JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
An inducible expression system to measure rhodopsin transport in transgenic Xenopus rod outer segments.
PUBLISHED: 01-01-2013
We developed an inducible transgene expression system in Xenopus rod photoreceptors. Using a transgene containing mCherry fused to the carboxyl terminus of rhodopsin (Rho-mCherry), we characterized the displacement of rhodopsin (Rho) from the base to the tip of rod outer segment (OS) membranes. Quantitative confocal imaging of live rods showed very tight regulation of Rho-mCherry expression, with undetectable expression in the absence of dexamethasone (Dex) and an average of 16.5 µM of Rho-mCherry peak concentration after induction for several days (equivalent to >150-fold increase). Using repetitive inductions, we found the axial rate of disk displacement to be 1.0 µm/day for tadpoles at 20 °C in a 12 h dark /12 h light lighting cycle. The average distance to peak following Dex addition was 3.2 µm, which is equivalent to ~3 days. Rods treated for longer times showed more variable expression patterns, with most showing a reduction in Rho-mCherry concentration after 3 days. Using a simple model, we find that stochastic variation in transgene expression can account for the shape of the induction response.
Authors: Laura E. Brown, Celine Fuchs, Martin W. Nicholson, F. Anne Stephenson, Alex M. Thomson, Jasmina N. Jovanovic.
Published: 11-14-2014
Inhibitory neurons act in the central nervous system to regulate the dynamics and spatio-temporal co-ordination of neuronal networks. GABA (γ-aminobutyric acid) is the predominant inhibitory neurotransmitter in the brain. It is released from the presynaptic terminals of inhibitory neurons within highly specialized intercellular junctions known as synapses, where it binds to GABAA receptors (GABAARs) present at the plasma membrane of the synapse-receiving, postsynaptic neurons. Activation of these GABA-gated ion channels leads to influx of chloride resulting in postsynaptic potential changes that decrease the probability that these neurons will generate action potentials. During development, diverse types of inhibitory neurons with distinct morphological, electrophysiological and neurochemical characteristics have the ability to recognize their target neurons and form synapses which incorporate specific GABAARs subtypes. This principle of selective innervation of neuronal targets raises the question as to how the appropriate synaptic partners identify each other. To elucidate the underlying molecular mechanisms, a novel in vitro co-culture model system was established, in which medium spiny GABAergic neurons, a highly homogenous population of neurons isolated from the embryonic striatum, were cultured with stably transfected HEK293 cell lines that express different GABAAR subtypes. Synapses form rapidly, efficiently and selectively in this system, and are easily accessible for quantification. Our results indicate that various GABAAR subtypes differ in their ability to promote synapse formation, suggesting that this reduced in vitro model system can be used to reproduce, at least in part, the in vivo conditions required for the recognition of the appropriate synaptic partners and formation of specific synapses. Here the protocols for culturing the medium spiny neurons and generating HEK293 cells lines expressing GABAARs are first described, followed by detailed instructions on how to combine these two cell types in co-culture and analyze the formation of synaptic contacts.
25 Related JoVE Articles!
Play Button
The Tomato/GFP-FLP/FRT Method for Live Imaging of Mosaic Adult Drosophila Photoreceptor Cells
Authors: Pierre Dourlen, Clemence Levet, Alexandre Mejat, Alexis Gambis, Bertrand Mollereau.
Institutions: Ecole Normale Supérieure de Lyon, Université Lille-Nord de France, The Rockefeller University.
The Drosophila eye is widely used as a model for studies of development and neuronal degeneration. With the powerful mitotic recombination technique, elegant genetic screens based on clonal analysis have led to the identification of signaling pathways involved in eye development and photoreceptor (PR) differentiation at larval stages. We describe here the Tomato/GFP-FLP/FRT method, which can be used for rapid clonal analysis in the eye of living adult Drosophila. Fluorescent photoreceptor cells are imaged with the cornea neutralization technique, on retinas with mosaic clones generated by flipase-mediated recombination. This method has several major advantages over classical histological sectioning of the retina: it can be used for high-throughput screening and has proved an effective method for identifying the factors regulating PR survival and function. It can be used for kinetic analyses of PR degeneration in the same living animal over several weeks, to demonstrate the requirement for specific genes for PR survival or function in the adult fly. This method is also useful for addressing cell autonomy issues in developmental mutants, such as those in which the establishment of planar cell polarity is affected.
Developmental Biology, Issue 79, Eye, Photoreceptor Cells, Genes, Developmental, neuron, visualization, degeneration, development, live imaging,Drosophila, photoreceptor, cornea neutralization, mitotic recombination
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
A Novel Light Damage Paradigm for Use in Retinal Regeneration Studies in Adult Zebrafish
Authors: Jennifer L. Thomas, Ryan Thummel.
Institutions: Wayne State University School of Medicine, Wayne State University School of Medicine.
Light-induced retinal degeneration (LIRD) is commonly used in both rodents and zebrafish to damage rod and cone photoreceptors. In adult zebrafish, photoreceptor degeneration triggers Müller glial cells to re-enter the cell cycle and produce transient-amplifying progenitors. These progenitors continue to proliferate as they migrate to the damaged area, where they ultimately give rise to new photoreceptors. Currently, there are two widely-used LIRD paradigms, each of which results in varying degrees of photoreceptor loss and corresponding differences in the regeneration response. As more genetic and pharmacological tools are available to test the role of individual genes of interest during regeneration, there is a need to develop a robust LIRD paradigm. Here we describe a LIRD protocol that results in widespread and consistent loss of both rod and cone photoreceptors in which we have combined the use of two previously established LIRD techniques. Furthermore, this protocol can be extended for use in pigmented animals, which eliminates the need to maintain transgenic lines of interest on the albino background for LIRD studies.
Neuroscience, Issue 80, Zebrafish, Retinal Degeneration, Retina, Photoreceptor, Müller glia, Light damage
Play Button
Visualizing Neuroblast Cytokinesis During C. elegans Embryogenesis
Authors: Denise Wernike, Chloe van Oostende, Alisa Piekny.
Institutions: Concordia University.
This protocol describes the use of fluorescence microscopy to image dividing cells within developing Caenorhabditis elegans embryos. In particular, this protocol focuses on how to image dividing neuroblasts, which are found underneath the epidermal cells and may be important for epidermal morphogenesis. Tissue formation is crucial for metazoan development and relies on external cues from neighboring tissues. C. elegans is an excellent model organism to study tissue morphogenesis in vivo due to its transparency and simple organization, making its tissues easy to study via microscopy. Ventral enclosure is the process where the ventral surface of the embryo is covered by a single layer of epithelial cells. This event is thought to be facilitated by the underlying neuroblasts, which provide chemical guidance cues to mediate migration of the overlying epithelial cells. However, the neuroblasts are highly proliferative and also may act as a mechanical substrate for the ventral epidermal cells. Studies using this experimental protocol could uncover the importance of intercellular communication during tissue formation, and could be used to reveal the roles of genes involved in cell division within developing tissues.
Neuroscience, Issue 85, C. elegans, morphogenesis, cytokinesis, neuroblasts, anillin, microscopy, cell division
Play Button
In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice
Authors: Stefanie Fischer, Christian Engelmann, Karl-Heinz Herrmann, Jürgen R. Reichenbach, Otto W. Witte, Falk Weih, Alexandra Kretz, Ronny Haenold.
Institutions: Jena University Hospital, Fritz Lipmann Institute, Jena, Jena University Hospital.
The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or inducible phenotypes.
Neuroscience, Issue 89, manganese-enhanced MRI, mouse retino-tectal projection, visual system, neurodegeneration, optic nerve injury, NF-κB
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Reconstitution Of β-catenin Degradation In Xenopus Egg Extract
Authors: Tony W. Chen, Matthew R. Broadus, Stacey S. Huppert, Ethan Lee.
Institutions: Vanderbilt University Medical Center, Cincinnati Children's Hospital Medical Center, Vanderbilt University School of Medicine.
Xenopus laevis egg extract is a well-characterized, robust system for studying the biochemistry of diverse cellular processes. Xenopus egg extract has been used to study protein turnover in many cellular contexts, including the cell cycle and signal transduction pathways1-3. Herein, a method is described for isolating Xenopus egg extract that has been optimized to promote the degradation of the critical Wnt pathway component, β-catenin. Two different methods are described to assess β-catenin protein degradation in Xenopus egg extract. One method is visually informative ([35S]-radiolabeled proteins), while the other is more readily scaled for high-throughput assays (firefly luciferase-tagged fusion proteins). The techniques described can be used to, but are not limited to, assess β-catenin protein turnover and identify molecular components contributing to its turnover. Additionally, the ability to purify large volumes of homogenous Xenopus egg extract combined with the quantitative and facile readout of luciferase-tagged proteins allows this system to be easily adapted for high-throughput screening for modulators of β-catenin degradation.
Molecular Biology, Issue 88, Xenopus laevis, Xenopus egg extracts, protein degradation, radiolabel, luciferase, autoradiography, high-throughput screening
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
Play Button
Expression of Recombinant Cellulase Cel5A from Trichoderma reesei in Tobacco Plants
Authors: Megan Garvey, Johannes Klinger, Holger Klose, Rainer Fischer, Ulrich Commandeur.
Institutions: RWTH Aachen University, Fraunhofer Institute for Molecular Biology and Applied Ecology.
Cellulose degrading enzymes, cellulases, are targets of both research and industrial interests. The preponderance of these enzymes in difficult-to-culture organisms, such as hyphae-building fungi and anaerobic bacteria, has hastened the use of recombinant technologies in this field. Plant expression methods are a desirable system for large-scale production of enzymes and other industrially useful proteins. Herein, methods for the transient expression of a fungal endoglucanase, Trichoderma reesei Cel5A, in Nicotiana tabacum are demonstrated. Successful protein expression is shown, monitored by fluorescence using an mCherry-enzyme fusion protein. Additionally, a set of basic tests are used to examine the activity of transiently expressed T. reesei Cel5A, including SDS-PAGE, Western blotting, zymography, as well as fluorescence and dye-based substrate degradation assays. The system described here can be used to produce an active cellulase in a short time period, so as to assess the potential for further production in plants through constitutive or inducible expression systems.
Environmental Sciences, Issue 88, heterologous expression, endoplasmic reticulum, endoglucanase, cellulose, glycosyl-hydrolase, fluorescence, cellulase, Trichoderma reesei, tobacco plants
Play Button
A Simple Behavioral Assay for Testing Visual Function in Xenopus laevis
Authors: Andrea S. Viczian, Michael E. Zuber.
Institutions: Center for Vision Research, SUNY Eye Institute, Upstate Medical University.
Measurement of the visual function in the tadpoles of the frog, Xenopus laevis, allows screening for blindness in live animals. The optokinetic response is a vision-based, reflexive behavior that has been observed in all vertebrates tested. Tadpole eyes are small so the tail flip response was used as alternative measure, which requires a trained technician to record the subtle response. We developed an alternative behavior assay based on the fact that tadpoles prefer to swim on the white side of a tank when placed in a tank with both black and white sides. The assay presented here is an inexpensive, simple alternative that creates a response that is easily measured. The setup consists of a tripod, webcam and nested testing tanks, readily available in most Xenopus laboratories. This article includes a movie showing the behavior of tadpoles, before and after severing the optic nerve. In order to test the function of one eye, we also include representative results of a tadpole in which each eye underwent retinal axotomy on consecutive days. Future studies could develop an automated version of this assay for testing the vision of many tadpoles at once.
Neuroscience, Issue 88, eye, retina, vision, color preference, Xenopus laevis, behavior, light, guidance, visual assay
Play Button
A Novel Method for Localizing Reporter Fluorescent Beads Near the Cell Culture Surface for Traction Force Microscopy
Authors: Samantha G. Knoll, M. Yakut Ali, M. Taher A. Saif.
Institutions: University of Illinois at Urbana-Champaign.
PA gels have long been used as a platform to study cell traction forces due to ease of fabrication and the ability to tune their elastic properties. When the substrate is coated with an extracellular matrix protein, cells adhere to the gel and apply forces, causing the gel to deform. The deformation depends on the cell traction and the elastic properties of the gel. If the deformation field of the surface is known, surface traction can be calculated using elasticity theory. Gel deformation is commonly measured by embedding fluorescent marker beads uniformly into the gel. The probes displace as the gel deforms. The probes near the surface of the gel are tracked. The displacements reported by these probes are considered as surface displacements. Their depths from the surface are ignored. This assumption introduces error in traction force evaluations. For precise measurement of cell forces, it is critical for the location of the beads to be known. We have developed a technique that utilizes simple chemistry to confine fluorescent marker beads, 0.1 and 1 µm in diameter, in PA gels, within 1.6 μm of the surface. We coat a coverslip with poly-D-lysine (PDL) and fluorescent beads. PA gel solution is then sandwiched between the coverslip and an adherent surface. The fluorescent beads transfer to the gel solution during curing. After polymerization, the PA gel contains fluorescent beads on a plane close to the gel surface.
Bioengineering, Issue 91, cell mechanics, polyacrylamide (PA) gel, traction force microscopy, fluorescent beads, poly-D-lysine (PDL), cell culture surface
Play Button
Genetically-encoded Molecular Probes to Study G Protein-coupled Receptors
Authors: Saranga Naganathan, Amy Grunbeck, He Tian, Thomas Huber, Thomas P. Sakmar.
Institutions: The Rockefeller University.
To facilitate structural and dynamic studies of G protein-coupled receptor (GPCR) signaling complexes, new approaches are required to introduce informative probes or labels into expressed receptors that do not perturb receptor function. We used amber codon suppression technology to genetically-encode the unnatural amino acid, p-azido-L-phenylalanine (azF) at various targeted positions in GPCRs heterologously expressed in mammalian cells. The versatility of the azido group is illustrated here in different applications to study GPCRs in their native cellular environment or under detergent solubilized conditions. First, we demonstrate a cell-based targeted photocrosslinking technology to identify the residues in the ligand-binding pocket of GPCR where a tritium-labeled small-molecule ligand is crosslinked to a genetically-encoded azido amino acid. We then demonstrate site-specific modification of GPCRs by the bioorthogonal Staudinger-Bertozzi ligation reaction that targets the azido group using phosphine derivatives. We discuss a general strategy for targeted peptide-epitope tagging of expressed membrane proteins in-culture and its detection using a whole-cell-based ELISA approach. Finally, we show that azF-GPCRs can be selectively tagged with fluorescent probes. The methodologies discussed are general, in that they can in principle be applied to any amino acid position in any expressed GPCR to interrogate active signaling complexes.
Genetics, Issue 79, Receptors, G-Protein-Coupled, Protein Engineering, Signal Transduction, Biochemistry, Unnatural amino acid, site-directed mutagenesis, G protein-coupled receptor, targeted photocrosslinking, bioorthogonal labeling, targeted epitope tagging
Play Button
Reconstitution of a Kv Channel into Lipid Membranes for Structural and Functional Studies
Authors: Sungsoo Lee, Hui Zheng, Liang Shi, Qiu-Xing Jiang.
Institutions: University of Texas Southwestern Medical Center at Dallas.
To study the lipid-protein interaction in a reductionistic fashion, it is necessary to incorporate the membrane proteins into membranes of well-defined lipid composition. We are studying the lipid-dependent gating effects in a prototype voltage-gated potassium (Kv) channel, and have worked out detailed procedures to reconstitute the channels into different membrane systems. Our reconstitution procedures take consideration of both detergent-induced fusion of vesicles and the fusion of protein/detergent micelles with the lipid/detergent mixed micelles as well as the importance of reaching an equilibrium distribution of lipids among the protein/detergent/lipid and the detergent/lipid mixed micelles. Our data suggested that the insertion of the channels in the lipid vesicles is relatively random in orientations, and the reconstitution efficiency is so high that no detectable protein aggregates were seen in fractionation experiments. We have utilized the reconstituted channels to determine the conformational states of the channels in different lipids, record electrical activities of a small number of channels incorporated in planar lipid bilayers, screen for conformation-specific ligands from a phage-displayed peptide library, and support the growth of 2D crystals of the channels in membranes. The reconstitution procedures described here may be adapted for studying other membrane proteins in lipid bilayers, especially for the investigation of the lipid effects on the eukaryotic voltage-gated ion channels.
Molecular Biology, Issue 77, Biochemistry, Genetics, Cellular Biology, Structural Biology, Biophysics, Membrane Lipids, Phospholipids, Carrier Proteins, Membrane Proteins, Micelles, Molecular Motor Proteins, life sciences, biochemistry, Amino Acids, Peptides, and Proteins, lipid-protein interaction, channel reconstitution, lipid-dependent gating, voltage-gated ion channel, conformation-specific ligands, lipids
Play Button
Time-lapse Imaging of Mitosis After siRNA Transfection
Authors: Douglas R. Mackay, Katharine S. Ullman, Christopher K. Rodesch.
Institutions: University of Utah, University of Utah.
Changes in cellular organization and chromosome dynamics that occur during mitosis are tightly coordinated to ensure accurate inheritance of genomic and cellular content. Hallmark events of mitosis, such as chromosome movement, can be readily tracked on an individual cell basis using time-lapse fluorescence microscopy of mammalian cell lines expressing specific GFP-tagged proteins. In combination with RNAi-based depletion, this can be a powerful method for pinpointing the stage(s) of mitosis where defects occur after levels of a particular protein have been lowered. In this protocol, we present a basic method for assessing the effect of depleting a potential mitotic regulatory protein on the timing of mitosis. Cells are transfected with siRNA, placed in a stage-top incubation chamber, and imaged using an automated fluorescence microscope. We describe how to use software to set up a time-lapse experiment, how to process the image sequences to make either still-image montages or movies, and how to quantify and analyze the timing of mitotic stages using a cell-line expressing mCherry-tagged histone H2B. Finally, we discuss important considerations for designing a time-lapse experiment. This strategy is complementary to other approaches and offers the advantages of 1) sensitivity to changes in kinetics that might not be observed when looking at cells as a population and 2) analysis of mitosis without the need to synchronize the cell cycle using drug treatments. The visual information from such imaging experiments not only allows the sub-stages of mitosis to be assessed, but can also provide unexpected insight that would not be apparent from cell cycle analysis by FACS.
Cellular Biology, Issue 40, microscopy, live imaging, mitosis, transfection, siRNA
Play Button
RhoC GTPase Activation Assay
Authors: Michelle Lucey, Heather Unger, Kenneth L. van Golen.
Institutions: University of Delaware.
RhoC GTPase has 91% homology to RhoA GTPase. Because of its prevalence in cells, many reagents and techniques for RhoA GTPase have been developed. However, RhoC GTPase is expressed in metastatic cancer cells at relatively low levels. Therefore, few RhoC-specific reagents have been developed. We have adapted a Rho activation assay to detect RhoC GTPase. This technique utilizes a GST-Rho binding domain fusion protein to pull out active RhoC GTPase. In addition, we can harvest total protein at the beginning of the assay to determine levels of total (GTP and GDP bound) RhoC GTPase. This allows for the determination of active versus total RhoC GTPase in the cell. Several commercial versions of this procedure have been developed however, the commercial kits are optimized for RhoA GTPase and typically do not work well for RhoC GTPase. Parts of the assay have been modified as well as development of a RhoC-specific antibody.
neuroscience, Issue 42, brain, mouse, transplantation, labeling
Play Button
Preparation of Living Isolated Vertebrate Photoreceptor Cells for Fluorescence Imaging
Authors: Nicholas P. Boyer, Chunhe Chen, Yiannis Koutalos.
Institutions: Medical University of South Carolina.
In the vertebrate retina, phototransduction, the conversion of light to an electrical signal, is carried out by the rod and cone photoreceptor cells1-4. Rod photoreceptors are responsible for vision in dim light, cones in bright light. Phototransduction takes place in the outer segment of the photoreceptor cell, a specialized compartment that contains a high concentration of visual pigment, the primary light detector. The visual pigment is composed of a chromophore, 11-cis retinal, attached to a protein, opsin. A photon absorbed by the visual pigment isomerizes the chromophore from 11-cis to all-trans. This photoisomerization brings about a conformational change in the visual pigment that initiates a cascade of reactions culminating in a change in membrane potential, and bringing about the transduction of the light stimulus to an electrical signal. The recovery of the cell from light stimulation involves the deactivation of the intermediates activated by light, and the reestablishment of the membrane potential. Ca2+ modulates the activity of several of the enzymes involved in phototransduction, and its concentration is reduced upon light stimulation. In this way, Ca2+ plays an important role in the recovery of the cell from light stimulation and its adaptation to background light. Another essential part of the recovery process is the regeneration of the visual pigment that has been destroyed during light-detection by the photoisomerization of its 11-cis chromophore to all-trans5-7. This regeneration begins with the release of all-trans retinal by the photoactivated pigment, leaving behind the apo-protein opsin. The released all-trans retinal is rapidly reduced in a reaction utilizing NADPH to all- trans retinol, and opsin combines with fresh 11-cis retinal brought into the outer segment to reform the visual pigment. All-trans retinol is then transferred out of the outer segment and into neighboring cells by the specialized carrier Interphotoreceptor Retinoid Binding Protein (IRBP). Fluorescence imaging of single photoreceptor cells can be used to study their physiology and cell biology. Ca2+-sensitive fluorescent dyes can be used to examine in detail the interplay between outer segment Ca2+ changes and response to light8-12 as well as the role of inner segment Ca2+ stores in Ca2+ homeostasis13,14. Fluorescent dyes can also be used for measuring Mg2+ concentration15, pH, and as tracers of aqueous and membrane compartments16. Finally, the intrinsic fluorescence of all-trans retinol (vitamin A) can be used to monitor the kinetics of its formation and removal in single photoreceptor cells17-19.
Neuroscience, Issue 52, retina, rods, cones, vision, fluorescence
Play Button
Targeting Olfactory Bulb Neurons Using Combined In Vivo Electroporation and Gal4-Based Enhancer Trap Zebrafish Lines
Authors: Kenric J. Hoegler, Martin Distel, Reinhard W. Köster, John H. Horne.
Institutions: Pace University, University of California, San Diego, Braunschweig University of Technology.
In vivo electroporation is a powerful method for delivering DNA expression plasmids, RNAi reagents, and morpholino anti-sense oligonucleotides to specific regions of developing embryos, including those of C. elegans, chick, Xenopus, zebrafish, and mouse 1. In zebrafish, in vivo electroporation has been shown to have excellent spatial and temporal resolution for the delivery of these reagents 2-7. The temporal resolution of this method is important because it allows for incorporation of these reagents at specific stages in development. Furthermore, because expression from electroporated vectors occurs within 6 hours 7, this method is more timely than transgenic approaches. While the spatial resolution can be extremely precise when targeting a single cell 2, 6, it is often preferable to incorporate reagents into a specific cell population within a tissue or structure. When targeting multiple cells, in vivo electroporation is efficient for delivery to a specific region of the embryo; however, particularly within the developing nervous system, it is difficult to target specific cell types solely through spatially discrete electroporation. Alternatively, enhancer trap transgenic lines offer excellent cell type-specific expression of transgenes 8. Here we describe an approach that combines transgenic Gal4-based enhancer trap lines 8 with spatially discrete in vivo electroporation 7, 9 to specifically target developing neurons of the zebrafish olfactory bulb. The Et(zic4:Gal4TA4,UAS:mCherry)hzm5 (formerly GA80_9) enhancer trap line previously described 8, displays targeted transgenic expression of mCherry mediated by a zebrafish optimized Gal4 (KalTA4) transcriptional activator in multiple regions of the developing brain including hindbrain, cerebellum, forebrain, and the olfactory bulb. To target GFP expression specifically to the olfactory bulb, a plasmid with the coding sequence of GFP under control of multiple Gal4 binding sites (UAS) was electroporated into the anterior end of the forebrain at 24-28 hours post-fertilization (hpf). Although this method incorporates plasmid DNA into multiple regions of the forebrain, GFP expression is only induced in cells transgenically expressing the KalTA4 transcription factor. Thus, by using the GA080_9 transgenic line, this approach led to GFP expression exclusively in the developing olfactory bulb. GFP expressing cells targeted through this approach showed typical axonal projections, as previously described for mitral cells of the olfactory bulb 10. This method could also be used for targeted delivery of other reagents including short-hairpin RNA interference expression plasmids, which would provide a method for spatially and temporally discrete loss-of-function analysis.
Neuroscience, Issue 54, electroporation, zebrafish, olfactory bulb, Gal4 enhancer trap
Play Button
Following Cell-fate in E. coli After Infection by Phage Lambda
Authors: Lanying Zeng, Ido Golding.
Institutions: University of Illinois at Urbana-Champaign, University of Illinois at Urbana-Champaign, Baylor College of Medicine.
The system comprising bacteriophage (phage) lambda and the bacterium E. coli has long served as a paradigm for cell-fate determination1,2. Following the simultaneous infection of the cell by a number of phages, one of two pathways is chosen: lytic (virulent) or lysogenic (dormant)3,4. We recently developed a method for fluorescently labeling individual phages, and were able to examine the post-infection decision in real-time under the microscope, at the level of individual phages and cells5. Here, we describe the full procedure for performing the infection experiments described in our earlier work5. This includes the creation of fluorescent phages, infection of the cells, imaging under the microscope and data analysis. The fluorescent phage is a "hybrid", co-expressing wild- type and YFP-fusion versions of the capsid gpD protein. A crude phage lysate is first obtained by inducing a lysogen of the gpD-EYFP (Enhanced Yellow Fluorescent Protein) phage, harboring a plasmid expressing wild type gpD. A series of purification steps are then performed, followed by DAPI-labeling and imaging under the microscope. This is done in order to verify the uniformity, DNA packaging efficiency, fluorescence signal and structural stability of the phage stock. The initial adsorption of phages to bacteria is performed on ice, then followed by a short incubation at 35°C to trigger viral DNA injection6. The phage/bacteria mixture is then moved to the surface of a thin nutrient agar slab, covered with a coverslip and imaged under an epifluorescence microscope. The post-infection process is followed for 4 hr, at 10 min interval. Multiple stage positions are tracked such that ~100 cell infections can be traced in a single experiment. At each position and time point, images are acquired in the phase-contrast and red and green fluorescent channels. The phase-contrast image is used later for automated cell recognition while the fluorescent channels are used to characterize the infection outcome: production of new fluorescent phages (green) followed by cell lysis, or expression of lysogeny factors (red) followed by resumed cell growth and division. The acquired time-lapse movies are processed using a combination of manual and automated methods. Data analysis results in the identification of infection parameters for each infection event (e.g. number and positions of infecting phages) as well as infection outcome (lysis/lysogeny). Additional parameters can be extracted if desired.
Immunology, Issue 56, Systems biology, Microbiology, fluorescently labeled bacteriophage lambda, E. coli, live-cell imaging
Play Button
Quantitative Live Cell Fluorescence-microscopy Analysis of Fission Yeast
Authors: Pernilla Bjerling, Ida Olsson, Xi'nan Meng.
Institutions: University of Uppsala, Swedish University of Agricultural Sciences.
Several microscopy techniques are available today that can detect a specific protein within the cell. During the last decade live cell imaging using fluorochromes like Green Fluorescent Protein (GFP) directly attached to the protein of interest has become increasingly popular 1. Using GFP and similar fluorochromes the subcellular localisations and movements of proteins can be detected in a fluorescent microscope. Moreover, also the subnuclear localisation of a certain region of a chromosome can be studied using this technique. GFP is fused to the Lac Repressor protein (LacR) and ectopically expressed in the cell where tandem repeats of the lacO sequence has been inserted into the region of interest on the chromosome2. The LacR-GFP will bind to the lacO repeats and that area of the genome will be visible as a green dot in the fluorescence microscope. Yeast is especially suited for this type of manipulation since homologous recombination is very efficient and thereby enables targeted integration of the lacO repeats and engineered fusion proteins with GFP 3. Here we describe a quantitative method for live cell analysis of fission yeast. Additional protocols for live cell analysis of fission yeast can be found, for example on how to make a movie of the meiotic chromosomal behaviour 4. In this particular experiment we focus on subnuclear organisation and how it is affected during gene induction. We have labelled a gene cluster, named Chr1, by the introduction of lacO binding sites in the vicinity of the genes. The gene cluster is enriched for genes that are induced early during nitrogen starvation of fission yeast 5. In the strain the nuclear membrane (NM) is labelled by the attachment of mCherry to the NM protein Cut11 giving rise to a red fluorescent signal. The Spindle Pole body (SPB) compound Sid4 is fused to Red Fluorescent Protein (Sid4-mRFP) 6. In vegetatively growing yeast cells the centromeres are always attached to the SPB that is embedded in the NM 7. The SPB is identified as a large round structure in the NM. By imaging before and 20 minutes after depletion of the nitrogen source we can determine the distance between the gene cluster (GFP) and the NM/SPB. The mean or median distances before and after nitrogen depletion are compared and we can thus quantify whether or not there is a shift in subcellular localisation of the gene cluster after nitrogen depletion.
Molecular Biology, Issue 59, Fission yeast, fluorescence microscopy, nuclear organisation, chromatin, GFP
Play Button
Affinity Precipitation of Active Rho-GEFs Using a GST-tagged Mutant Rho Protein (GST-RhoA(G17A)) from Epithelial Cell Lysates
Authors: Faiza Waheed, Pamela Speight, Qinghong Dan, Rafael Garcia-Mata, Katalin Szaszi.
Institutions: St. Michael's Hospital , University of Toronto, University of North Carolina at Chapel Hill .
Proteins of the Rho family of small GTPases are central regulators of the cytoskeleton, and control a large variety of cellular processes, including cell migration, gene expression, cell cycle progression and cell adhesion 1. Rho proteins are molecular switches that are active in GTP-bound and inactive in GDP-bound state. Their activation is mediated by a family of Guanine-nucleotide Exchange Factor (GEF) proteins. Rho-GEFs constitute a large family, with overlapping specificities 2. Although a lot of progress has been made in identifying the GEFs activated by specific signals, there are still many questions remaining regarding the pathway-specific regulation of these proteins. The number of Rho-GEFs exceeds 70, and each cell expresses more than one GEF protein. In addition, many of these proteins activate not only Rho, but other members of the family, contributing further to the complexity of the regulatory networks. Importantly, exploring how GEFs are regulated requires a method to follow the active pool of individual GEFs in cells activated by different stimuli. Here we provide a step-by-step protocol for a method used to assess and quantify the available active Rho-specific GEFs using an affinity precipitation assay. This assay was developed a few years ago in the Burridge lab 3,4 and we have used it in kidney tubular cell lines 5,6,7. The assay takes advantage of a "nucleotide free" mutant RhoA, with a high affinity for active GEFs. The mutation (G17A) renders the protein unable to bind GDP or GTP and this state mimics the intermediate state that is bound to the GEF. A GST-tagged version of this mutant protein is expressed and purified from E. coli, bound to glutathione sepharose beads and used to precipitate active GEFs from lysates of untreated and stimulated cells. As most GEFs are activated via posttranslational modifications or release from inhibitory bindings, their active state is preserved in cell lysates, and they can be detected by this assay8. Captured proteins can be probed for known GEFs by detection with specific antibodies using Western blotting, or analyzed by Mass Spectrometry to identify unknown GEFs activated by certain stimuli.
Molecular Biology, Issue 61, Rho Family Small GTPases, Guanine-nucleotide exchange factor (GEFs), Affinity Precipitation Assay, expression of proteins in E. Coli, Purification of GST-tagged Protein, microbead assay
Play Button
RNA-seq Analysis of Transcriptomes in Thrombin-treated and Control Human Pulmonary Microvascular Endothelial Cells
Authors: Dilyara Cheranova, Margaret Gibson, Suman Chaudhary, Li Qin Zhang, Daniel P. Heruth, Dmitry N. Grigoryev, Shui Qing Ye.
Institutions: Children's Mercy Hospital and Clinics, School of Medicine, University of Missouri-Kansas City.
The characterization of gene expression in cells via measurement of mRNA levels is a useful tool in determining how the transcriptional machinery of the cell is affected by external signals (e.g. drug treatment), or how cells differ between a healthy state and a diseased state. With the advent and continuous refinement of next-generation DNA sequencing technology, RNA-sequencing (RNA-seq) has become an increasingly popular method of transcriptome analysis to catalog all species of transcripts, to determine the transcriptional structure of all expressed genes and to quantify the changing expression levels of the total set of transcripts in a given cell, tissue or organism1,2 . RNA-seq is gradually replacing DNA microarrays as a preferred method for transcriptome analysis because it has the advantages of profiling a complete transcriptome, providing a digital type datum (copy number of any transcript) and not relying on any known genomic sequence3. Here, we present a complete and detailed protocol to apply RNA-seq to profile transcriptomes in human pulmonary microvascular endothelial cells with or without thrombin treatment. This protocol is based on our recent published study entitled "RNA-seq Reveals Novel Transcriptome of Genes and Their Isoforms in Human Pulmonary Microvascular Endothelial Cells Treated with Thrombin,"4 in which we successfully performed the first complete transcriptome analysis of human pulmonary microvascular endothelial cells treated with thrombin using RNA-seq. It yielded unprecedented resources for further experimentation to gain insights into molecular mechanisms underlying thrombin-mediated endothelial dysfunction in the pathogenesis of inflammatory conditions, cancer, diabetes, and coronary heart disease, and provides potential new leads for therapeutic targets to those diseases. The descriptive text of this protocol is divided into four parts. The first part describes the treatment of human pulmonary microvascular endothelial cells with thrombin and RNA isolation, quality analysis and quantification. The second part describes library construction and sequencing. The third part describes the data analysis. The fourth part describes an RT-PCR validation assay. Representative results of several key steps are displayed. Useful tips or precautions to boost success in key steps are provided in the Discussion section. Although this protocol uses human pulmonary microvascular endothelial cells treated with thrombin, it can be generalized to profile transcriptomes in both mammalian and non-mammalian cells and in tissues treated with different stimuli or inhibitors, or to compare transcriptomes in cells or tissues between a healthy state and a disease state.
Genetics, Issue 72, Molecular Biology, Immunology, Medicine, Genomics, Proteins, RNA-seq, Next Generation DNA Sequencing, Transcriptome, Transcription, Thrombin, Endothelial cells, high-throughput, DNA, genomic DNA, RT-PCR, PCR
Play Button
Simultaneous Whole-cell Recordings from Photoreceptors and Second-order Neurons in an Amphibian Retinal Slice Preparation
Authors: Matthew J. Van Hook, Wallace B. Thoreson.
Institutions: University of Nebraska Medical Center , University of Nebraska Medical Center .
One of the central tasks in retinal neuroscience is to understand the circuitry of retinal neurons and how those connections are responsible for shaping the signals transmitted to the brain. Photons are detected in the retina by rod and cone photoreceptors, which convert that energy into an electrical signal, transmitting it to other retinal neurons, where it is processed and communicated to central targets in the brain via the optic nerve. Important early insights into retinal circuitry and visual processing came from the histological studies of Cajal1,2 and, later, from electrophysiological recordings of the spiking activity of retinal ganglion cells - the output cells of the retina3,4. A detailed understanding of visual processing in the retina requires an understanding of the signaling at each step in the pathway from photoreceptor to retinal ganglion cell. However, many retinal cell types are buried deep in the tissue and therefore relatively inaccessible for electrophysiological recording. This limitation can be overcome by working with vertical slices, in which cells residing within each of the retinal layers are clearly visible and accessible for electrophysiological recording. Here, we describe a method for making vertical sections of retinas from larval tiger salamanders (Ambystoma tigrinum). While this preparation was originally developed for recordings with sharp microelectrodes5,6, we describe a method for dual whole-cell voltage clamp recordings from photoreceptors and second-order horizontal and bipolar cells in which we manipulate the photoreceptor's membrane potential while simultaneously recording post-synaptic responses in horizontal or bipolar cells. The photoreceptors of the tiger salamander are considerably larger than those of mammalian species, making this an ideal preparation in which to undertake this technically challenging experimental approach. These experiments are described with an eye toward probing the signaling properties of the synaptic ribbon - a specialized synaptic structure found in a only a handful of neurons, including rod and cone photoreceptors, that is well suited for maintaining a high rate of tonic neurotransmitter release7,8 - and how it contributes to the unique signaling properties of this first retinal synapse.
Neuroscience, Issue 76, Molecular Biology, Cellular Biology, Anatomy, Physiology, Ophthalmology, Retina, electrophysiology, paired recording, patch clamp, synaptic ribbon, photoreceptor, bipolar cell, horizontal cell, tiger salamander, animal model
Play Button
Measuring Cation Transport by Na,K- and H,K-ATPase in Xenopus Oocytes by Atomic Absorption Spectrophotometry: An Alternative to Radioisotope Assays
Authors: Katharina L. Dürr, Neslihan N. Tavraz, Susan Spiller, Thomas Friedrich.
Institutions: Technical University of Berlin, Oregon Health & Science University.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.
Biochemistry, Issue 72, Chemistry, Biophysics, Bioengineering, Physiology, Molecular Biology, electrochemical processes, physical chemistry, spectrophotometry (application), spectroscopic chemical analysis (application), life sciences, temperature effects (biological, animal and plant), Life Sciences (General), Na+,K+-ATPase, H+,K+-ATPase, Cation Uptake, P-type ATPases, Atomic Absorption Spectrophotometry (AAS), Two-Electrode Voltage-Clamp, Xenopus Oocytes, Rb+ Flux, Transversely Heated Graphite Atomizer (THGA) Furnace, electrophysiology, animal model
Play Button
Live Imaging of Cell Motility and Actin Cytoskeleton of Individual Neurons and Neural Crest Cells in Zebrafish Embryos
Authors: Erica Andersen, Namrata Asuri, Matthew Clay, Mary Halloran.
Institutions: University of Wisconsin-Madison, University of Wisconsin-Madison, University of Wisconsin-Madison, University of Wisconsin-Madison.
The zebrafish is an ideal model for imaging cell behaviors during development in vivo. Zebrafish embryos are externally fertilized and thus easily accessible at all stages of development. Moreover, their optical clarity allows high resolution imaging of cell and molecular dynamics in the natural environment of the intact embryo. We are using a live imaging approach to analyze cell behaviors during neural crest cell migration and the outgrowth and guidance of neuronal axons. Live imaging is particularly useful for understanding mechanisms that regulate cell motility processes. To visualize details of cell motility, such as protrusive activity and molecular dynamics, it is advantageous to label individual cells. In zebrafish, plasmid DNA injection yields a transient mosaic expression pattern and offers distinct benefits over other cell labeling methods. For example, transgenic lines often label entire cell populations and thus may obscure visualization of the fine protrusions (or changes in molecular distribution) in a single cell. In addition, injection of DNA at the one-cell stage is less invasive and more precise than dye injections at later stages. Here we describe a method for labeling individual developing neurons or neural crest cells and imaging their behavior in vivo. We inject plasmid DNA into 1-cell stage embryos, which results in mosaic transgene expression. The vectors contain cell-specific promoters that drive expression of a gene of interest in a subset of sensory neurons or neural crest cells. We provide examples of cells labeled with membrane targeted GFP or with a biosensor probe that allows visualization of F-actin in living cells1. Erica Andersen, Namrata Asuri, and Matthew Clay contributed equally to this work.
Developmental Biology, Issue 36, zebrafish, axon guidance, neural crest, cell behavior, actin, microinjection, embryos
Play Button
Single-cell Suction Recordings from Mouse Cone Photoreceptors
Authors: Jin-Shan Wang, Vladimir J Kefalov.
Institutions: Washington University in St. Louis, School of Medicine.
Rod and cone photoreceptors in the retina are responsible for light detection. In darkness, cyclic nucleotide-gated (CNG) channels in the outer segment are open and allow cations to flow steadily inwards across the membrane, depolarizing the cell. Light exposure triggers the closure of the CNG channels, blocks the inward cation current flow, and thus results in cell hyperpolarization. Based on the polarity of photoreceptors, a suction recording method was developed in 1970s that, unlike the classic patch-clamp technique, does not require penetrating the plasma membrane 1. Drawing the outer segment into a tightly-fitting glass pipette filled with extracellular solution allows recording the current changes in individual cells upon test-flash exposure. However, this well-established "outer-segment-in (OS-in)" suction recording is not suitable for mouse cone recordings, because of the low percentage of cones in the mouse retina (3%) and the difficulties in identifying the cone outer segments. Recently, an inner-segment-in (IS-in) recording configuration was developed to draw the inner segment/nuclear region of the photoreceptor into the recording pipette 2,3. In this video, we will show how to record from individual mouse cone photoresponses using single-cell suction electrode.
Cellular Biology, Issue 35, mouse, cone photoreceptor, electrophysiology, suction-recording, CNG channels, retina, murine, IS-in
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.