, skin, necrosis, inflammation, apoptosis, preconditioning, persistent ischemia, in vivo model, muscle.
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
Play Button
A Novel Capsulorhexis Technique Using Shearing Forces with Cystotome
Authors: Shah M. R. Karim, Chin T. Ong, Tamsin J. Sleep.
Institutions: Hairmyres Hospital, NHS Lanarkshire, Department of Ophthalmology, South Devon Healthcare NHS Trust.
Purpose: To demonstrate a capsulorhexis technique using predominantly shearing forces with a cystotome on a virtual reality simulator and on a human eye. Method: Our technique involves creating the initial anterior capsular tear with a cystotome to raise a flap. The flap left unfolded on the lens surface. The cystotome tip is tilted horizontally and is engaged on the flap near the leading edge of the tear. The cystotome is moved in a circular fashion to direct the vector forces. The loose flap is constantly swept towards the centre so that it does not obscure the view on the tearing edge. Results: Our technique has the advantage of reducing corneal wound distortion and subsequent anterior chamber collapse. The capsulorhexis flap is moved away from the tear leading edge allowing better visualisation of the direction of tear. This technique offers superior control of the capsulorhexis by allowing the surgeon to change the direction of the tear to achieve the desired capsulorhexis size. Conclusions: The EYESI Surgical Simulator is a realistic training platform for surgeons to practice complex capsulorhexis techniques. The shearing forces technique is a suitable alternative and in some cases a far better technique in achieving the desired capsulorhexis.
JoVE Medicine, Issue 39, Phacoemulsification surgery, cataract surgery, capsulorhexis, capsulotomy, technique, Continuous curvilinear capsulorhexis, cystotome
Play Button
Adjustable Stiffness, External Fixator for the Rat Femur Osteotomy and Segmental Bone Defect Models
Authors: Vaida Glatt, Romano Matthys.
Institutions: Queensland University of Technology, RISystem AG.
The mechanical environment around the healing of broken bone is very important as it determines the way the fracture will heal. Over the past decade there has been great clinical interest in improving bone healing by altering the mechanical environment through the fixation stability around the lesion. One constraint of preclinical animal research in this area is the lack of experimental control over the local mechanical environment within a large segmental defect as well as osteotomies as they heal. In this paper we report on the design and use of an external fixator to study the healing of large segmental bone defects or osteotomies. This device not only allows for controlled axial stiffness on the bone lesion as it heals, but it also enables the change of stiffness during the healing process in vivo. The conducted experiments have shown that the fixators were able to maintain a 5 mm femoral defect gap in rats in vivo during unrestricted cage activity for at least 8 weeks. Likewise, we observed no distortion or infections, including pin infections during the entire healing period. These results demonstrate that our newly developed external fixator was able to achieve reproducible and standardized stabilization, and the alteration of the mechanical environment of in vivo rat large bone defects and various size osteotomies. This confirms that the external fixation device is well suited for preclinical research investigations using a rat model in the field of bone regeneration and repair.
Medicine, Issue 92, external fixator, bone healing, small animal model, large bone defect and osteotomy model, rat model, mechanical environment, mechanobiology.
Play Button
Ole Isacson: Development of New Therapies for Parkinson's Disease
Authors: Ole Isacson.
Institutions: Harvard Medical School.
Medicine, Issue 3, Parkinson' disease, Neuroscience, dopamine, neuron, L-DOPA, stem cell, transplantation
Play Button
Retrograde Labeling of Retinal Ganglion Cells by Application of Fluoro-Gold on the Surface of Superior Colliculus
Authors: Kin Chiu, Wui-Man Lau, Sze-chun Yeung, Raymond Chuen-Chung Chang, Kwok-Fai So.
Institutions: The University of Hong Kong - HKU.
Retinal ganglion cell (RGC) counting is essential to evaluate retinal degeneration especially in glaucoma. Reliable RGC labeling is fundamental for evaluating the effects of any treatment. In rat, about 98% of RGCs is known to project to the contralateral superior colliculus (SC) (Forrester and Peters, 1967). Applying fluoro-gold (FG) on the surface of SC can label almost all the RGCs, so that we can focus on this most vulnerable retinal neuron in glaucoma. FG is taken up by the axon terminals of retinal ganglion cells and bilaterally transported retrogradely to its somas in the retina. Compare with retrograde labeling of RGC by putting FG at stump of transected optic nerve for 2 days, the interference of RGC survival is minimized. Compare with cresyl violet staining that stains RGCs, amacrine cells and endothelium of the blood vessel in the retinal ganglion cell layer, this labeling method is more specific to the RGC. This video describes the method of retrograde labeling of RGC by applying FG on the surface of SC. The surgical procedures include drilling the skull; aspirating the cortex to expose the SC and applying gelatin sponge over entire dorsal surface of SC are shown. Useful tips for avoiding massive intracranial bleeding and aspiration of the SC have been given.
Neuroscience, Issue 16, Retrograde labeling, retinal ganglion cells, ophthalmology research, superior colliculus, experimental glaucoma
Play Button
Murine Skin Transplantation
Authors: Kym R. Garrod, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI).
As one of the most stringent and least technically challenging models, skin transplantation is a standard method to assay host T cell responses to MHC-disparate donor antigens. The aim of this video-article is to provide the viewer with a step-by-step visual demonstration of skin transplantation using the mouse model. The protocol is divided into 5 main components: 1) harvesting donor skin; 2) preparing recipient for transplant; 3) skin transplant; 4) bandage removal and monitoring graft rejection; 5) helpful hints. Once proficient, the procedure itself should take <10 min to perform.
Immunology, Issue 11, allograft rejection, skin transplant, mouse
Play Button
Collecting And Measuring Wound Exudate Biochemical Mediators In Surgical Wounds
Authors: Brendan Carvalho, David J Clark, David Yeomans, Martin S Angst.
Institutions: Stanford University School of Medicine .
We describe a methodology by which we are able to collect and measure biochemical inflammatory and nociceptive mediators at the surgical wound site. Collecting site-specific biochemical markers is important to understand the relationship between levels in serum and surgical wound, determine any associations between mediator release, pain, analgesic use and other outcomes of interest, and evaluate the effect of systemic and peripheral drug administration on surgical wound biochemistry. This methodology has been applied to healthy women undergoing elective cesarean delivery with spinal anesthesia. We have measured wound exudate and serum mediators at the same time intervals as patient's pain scores and analgesics consumption for up to 48 hours post-cesarean delivery. Using this methodology we have been able to detect various biochemical mediators including nerve growth factor (NGF), prostaglandin E2 (PG-E2) substance P, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, TNFα, INFγ, G-CSF, GM-CSF, MCP-1 and MIP-1β. Studies applying this human surgical wound bioassay have found no correlations between wound and serum cytokine concentrations or their time-release profile (J Pain. 2008; 9(7):650-7).1 We also documented the utility of the technique to identify drug-mediated changes in wound cytokine content (Anesth Analg 2010; 111:1452-9).2
Medicine, Issue 68, Biochemistry, Anatomy, Physiology, Cytokines, Cesarean Section, Wound Healing, Wounds and Injuries, Surgical Procedures, Operative, Surgical wound, Exudate, cytokines, Substance P, Interleukin 10, Interleukin 6, Nerve growth factor, Prostaglandin E2, Cesarean, Analgesia
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.