JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Estimation of Parameters Influencing Waterborne Transmission of Infectious Hematopoietic Necrosis Virus (IHNV) in Atlantic Salmon (Salmo salar).
PUBLISHED: 01-01-2013
Understanding how pathogenic organisms spread in the environment is crucial for the management of disease, yet knowledge of propagule dispersal and transmission in aquatic environments is limited. We conducted empirical studies using the aquatic virus, infectious hematopoietic necrosis virus (IHNV), to quantify infectious dose, shedding capacity, and virus destruction rates in order to better understand the transmission of IHN virus among Atlantic salmon marine net-pen aquaculture. Transmission of virus and subsequent mortality in Atlantic salmon post-smolts was initiated with as low as 10 plaque forming units (pfu) ml(-1). Virus shedding from IHNV infected Atlantic salmon was detected before the onset of visible signs of disease with peak shed rates averaging 3.2×10(7) pfu fish(-1) hour(-1) one to two days prior to mortality. Once shed into the marine environment, the abundance of free IHNV is modulated by sunlight (UV A and B) and the growth of natural biota present in the seawater. Virus decayed very slowly in sterilized seawater while rates as high as k?=? 4.37 d(-1) were observed in natural seawater. Decay rates were further accelerated when exposed to sunlight with virus infectivity reduced by six orders of magnitude within 3 hours of full sunlight exposure. Coupling the IHNV transmission parameter estimates determined here with physical water circulation models, will increase the understanding of IHNV dispersal and provide accurate geospatial predictions of risk for IHNV transmission from marine salmon sites.
Authors: Audrey R. Matteson, Charles R. Budinoff, Claire E. Campbell, Alison Buchan, Steven W. Wilhelm.
Published: 09-22-2010
Viruses are pervasive components of marine and freshwater systems, and are known to be significant agents of microbial mortality. Developing quantitative estimates of this process is critical as we can then develop better models of microbial community structure and function as well as advance our understanding of how viruses work to alter aquatic biogeochemical cycles. The virus reduction technique allows researchers to estimate the rate at which virus particles are released from the endemic microbial community. In brief, the abundance of free (extracellular) viruses is reduced in a sample while the microbial community is maintained at near ambient concentration. The microbial community is then incubated in the absence of free viruses and the rate at which viruses reoccur in the sample (through the lysis of already infected members of the community) can be quantified by epifluorescence microscopy or, in the case of specific viruses, quantitative PCR. These rates can then be used to estimate the rate of microbial mortality due to virus-mediated cell lysis.
22 Related JoVE Articles!
Play Button
Modeling The Lifecycle Of Ebola Virus Under Biosafety Level 2 Conditions With Virus-like Particles Containing Tetracistronic Minigenomes
Authors: Thomas Hoenen, Ari Watt, Anita Mora, Heinz Feldmann.
Institutions: National Institute of Allergy and Infectious Diseases, National Institutes of Health, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
Ebola viruses cause severe hemorrhagic fevers in humans and non-human primates, with case fatality rates as high as 90%. There are no approved vaccines or specific treatments for the disease caused by these viruses, and work with infectious Ebola viruses is restricted to biosafety level 4 laboratories, significantly limiting the research on these viruses. Lifecycle modeling systems model the virus lifecycle under biosafety level 2 conditions; however, until recently such systems have been limited to either individual aspects of the virus lifecycle, or a single infectious cycle. Tetracistronic minigenomes, which consist of Ebola virus non-coding regions, a reporter gene, and three Ebola virus genes involved in morphogenesis, budding, and entry (VP40, GP1,2, and VP24), can be used to produce replication and transcription-competent virus-like particles (trVLPs) containing these minigenomes. These trVLPs can continuously infect cells expressing the Ebola virus proteins responsible for genome replication and transcription, allowing us to safely model multiple infectious cycles under biosafety level 2 conditions. Importantly, the viral components of this systems are solely derived from Ebola virus and not from other viruses (as is, for example, the case in systems using pseudotyped viruses), and VP40, GP1,2 and VP24 are not overexpressed in this system, making it ideally suited for studying morphogenesis, budding and entry, although other aspects of the virus lifecycle such as genome replication and transcription can also be modeled with this system. Therefore, the tetracistronic trVLP assay represents the most comprehensive lifecycle modeling system available for Ebola viruses, and has tremendous potential for use in investigating the biology of Ebola viruses in future. Here, we provide detailed information on the use of this system, as well as on expected results.
Infectious Diseases, Issue 91, hemorrhagic Fevers, Viral, Mononegavirales Infections, Ebola virus, filovirus, lifecycle modeling system, minigenome, reverse genetics, virus-like particles, replication, transcription, budding, morphogenesis, entry
Play Button
Efficient Agroinfiltration of Plants for High-level Transient Expression of Recombinant Proteins
Authors: Kahlin Leuzinger, Matthew Dent, Jonathan Hurtado, Jake Stahnke, Huafang Lai, Xiaohong Zhou, Qiang Chen.
Institutions: Arizona State University .
Mammalian cell culture is the major platform for commercial production of human vaccines and therapeutic proteins. However, it cannot meet the increasing worldwide demand for pharmaceuticals due to its limited scalability and high cost. Plants have shown to be one of the most promising alternative pharmaceutical production platforms that are robust, scalable, low-cost and safe. The recent development of virus-based vectors has allowed rapid and high-level transient expression of recombinant proteins in plants. To further optimize the utility of the transient expression system, we demonstrate a simple, efficient and scalable methodology to introduce target-gene containing Agrobacterium into plant tissue in this study. Our results indicate that agroinfiltration with both syringe and vacuum methods have resulted in the efficient introduction of Agrobacterium into leaves and robust production of two fluorescent proteins; GFP and DsRed. Furthermore, we demonstrate the unique advantages offered by both methods. Syringe infiltration is simple and does not need expensive equipment. It also allows the flexibility to either infiltrate the entire leave with one target gene, or to introduce genes of multiple targets on one leaf. Thus, it can be used for laboratory scale expression of recombinant proteins as well as for comparing different proteins or vectors for yield or expression kinetics. The simplicity of syringe infiltration also suggests its utility in high school and college education for the subject of biotechnology. In contrast, vacuum infiltration is more robust and can be scaled-up for commercial manufacture of pharmaceutical proteins. It also offers the advantage of being able to agroinfiltrate plant species that are not amenable for syringe infiltration such as lettuce and Arabidopsis. Overall, the combination of syringe and vacuum agroinfiltration provides researchers and educators a simple, efficient, and robust methodology for transient protein expression. It will greatly facilitate the development of pharmaceutical proteins and promote science education.
Plant Biology, Issue 77, Genetics, Molecular Biology, Cellular Biology, Virology, Microbiology, Bioengineering, Plant Viruses, Antibodies, Monoclonal, Green Fluorescent Proteins, Plant Proteins, Recombinant Proteins, Vaccines, Synthetic, Virus-Like Particle, Gene Transfer Techniques, Gene Expression, Agroinfiltration, plant infiltration, plant-made pharmaceuticals, syringe agroinfiltration, vacuum agroinfiltration, monoclonal antibody, Agrobacterium tumefaciens, Nicotiana benthamiana, GFP, DsRed, geminiviral vectors, imaging, plant model
Play Button
Glass Wool Filters for Concentrating Waterborne Viruses and Agricultural Zoonotic Pathogens
Authors: Hana T. Millen, Jordan C. Gonnering, Ryan K. Berg, Susan K. Spencer, William E. Jokela, John M. Pearce, Jackson S. Borchardt, Mark A. Borchardt.
Institutions: United States Geological Survey, University of Wisconsin – Madison, United States Department of Agriculture, United States Geological Survey.
The key first step in evaluating pathogen levels in suspected contaminated water is concentration. Concentration methods tend to be specific for a particular pathogen group, for example US Environmental Protection Agency Method 1623 for Giardia and Cryptosporidium1, which means multiple methods are required if the sampling program is targeting more than one pathogen group. Another drawback of current methods is the equipment can be complicated and expensive, for example the VIRADEL method with the 1MDS cartridge filter for concentrating viruses2. In this article we describe how to construct glass wool filters for concentrating waterborne pathogens. After filter elution, the concentrate is amenable to a second concentration step, such as centrifugation, followed by pathogen detection and enumeration by cultural or molecular methods. The filters have several advantages. Construction is easy and the filters can be built to any size for meeting specific sampling requirements. The filter parts are inexpensive, making it possible to collect a large number of samples without severely impacting a project budget. Large sample volumes (100s to 1,000s L) can be concentrated depending on the rate of clogging from sample turbidity. The filters are highly portable and with minimal equipment, such as a pump and flow meter, they can be implemented in the field for sampling finished drinking water, surface water, groundwater, and agricultural runoff. Lastly, glass wool filtration is effective for concentrating a variety of pathogen types so only one method is necessary. Here we report on filter effectiveness in concentrating waterborne human enterovirus, Salmonella enterica, Cryptosporidium parvum, and avian influenza virus.
Immunology, Issue 61, avian influenza virus, environmental sampling, Cryptosporidium, pathogen concentration, Salmonella, water, waterborne disease, waterborne pathogens
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
Play Button
Propagating and Detecting an Infectious Molecular Clone of Maedi-visna Virus that Expresses Green Fluorescent Protein
Authors: Stefán R. Jónsson, Valgerdur Andrésdóttir.
Institutions: University of Iceland.
Maedi-visna virus (MVV) is a lentivirus of sheep, causing slowly progressive interstitial pneumonia and encephalitis1. The primary target cells of MVV in vivo are considered to be of the monocyte lineage2. Certain strains of MVV can replicate in other cell types, however3,4. The green fluorescent protein is a commonly used marker for studying lentiviruses in living cells. We have inserted the egfp gene into the gene for dUTPase of MVV. The dUTPase gene is well conserved in most lentivirus strains of sheep and goats and has been shown to be important in replication of CAEV5. However, dUTPase has been shown to be dispensable for replication of the molecular clone of MVV used in this study both in vitro and in vivo6. MVV replication is strictly confined to cells of sheep or goat origin. We use a primary cell line from the choroid plexus of sheep (SCP cells) for transfection and propagation of the virus7. The fluorescent MVV is fully infectious and EGFP expression is stable over at least 6 passages8. There is good correlation between measurements of TCID50 and EGFP. This virus should therefore be useful for rapid detection of infected cells in studies of cell tropism and pathogenicity in vitro and in vivo8.
Immunology, Issue 56, retrovirus, lentivirus, maedi-visna virus, EGFP, GFP
Play Button
Generation of Recombinant Arenavirus for Vaccine Development in FDA-Approved Vero Cells
Authors: Benson Y.H. Cheng, Emilio Ortiz-Riaño, Juan Carlos de la Torre, Luis Martínez-Sobrido.
Institutions: University of Rochester School of Medicine and Dentistry, The Scripps Research Institute.
The development and implementation of arenavirus reverse genetics represents a significant breakthrough in the arenavirus field 4. The use of cell-based arenavirus minigenome systems together with the ability to generate recombinant infectious arenaviruses with predetermined mutations in their genomes has facilitated the investigation of the contribution of viral determinants to the different steps of the arenavirus life cycle, as well as virus-host interactions and mechanisms of arenavirus pathogenesis 1, 3, 11 . In addition, the development of trisegmented arenaviruses has permitted the use of the arenavirus genome to express additional foreign genes of interest, thus opening the possibility of arenavirus-based vaccine vector applications 5 . Likewise, the development of single-cycle infectious arenaviruses capable of expressing reporter genes provides a new experimental tool to improve the safety of research involving highly pathogenic human arenaviruses 16 . The generation of recombinant arenaviruses using plasmid-based reverse genetics techniques has so far relied on the use of rodent cell lines 7,19 , which poses some barriers for the development of Food and Drug Administration (FDA)-licensed vaccine or vaccine vectors. To overcome this obstacle, we describe here the efficient generation of recombinant arenaviruses in FDA-approved Vero cells.
Virology, Issue 78, Infection, Infectious Diseases, Microbiology, Molecular Biology, Cellular Biology, Medicine, Biomedical Engineering, Viruses, arenaviruses, plasmid transfection, recombinant virus, reverse genetics techniques, vaccine/vaccine vector seed development, clinical applications
Play Button
Propagation of Homalodisca coagulata virus-01 via Homalodisca vitripennis Cell Culture
Authors: Anna M. Biesbrock, Christopher M. Powell, Wayne B. Hunter, Blake R. Bextine.
Institutions: University of Texas at Tyler, USDA ARS.
The glassy-winged sharpshooter (Homalodisca vitripennis) is a highly vagile and polyphagous insect found throughout the southwestern United States. These insects are the predominant vectors of Xylella fastidiosa (X. fastidiosa), a xylem-limited bacterium that is the causal agent of Pierce's disease (PD) of grapevine. Pierce’s disease is economically damaging; thus, H. vitripennis have become a target for pathogen management strategies. A dicistrovirus identified as Homalodisca coagulata virus-01 (HoCV-01) has been associated with an increased mortality in H. vitripennis populations. Because a host cell is required for HoCV-01 replication, cell culture provides a uniform environment for targeted replication that is logistically and economically valuable for biopesticide production. In this study, a system for large-scale propagation of H. vitripennis cells via tissue culture was developed, providing a viral replication mechanism. HoCV-01 was extracted from whole body insects and used to inoculate cultured H. vitripennis cells at varying levels. The culture medium was removed every 24 hr for 168 hr, RNA extracted and analyzed with qRT-PCR. Cells were stained with trypan blue and counted to quantify cell survivability using light microscopy. Whole virus particles were extracted up to 96 hr after infection, which was the time point determined to be before total cell culture collapse occurred. Cells were also subjected to fluorescent staining and viewed using confocal microscopy to investigate viral activity on F-actin attachment and nuclei integrity. The conclusion of this study is that H. vitripennis cells are capable of being cultured and used for mass production of HoCV-01 at a suitable level to allow production of a biopesticide.
Infection, Issue 91, Homalodisca vitripennis, Homalodisca coagulata virus-01, cell culture, Pierce’s disease of grapevine, Xylella fastidiosa, Dicistroviridae
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency
Authors: Stéphanie Beaucourt, Antonio V. Bordería, Lark L. Coffey, Nina F. Gnädig, Marta Sanz-Ramos, Yasnee Beeharry, Marco Vignuzzi.
Institutions: Institut Pasteur .
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.
Immunology, Issue 52, Polymerase fidelity, RNA virus, mutation frequency, mutagen, RNA polymerase, viral evolution
Play Button
Transmitting Plant Viruses Using Whiteflies
Authors: Jane E. Polston, H. Capobianco.
Institutions: University of Florida .
Whiteflies, Hemiptera: Aleyrodidae, Bemisia tabaci, a complex of morphologically indistinquishable species5, are vectors of many plant viruses. Several genera of these whitefly-transmitted plant viruses (Begomovirus, Carlavirus, Crinivirus, Ipomovirus, Torradovirus) include several hundred species of emerging and economically significant pathogens of important food and fiber crops (reviewed by9,10,16). These viruses do not replicate in their vector but nevertheless are moved readily from plant to plant by the adult whitefly by various means (reviewed by2,6,7,9,10,11,17). For most of these viruses whitefly feeding is required for acquisition and inoculation, while for others only probing is required. Many of these viruses are unable or cannot be easily transmitted by other means. Therefore maintenance of virus cultures, biological and molecular characterization (identification of host range and symptoms)3,13, ecology2,12, require that the viruses be transmitted to experimental hosts using the whitefly vector. In addition the development of new approaches to management, such as evaluation of new chemicals14 or compounds15, new cultural approaches1,4,19, or the selection and development of resistant cultivars7,8,18, requires the use of whiteflies for virus transmission. The use of whitefly transmission of plant viruses for the selection and development of resistant cultivars in breeding programs is particularly challenging7. Effective selection and screening for resistance employs large numbers of plants and there is a need for 100% of the plants to be inoculated in order to find the few genotypes which possess resistance genes. These studies use very large numbers of viruliferous whiteflies, often several times per year. Whitefly maintenance described here can generate hundreds or thousands of adult whiteflies on plants each week, year round, without the contamination of other plant viruses. Plants free of both whiteflies and virus must be produced to introduce into the whitefly colony each week. Whitefly cultures must be kept free of whitefly pathogens, parasites, and parasitoids that can reduce whitefly populations and/or reduce the transmission efficiency of the virus. Colonies produced in the manner described can be quickly scaled to increase or decrease population numbers as needed, and can be adjusted to accommodate the feeding preferences of the whitefly based on the plant host of the virus. There are two basic types of whitefly colonies that can be maintained: a nonviruliferous and a viruliferous whitefly colony. The nonviruliferous colony is composed of whiteflies reared on virus-free plants and allows the weekly availability of whiteflies which can be used to transmit viruses from different cultures. The viruliferous whitefly colony, composed of whiteflies reared on virus-infected plants, allows weekly availability of whiteflies which have acquired the virus thus omitting one step in the virus transmission process.
Plant Biology, Issue 81, Virology, Molecular Biology, Botany, Pathology, Infection, Plant viruses, Bemisia tabaci, Whiteflies, whitefly, insect transmission, Begomovirus, Carlavirus, Crinivirus, Ipomovirus, host pathogen interaction, virus, insect, plant
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
Laboratory Estimation of Net Trophic Transfer Efficiencies of PCB Congeners to Lake Trout (Salvelinus namaycush) from Its Prey
Authors: Charles P. Madenjian, Richard R. Rediske, James P. O'Keefe, Solomon R. David.
Institutions: U. S. Geological Survey, Grand Valley State University, Shedd Aquarium.
A technique for laboratory estimation of net trophic transfer efficiency (γ) of polychlorinated biphenyl (PCB) congeners to piscivorous fish from their prey is described herein. During a 135-day laboratory experiment, we fed bloater (Coregonus hoyi) that had been caught in Lake Michigan to lake trout (Salvelinus namaycush) kept in eight laboratory tanks. Bloater is a natural prey for lake trout. In four of the tanks, a relatively high flow rate was used to ensure relatively high activity by the lake trout, whereas a low flow rate was used in the other four tanks, allowing for low lake trout activity. On a tank-by-tank basis, the amount of food eaten by the lake trout on each day of the experiment was recorded. Each lake trout was weighed at the start and end of the experiment. Four to nine lake trout from each of the eight tanks were sacrificed at the start of the experiment, and all 10 lake trout remaining in each of the tanks were euthanized at the end of the experiment. We determined concentrations of 75 PCB congeners in the lake trout at the start of the experiment, in the lake trout at the end of the experiment, and in bloaters fed to the lake trout during the experiment. Based on these measurements, γ was calculated for each of 75 PCB congeners in each of the eight tanks. Mean γ was calculated for each of the 75 PCB congeners for both active and inactive lake trout. Because the experiment was replicated in eight tanks, the standard error about mean γ could be estimated. Results from this type of experiment are useful in risk assessment models to predict future risk to humans and wildlife eating contaminated fish under various scenarios of environmental contamination.
Environmental Sciences, Issue 90, trophic transfer efficiency, polychlorinated biphenyl congeners, lake trout, activity, contaminants, accumulation, risk assessment, toxic equivalents
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
Play Button
High-throughput Detection Method for Influenza Virus
Authors: Pawan Kumar, Allison E. Bartoszek, Thomas M. Moran, Jack Gorski, Sanjib Bhattacharyya, Jose F. Navidad, Monica S. Thakar, Subramaniam Malarkannan.
Institutions: Blood Research Institute, Mount Sinai School of Medicine , Blood Research Institute, City of Milwaukee Health Department Laboratory, Medical College of Wisconsin , Medical College of Wisconsin .
Influenza virus is a respiratory pathogen that causes a high degree of morbidity and mortality every year in multiple parts of the world. Therefore, precise diagnosis of the infecting strain and rapid high-throughput screening of vast numbers of clinical samples is paramount to control the spread of pandemic infections. Current clinical diagnoses of influenza infections are based on serologic testing, polymerase chain reaction, direct specimen immunofluorescence and cell culture 1,2. Here, we report the development of a novel diagnostic technique used to detect live influenza viruses. We used the mouse-adapted human A/PR/8/34 (PR8, H1N1) virus 3 to test the efficacy of this technique using MDCK cells 4. MDCK cells (104 or 5 x 103 per well) were cultured in 96- or 384-well plates, infected with PR8 and viral proteins were detected using anti-M2 followed by an IR dye-conjugated secondary antibody. M2 5 and hemagglutinin 1 are two major marker proteins used in many different diagnostic assays. Employing IR-dye-conjugated secondary antibodies minimized the autofluorescence associated with other fluorescent dyes. The use of anti-M2 antibody allowed us to use the antigen-specific fluorescence intensity as a direct metric of viral quantity. To enumerate the fluorescence intensity, we used the LI-COR Odyssey-based IR scanner. This system uses two channel laser-based IR detections to identify fluorophores and differentiate them from background noise. The first channel excites at 680 nm and emits at 700 nm to help quantify the background. The second channel detects fluorophores that excite at 780 nm and emit at 800 nm. Scanning of PR8-infected MDCK cells in the IR scanner indicated a viral titer-dependent bright fluorescence. A positive correlation of fluorescence intensity to virus titer starting from 102-105 PFU could be consistently observed. Minimal but detectable positivity consistently seen with 102-103 PFU PR8 viral titers demonstrated the high sensitivity of the near-IR dyes. The signal-to-noise ratio was determined by comparing the mock-infected or isotype antibody-treated MDCK cells. Using the fluorescence intensities from 96- or 384-well plate formats, we constructed standard titration curves. In these calculations, the first variable is the viral titer while the second variable is the fluorescence intensity. Therefore, we used the exponential distribution to generate a curve-fit to determine the polynomial relationship between the viral titers and fluorescence intensities. Collectively, we conclude that IR dye-based protein detection system can help diagnose infecting viral strains and precisely enumerate the titer of the infecting pathogens.
Immunology, Issue 60, Influenza virus, Virus titer, Epithelial cells
Play Button
Alphavirus Transducing System: Tools for Visualizing Infection in Mosquito Vectors
Authors: Aaron Phillips, Eric Mossel, Irma Sanchez-Vargas, Brian Foy, Ken Olson.
Institutions: Colorado State University.
Alphavirus transducing systems (ATSs) are important tools for expressing genes of interest (GOI) during infection. ATSs are derived from cDNA clones of mosquito-borne RNA viruses (genus Alphavirus; family Togaviridae). The Alphavirus genus contains about 30 different mosquito-borne virus species. Alphaviruses are enveloped viruses and contain single-stranded RNA genomes (~11.7 Kb). Alphaviruses transcribe a subgenomic mRNA that encodes the structural proteins of the virus required for encapsidation of the genome and maturation of the virus. Alphaviruses are usually highly lytic in vertebrate cells, but persistently infect susceptible mosquito cells with minimal cytopathology. These attributes make them excellent tools for gene expression in mosquito vectors. The most common ATSs in use are derived from Sindbis virus (SINV). The broad species tropism of SINV allows for infection of insect, avian, and mammalian cells8. However, ATSs have been derived from other alphaviruses as well9,10,20. Foreign gene expression is made possible by the insertion of an additional viral subgenomic RNA initiation site or promoter. ATSs in which an exogenous gene sequence is positioned 5' to the viral structural genes is used for stable protein expression in insects. ATSs, in which a gene sequence is positioned 3' to the structural genes, is used to trigger RNAi and silence expression of that gene in the insect. ATSs have proven to be valuable tools for understanding vector-pathogen interactions, molecular details of viral replication and maintenance infectious cycles3,4,11,19,21. In particular, the expression of fluorescent and bioluminescent reporters has been instrumental tracking the viral infection in the vector and virus transmission5,14-16,18. Additionally, the vector immune response has been described using two strains of SINV engineered to express GFP2,9. Here, we present a method for the production of SINV containing a fluorescent reporter (GFP) from the cDNA infectious clone. Infectious, full-length RNA is transcribed from the linearized cDNA clone. Infectious RNA is introduced into permissive target cells by electroporation. Transfected cells generate infectious virus particles expressing the GOI. Harvested virus is used to infect mosquitoes, as described here, or other host species (not shown herein). Vector competence is assessed by detecting fluorescence outside the midgut or by monitoring virus transmission7. Use of a fluorescent reporter as the GOI allows for convenient estimation of virus spread throughout a cell culture, for determination of rate of infection, dissemination in exposed mosquitoes, virus transmission from the mosquito and provides a rapid gauge of vector competence.
Infectious Disease, Issue 45, alphavirus, arthropod, mosquito, bloodmeal, reporter, imaging
Play Button
Unraveling the Unseen Players in the Ocean - A Field Guide to Water Chemistry and Marine Microbiology
Authors: Andreas Florian Haas, Ben Knowles, Yan Wei Lim, Tracey McDole Somera, Linda Wegley Kelly, Mark Hatay, Forest Rohwer.
Institutions: San Diego State University, University of California San Diego.
Here we introduce a series of thoroughly tested and well standardized research protocols adapted for use in remote marine environments. The sampling protocols include the assessment of resources available to the microbial community (dissolved organic carbon, particulate organic matter, inorganic nutrients), and a comprehensive description of the viral and bacterial communities (via direct viral and microbial counts, enumeration of autofluorescent microbes, and construction of viral and microbial metagenomes). We use a combination of methods, which represent a dispersed field of scientific disciplines comprising already established protocols and some of the most recent techniques developed. Especially metagenomic sequencing techniques used for viral and bacterial community characterization, have been established only in recent years, and are thus still subjected to constant improvement. This has led to a variety of sampling and sample processing procedures currently in use. The set of methods presented here provides an up to date approach to collect and process environmental samples. Parameters addressed with these protocols yield the minimum on information essential to characterize and understand the underlying mechanisms of viral and microbial community dynamics. It gives easy to follow guidelines to conduct comprehensive surveys and discusses critical steps and potential caveats pertinent to each technique.
Environmental Sciences, Issue 93, dissolved organic carbon, particulate organic matter, nutrients, DAPI, SYBR, microbial metagenomics, viral metagenomics, marine environment
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
Play Button
Preventing the Spread of Malaria and Dengue Fever Using Genetically Modified Mosquitoes
Authors: Anthony A. James.
Institutions: University of California, Irvine (UCI).
In this candid interview, Anthony A. James explains how mosquito genetics can be exploited to control malaria and dengue transmission. Population replacement strategy, the idea that transgenic mosquitoes can be released into the wild to control disease transmission, is introduced, as well as the concept of genetic drive and the design criterion for an effective genetic drive system. The ethical considerations of releasing genetically-modified organisms into the wild are also discussed.
Cellular Biology, Issue 5, mosquito, malaria, dengue fever, genetics, infectious disease, Translational Research
Play Button
Lentivirus Production
Authors: Xiaoyin Wang, Michael McManus.
Institutions: University of California, San Francisco - UCSF.
RNA interference (RNAi) is a system of gene silencing in living cells. In RNAi, genes homologous in sequence to short interfering RNAs (siRNA) are silenced at the post-transcriptional state. Short hairpin RNAs, precursors to siRNA, can be expressed using lentivirus, allowing for RNAi in a variety of cell types. Lentiviruses, such as the Human Immunodeficiency Virus, are capable to infecting both dividing and non-dividing cells. We will describe a procedure which to package lentiviruses. Packaging refers to the preparation of competent virus from DNA vectors. Lentiviral vector production systems are based on a 'split' system, where the natural viral genome has been split into individual helper plasmid constructs. This splitting of the different viral elements into four separate vectors diminishes the risk of creating a replication-capable virus by adventitious recombination of the lentiviral genome. Here, a vector containing the shRNA of interest and three packaging vectors (p-VSVG, pRSV, pMDL) are transiently transfected into human 293 cells. After at least a 48-hour incubation period, the virus containing supernatant is harvested and concentrated. Finally, virus titer is determined by reporter (fluorescent) expression with a flow cytometer.
Microbiology, Issue 32, Lentivirus, RNAi, viral titration, transfection, retrovirus, flow cytometry, split vector system, shRNA.
Play Button
Titration of Human Coronaviruses Using an Immunoperoxidase Assay
Authors: Francine Lambert, Helene Jacomy, Gabriel Marceau, Pierre J. Talbot.
Institutions: INRS-Institut Armand-Frappier.
Determination of infectious viral titers is a basic and essential experimental approach for virologists. Classical plaque assays cannot be used for viruses that do not cause significant cytopathic effects, which is the case for prototype strains 229E and OC43 of human coronavirus (HCoV). Therefore, an alternative indirect immunoperoxidase assay (IPA) was developed for the detection and titration of these viruses and is described herein. Susceptible cells are inoculated with serial logarithmic dilutions of virus-containing samples in a 96-well plate format. After viral growth, viral detection by IPA yields the infectious virus titer, expressed as 'Tissue Culture Infectious Dose 50 percent' (TCID50). This represents the dilution of a virus-containing sample at which half of a series of laboratory wells contain infectious replicating virus. This technique provides a reliable method for the titration of HCoV-229E and HCoV-OC43 in biological samples such as cells, tissues and fluids. This article is based on work first reported in Methods in Molecular Biology (2008) volume 454, pages 93-102.
Microbiology, Issue 14, Springer Protocols, Human coronavirus, HCoV-229E, HCoV-OC43, cell and tissue sample, titration, immunoperoxidase assay, TCID50
Play Button
Building a Better Mosquito: Identifying the Genes Enabling Malaria and Dengue Fever Resistance in A. gambiae and A. aegypti Mosquitoes
Authors: George Dimopoulos.
Institutions: Johns Hopkins University.
In this interview, George Dimopoulos focuses on the physiological mechanisms used by mosquitoes to combat Plasmodium falciparum and dengue virus infections. Explanation is given for how key refractory genes, those genes conferring resistance to vector pathogens, are identified in the mosquito and how this knowledge can be used to generate transgenic mosquitoes that are unable to carry the malaria parasite or dengue virus.
Cellular Biology, Issue 5, Translational Research, mosquito, malaria, virus, dengue, genetics, injection, RNAi, transgenesis, transgenic
Play Button
Testing the Physiological Barriers to Viral Transmission in Aphids Using Microinjection
Authors: Cecilia Tamborindeguy, Stewart Gray, Georg Jander.
Institutions: Cornell University, Cornell University.
Potato loafroll virus (PLRV), from the family Luteoviridae infects solanaceous plants. It is transmitted by aphids, primarily, the green peach aphid. When an uninfected aphid feeds on an infected plant it contracts the virus through the plant phloem. Once ingested, the virus must pass from the insect gut to the hemolymph (the insect blood ) and then must pass through the salivary gland, in order to be transmitted back to a new plant. An aphid may take up different viruses when munching on a plant, however only a small fraction will pass through the gut and salivary gland, the two main barriers for transmission to infect more plants. In the lab, we use physalis plants to study PLRV transmission. In this host, symptoms are characterized by stunting and interveinal chlorosis (yellowing of the leaves between the veins with the veins remaining green). The video that we present demonstrates a method for performing aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut is preventing viral transmission. The video that we present demonstrates a method for performing Aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut or salivary gland is preventing viral transmission.
Plant Biology, Issue 15, Annual Review, Aphids, Plant Virus, Potato Leaf Roll Virus, Microinjection Technique
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.