JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Exome sequencing identifies early gastric carcinoma as an early stage of advanced gastric cancer.
PLoS ONE
PUBLISHED: 01-01-2013
Gastric carcinoma is one of the major causes of cancer-related mortality worldwide. Early detection and treatment leads to an excellent prognosis in patients with early gastric cancer (EGC), whereas the prognosis of patients with advanced gastric cancer (AGC) remains poor. It is unclear whether EGCs and AGCs are distinct entities or whether EGCs are the beginning stages of AGCs. We performed whole exome sequencing of four samples from patients with EGC and compared the results with those from AGCs. In both EGCs and AGCs, a total of 268 genes were commonly mutated and independent mutations were additionally found in EGCs (516 genes) and AGCs (3104 genes). A higher frequency of C>G transitions was observed in intestinal-type compared to diffuse-type carcinomas (P?=?0.010). The DYRK3, GPR116, MCM10, PCDH17, PCDHB1, RDH5 and UNC5C genes are recurrently mutated in EGCs and may be involved in early carcinogenesis.
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Published: 07-25-2013
ABSTRACT
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (http://www.proteinwisdom.org), a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
25 Related JoVE Articles!
Play Button
Microarray-based Identification of Individual HERV Loci Expression: Application to Biomarker Discovery in Prostate Cancer
Authors: Philippe Pérot, Valérie Cheynet, Myriam Decaussin-Petrucci, Guy Oriol, Nathalie Mugnier, Claire Rodriguez-Lafrasse, Alain Ruffion, François Mallet.
Institutions: Joint Unit Hospices de Lyon-bioMérieux, BioMérieux, Hospices Civils de Lyon, Lyon 1 University, BioMérieux, Hospices Civils de Lyon, Hospices Civils de Lyon.
The prostate-specific antigen (PSA) is the main diagnostic biomarker for prostate cancer in clinical use, but it lacks specificity and sensitivity, particularly in low dosage values1​​. ‘How to use PSA' remains a current issue, either for diagnosis as a gray zone corresponding to a concentration in serum of 2.5-10 ng/ml which does not allow a clear differentiation to be made between cancer and noncancer2 or for patient follow-up as analysis of post-operative PSA kinetic parameters can pose considerable challenges for their practical application3,4. Alternatively, noncoding RNAs (ncRNAs) are emerging as key molecules in human cancer, with the potential to serve as novel markers of disease, e.g. PCA3 in prostate cancer5,6 and to reveal uncharacterized aspects of tumor biology. Moreover, data from the ENCODE project published in 2012 showed that different RNA types cover about 62% of the genome. It also appears that the amount of transcriptional regulatory motifs is at least 4.5x higher than the one corresponding to protein-coding exons. Thus, long terminal repeats (LTRs) of human endogenous retroviruses (HERVs) constitute a wide range of putative/candidate transcriptional regulatory sequences, as it is their primary function in infectious retroviruses. HERVs, which are spread throughout the human genome, originate from ancestral and independent infections within the germ line, followed by copy-paste propagation processes and leading to multicopy families occupying 8% of the human genome (note that exons span 2% of our genome). Some HERV loci still express proteins that have been associated with several pathologies including cancer7-10. We have designed a high-density microarray, in Affymetrix format, aiming to optimally characterize individual HERV loci expression, in order to better understand whether they can be active, if they drive ncRNA transcription or modulate coding gene expression. This tool has been applied in the prostate cancer field (Figure 1).
Medicine, Issue 81, Cancer Biology, Genetics, Molecular Biology, Prostate, Retroviridae, Biomarkers, Pharmacological, Tumor Markers, Biological, Prostatectomy, Microarray Analysis, Gene Expression, Diagnosis, Human Endogenous Retroviruses, HERV, microarray, Transcriptome, prostate cancer, Affymetrix
50713
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Building a Better Mosquito: Identifying the Genes Enabling Malaria and Dengue Fever Resistance in A. gambiae and A. aegypti Mosquitoes
Authors: George Dimopoulos.
Institutions: Johns Hopkins University.
In this interview, George Dimopoulos focuses on the physiological mechanisms used by mosquitoes to combat Plasmodium falciparum and dengue virus infections. Explanation is given for how key refractory genes, those genes conferring resistance to vector pathogens, are identified in the mosquito and how this knowledge can be used to generate transgenic mosquitoes that are unable to carry the malaria parasite or dengue virus.
Cellular Biology, Issue 5, Translational Research, mosquito, malaria, virus, dengue, genetics, injection, RNAi, transgenesis, transgenic
233
Play Button
Detecting Somatic Genetic Alterations in Tumor Specimens by Exon Capture and Massively Parallel Sequencing
Authors: Helen H Won, Sasinya N Scott, A. Rose Brannon, Ronak H Shah, Michael F Berger.
Institutions: Memorial Sloan-Kettering Cancer Center, Memorial Sloan-Kettering Cancer Center.
Efforts to detect and investigate key oncogenic mutations have proven valuable to facilitate the appropriate treatment for cancer patients. The establishment of high-throughput, massively parallel "next-generation" sequencing has aided the discovery of many such mutations. To enhance the clinical and translational utility of this technology, platforms must be high-throughput, cost-effective, and compatible with formalin-fixed paraffin embedded (FFPE) tissue samples that may yield small amounts of degraded or damaged DNA. Here, we describe the preparation of barcoded and multiplexed DNA libraries followed by hybridization-based capture of targeted exons for the detection of cancer-associated mutations in fresh frozen and FFPE tumors by massively parallel sequencing. This method enables the identification of sequence mutations, copy number alterations, and select structural rearrangements involving all targeted genes. Targeted exon sequencing offers the benefits of high throughput, low cost, and deep sequence coverage, thus conferring high sensitivity for detecting low frequency mutations.
Molecular Biology, Issue 80, Molecular Diagnostic Techniques, High-Throughput Nucleotide Sequencing, Genetics, Neoplasms, Diagnosis, Massively parallel sequencing, targeted exon sequencing, hybridization capture, cancer, FFPE, DNA mutations
50710
Play Button
Identifying DNA Mutations in Purified Hematopoietic Stem/Progenitor Cells
Authors: Ziming Cheng, Ting Zhou, Azhar Merchant, Thomas J. Prihoda, Brian L. Wickes, Guogang Xu, Christi A. Walter, Vivienne I. Rebel.
Institutions: UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio, UT Health Science Center at San Antonio.
In recent years, it has become apparent that genomic instability is tightly related to many developmental disorders, cancers, and aging. Given that stem cells are responsible for ensuring tissue homeostasis and repair throughout life, it is reasonable to hypothesize that the stem cell population is critical for preserving genomic integrity of tissues. Therefore, significant interest has arisen in assessing the impact of endogenous and environmental factors on genomic integrity in stem cells and their progeny, aiming to understand the etiology of stem-cell based diseases. LacI transgenic mice carry a recoverable λ phage vector encoding the LacI reporter system, in which the LacI gene serves as the mutation reporter. The result of a mutated LacI gene is the production of β-galactosidase that cleaves a chromogenic substrate, turning it blue. The LacI reporter system is carried in all cells, including stem/progenitor cells and can easily be recovered and used to subsequently infect E. coli. After incubating infected E. coli on agarose that contains the correct substrate, plaques can be scored; blue plaques indicate a mutant LacI gene, while clear plaques harbor wild-type. The frequency of blue (among clear) plaques indicates the mutant frequency in the original cell population the DNA was extracted from. Sequencing the mutant LacI gene will show the location of the mutations in the gene and the type of mutation. The LacI transgenic mouse model is well-established as an in vivo mutagenesis assay. Moreover, the mice and the reagents for the assay are commercially available. Here we describe in detail how this model can be adapted to measure the frequency of spontaneously occurring DNA mutants in stem cell-enriched Lin-IL7R-Sca-1+cKit++(LSK) cells and other subpopulations of the hematopoietic system.
Infection, Issue 84, In vivo mutagenesis, hematopoietic stem/progenitor cells, LacI mouse model, DNA mutations, E. coli
50752
Play Button
Induction of Invasive Transitional Cell Bladder Carcinoma in Immune Intact Human MUC1 Transgenic Mice: A Model for Immunotherapy Development
Authors: Daniel P. Vang, Gregory T. Wurz, Stephen M. Griffey, Chiao-Jung Kao, Audrey M. Gutierrez, Gregory K. Hanson, Michael Wolf, Michael W. DeGregorio.
Institutions: University of California, Davis, University of California, Davis, Merck KGaA, Darmstadt, Germany.
A preclinical model of invasive bladder cancer was developed in human mucin 1 (MUC1) transgenic (MUC1.Tg) mice for the purpose of evaluating immunotherapy and/or cytotoxic chemotherapy. To induce bladder cancer, C57BL/6 mice (MUC1.Tg and wild type) were treated orally with the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (OH-BBN) at 3.0 mg/day, 5 days/week for 12 weeks. To assess the effects of OH-BBN on serum cytokine profile during tumor development, whole blood was collected via submandibular bleeds prior to treatment and every four weeks. In addition, a MUC1-targeted peptide vaccine and placebo were administered to groups of mice weekly for eight weeks. Multiplex fluorometric microbead immunoanalyses of serum cytokines during tumor development and following vaccination were performed. At termination, interferon gamma (IFN-γ)/interleukin-4 (IL-4) ELISpot analysis for MUC1 specific T-cell immune response and histopathological evaluations of tumor type and grade were performed. The results showed that: (1) the incidence of bladder cancer in both MUC1.Tg and wild type mice was 67%; (2) transitional cell carcinomas (TCC) developed at a 2:1 ratio compared to squamous cell carcinomas (SCC); (3) inflammatory cytokines increased with time during tumor development; and (4) administration of the peptide vaccine induces a Th1-polarized serum cytokine profile and a MUC1 specific T-cell response. All tumors in MUC1.Tg mice were positive for MUC1 expression, and half of all tumors in MUC1.Tg and wild type mice were invasive. In conclusion, using a team approach through the coordination of the efforts of pharmacologists, immunologists, pathologists and molecular biologists, we have developed an immune intact transgenic mouse model of bladder cancer that expresses hMUC1.
Medicine, Issue 80, Urinary Bladder, Animals, Genetically Modified, Cancer Vaccines, Immunotherapy, Animal Experimentation, Models, Neoplasms Bladder Cancer, C57BL/6 Mouse, MUC1, Immunotherapy, Preclinical Model
50868
Play Button
Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications
Authors: Lori E. Lowes, Benjamin D. Hedley, Michael Keeney, Alison L. Allan.
Institutions: London Health Sciences Centre, Western University, London Health Sciences Centre, Lawson Health Research Institute, Western University.
The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs.
Medicine, Issue 84, Metastasis, circulating tumor cells (CTCs), CellSearch system, user defined marker characterization, in vivo, preclinical mouse model, clinical research
51248
Play Button
Fabrication and Implantation of Miniature Dual-element Strain Gages for Measuring In Vivo Gastrointestinal Contractions in Rodents.
Authors: Gregory M. Holmes, Emily M. Swartz, Margaret S. McLean.
Institutions: Penn State University College of Medicine.
Gastrointestinal dysfunction remains a major cause of morbidity and mortality. Indeed, gastrointestinal (GI) motility in health and disease remains an area of productive research with over 1,400 published animal studies in just the last 5 years. Numerous techniques have been developed for quantifying smooth muscle activity of the stomach, small intestine, and colon. In vitro and ex vivo techniques offer powerful tools for mechanistic studies of GI function, but outside the context of the integrated systems inherent to an intact organism. Typically, measuring in vivo smooth muscle contractions of the stomach has involved an anesthetized preparation coupled with the introduction of a surgically placed pressure sensor, a static pressure load such as a mildly inflated balloon or by distending the stomach with fluid under barostatically-controlled feedback. Yet many of these approaches present unique disadvantages regarding both the interpretation of results as well as applicability for in vivo use in conscious experimental animal models. The use of dual element strain gages that have been affixed to the serosal surface of the GI tract has offered numerous experimental advantages, which may continue to outweigh the disadvantages. Since these gages are not commercially available, this video presentation provides a detailed, step-by-step guide to the fabrication of the current design of these gages. The strain gage described in this protocol is a design for recording gastric motility in rats. This design has been modified for recording smooth muscle activity along the entire GI tract and requires only subtle variation in the overall fabrication. Representative data from the entire GI tract are included as well as discussion of analysis methods, data interpretation and presentation.
Bioengineering, Issue 91, gastrointestinal tract, gastric contractions, motility, in vivo recording, physiology, neuroscience, strain gage
51739
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
51763
Play Button
gDNA Enrichment by a Transposase-based Technology for NGS Analysis of the Whole Sequence of BRCA1, BRCA2, and 9 Genes Involved in DNA Damage Repair
Authors: Sandy Chevrier, Romain Boidot.
Institutions: Centre Georges-François Leclerc.
The widespread use of Next Generation Sequencing has opened up new avenues for cancer research and diagnosis. NGS will bring huge amounts of new data on cancer, and especially cancer genetics. Current knowledge and future discoveries will make it necessary to study a huge number of genes that could be involved in a genetic predisposition to cancer. In this regard, we developed a Nextera design to study 11 complete genes involved in DNA damage repair. This protocol was developed to safely study 11 genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RAD50, RAD51C, RAD80, and TP53) from promoter to 3'-UTR in 24 patients simultaneously. This protocol, based on transposase technology and gDNA enrichment, gives a great advantage in terms of time for the genetic diagnosis thanks to sample multiplexing. This protocol can be safely used with blood gDNA.
Genetics, Issue 92, gDNA enrichment, Nextera, NGS, DNA damage, BRCA1, BRCA2
51902
Play Button
High Resolution Electron Microscopy of the Helicobacter pylori Cag Type IV Secretion System Pili Produced in Varying Conditions of Iron Availability
Authors: Kathryn Patricia Haley, Eric Joshua Blanz, Jennifer Angeline Gaddy.
Institutions: Vanderbilt University School of Medicine, U. S. Dept. of Veterans Affairs.
Helicobacter pylori is a helical-shaped, gram negative bacterium that colonizes the human gastric niche of half of the human population1,2. H. pylori is the primary cause of gastric cancer, the second leading cause of cancer-related deaths worldwide3. One virulence factor that has been associated with increased risk of gastric disease is the Cag-pathogenicity island, a 40-kb region within the chromosome of H. pylori that encodes a type IV secretion system and the cognate effector molecule, CagA4,5. The Cag-T4SS is responsible for translocating CagA and peptidoglycan into host epithelial cells5,6. The activity of the Cag-T4SS results in numerous changes in host cell biology including upregulation of cytokine expression, activation of proinflammatory pathways, cytoskeletal remodeling, and induction of oncogenic cell-signaling networks5-8. The Cag-T4SS is a macromolecular machine comprised of sub-assembly components spanning the inner and outer membrane and extending outward from the cell into the extracellular space. The extracellular portion of the Cag-T4SS is referred to as the “pilus”5. Numerous studies have demonstrated that the Cag-T4SS pili are formed at the host-pathogen interface9,10. However, the environmental features that regulate the biogenesis of this important organelle remain largely obscure. Recently, we reported that conditions of low iron availability increased the Cag-T4SS activity and pilus biogenesis. Here we present an optimized protocol to grow H. pylori in varying conditions of iron availability prior to co-culture with human gastric epithelial cells. Further, we present the comprehensive protocol for visualization of the hyper-piliated phenotype exhibited in iron restricted conditions by high resolution scanning electron microscopy analyses.
Infection, Issue 93, Helicobacter pylori, iron acquisition, cag pathogenicity island, type IV secretion, pili
52122
Play Button
Bioluminescent Orthotopic Model of Pancreatic Cancer Progression
Authors: Ming G. Chai, Corina Kim-Fuchs, Eliane Angst, Erica K. Sloan.
Institutions: Monash University, University of Bern, University of California Los Angeles .
Pancreatic cancer has an extremely poor five-year survival rate of 4-6%. New therapeutic options are critically needed and depend on improved understanding of pancreatic cancer biology. To better understand the interaction of cancer cells with the pancreatic microenvironment, we demonstrate an orthotopic model of pancreatic cancer that permits non-invasive monitoring of cancer progression. Luciferase-tagged pancreatic cancer cells are resuspended in Matrigel and delivered into the pancreatic tail during laparotomy. Matrigel solidifies at body temperature to prevent leakage of cancer cells during injection. Primary tumor growth and metastasis to distant organs are monitored following injection of the luciferase substrate luciferin, using in vivo imaging of bioluminescence emission from the cancer cells. In vivo imaging also may be used to track primary tumor recurrence after resection. This orthotopic model is suited to both syngeneic and xenograft models and may be used in pre-clinical trials to investigate the impact of novel anti-cancer therapeutics on the growth of the primary pancreatic tumor and metastasis.
Cancer Biology, Issue 76, Medicine, Molecular Biology, Cellular Biology, Genetics, Biomedical Engineering, Surgery, Neoplasms, Pancreatic Cancer, Cancer, Orthotopic Model, Bioluminescence, In Vivo Imaging, Matrigel, Metastasis, pancreas, tumor, cancer, cell culture, laparotomy, animal model, imaging
50395
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
50341
Play Button
Deficient Pms2, ERCC1, Ku86, CcOI in Field Defects During Progression to Colon Cancer
Authors: Huy Nguyen, Cristy Loustaunau, Alexander Facista, Lois Ramsey, Nadia Hassounah, Hilary Taylor, Robert Krouse, Claire M. Payne, V. Liana Tsikitis, Steve Goldschmid, Bhaskar Banerjee, Rafael F. Perini, Carol Bernstein.
Institutions: University of Arizona, Tucson, Tucson, AZ, University of Arizona, Tucson, Tucson, AZ, University of Arizona, Tucson.
In carcinogenesis, the "field defect" is recognized clinically because of the high propensity of survivors of certain cancers to develop other malignancies of the same tissue type, often in a nearby location. Such field defects have been indicated in colon cancer. The molecular abnormalities that are responsible for a field defect in the colon should be detectable at high frequency in the histologically normal tissue surrounding a colonic adenocarcinoma or surrounding an adenoma with advanced neoplasia (well on the way to a colon cancer), but at low frequency in the colonic mucosa from patients without colonic neoplasia. Using immunohistochemistry, entire crypts within 10 cm on each side of colonic adenocarcinomas or advanced colonic neoplasias were found to be frequently reduced or absent in expression for two DNA repair proteins, Pms2 and/or ERCC1. Pms2 is a dual role protein, active in DNA mismatch repair as well as needed in apoptosis of cells with excess DNA damage. ERCC1 is active in DNA nucleotide excision repair. The reduced or absent expression of both ERCC1 and Pms2 would create cells with both increased ability to survive (apoptosis resistance) and increased level of mutability. The reduced or absent expression of both ERCC1 and Pms2 is likely an early step in progression to colon cancer. DNA repair gene Ku86 (active in DNA non-homologous end joining) and Cytochrome c Oxidase Subunit I (involved in apoptosis) had each been reported to be decreased in expression in mucosal areas close to colon cancers. However, immunohistochemical evaluation of their levels of expression showed only low to modest frequencies of crypts to be deficient in their expression in a field defect surrounding colon cancer or surrounding advanced colonic neoplasia. We show, here, our method of evaluation of crypts for expression of ERCC1, Pms2, Ku86 and CcOI. We show that frequency of entire crypts deficient for Pms2 and ERCC1 is often as great as 70% to 95% in 20 cm long areas surrounding a colonic neoplasia, while frequency of crypts deficient in Ku86 has a median value of 2% and frequency of crypts deficient in CcOI has a median value of 16% in these areas. The entire colon is 150 cm long (about 5 feet) and has about 10 million crypts in its mucosal layer. The defect in Pms2 and ERCC1 surrounding a colon cancer thus may include 1 million crypts. It is from a defective crypt that colon cancer arises.
Cellular Biology, Issue 41, DNA Repair, Apoptosis, Field Defect, Colon Cancer, Pms2, ERCC1, Cytochrome c Oxidase Subunit I, Ku86, Immunohistochemistry, Cancer Resection
1931
Play Button
Bacterial Delivery of RNAi Effectors: Transkingdom RNAi
Authors: Hermann Lage, Andrea Krühn.
Institutions: Charité Campus Mitte.
RNA interference (RNAi) represents a high effective mechanism for specific inhibition of mRNA expression. Besides its potential as a powerful laboratory tool, the RNAi pathway appears to be promising for therapeutic utilization. For development of RNA interference (RNAi)-based therapies, delivery of RNAi-mediating agents to target cells is one of the major obstacles. A novel strategy to overcome this hurdle is transkingdom RNAi (tkRNAi). This technology uses non-pathogenic bacteria, e.g. Escherichia coli, to produce and deliver therapeutic short hairpin RNA (shRNA) into target cells to induce RNAi. A first-generation tkRNAi-mediating vector, TRIP, contains the bacteriophage T7 promoter for expression regulation of a therapeutic shRNA of interest. Furthermore, TRIP has the Inv locus from Yersinia pseudotuberculosis that encodes invasin, which permits natural noninvasive bacteria to enter β1-integrin-positive mammalian cells and the HlyA gene from Listeria monocytogenes, which produces listeriolysin O. This enzyme allows the therapeutic shRNA to escape from entry vesicles within the cytoplasm of the target cell. TRIP constructs are introduced into a competent non-pathogenic Escherichia coli strain, which encodes T7 RNA polymerase necessary for the T7 promoter-driven synthesis of shRNAs. A well-characterized cancer-associated target molecule for different RNAi strategies is ABCB1 (MDR1/P-glycoprotein, MDR1/P-gp). This ABC-transporter acts as a drug extrusion pump and mediates the "classical" ABCB1-mediated multidrug resistance (MDR) phenotype of human cancer cells which is characterized by a specific cross resistance pattern. Different ABCB1-expressing MDR cancer cells were treated with anti-ABCB1 shRNA expression vector bearing E. coli. This procedure resulted in activation of the RNAi pathways within the cancer cells and a considerable down regulation of the ABCB1 encoding mRNA as well as the corresponding drug extrusion pump. Accordingly, drug accumulation was enhanced in the pristine drug-resistant cancer cells and the MDR phenotype was reversed. By means of this model the data provide the proof-of-concept that tkRNAi is suitable for modulation of cancer-associated factors, e.g. ABCB1, in human cancer cells.
Microbiology, Issue 42, Transkingdom RNAi, shRNA, gene therapy, cancer, multidrug resistance, bacteria
2099
Play Button
A Strategy to Identify de Novo Mutations in Common Disorders such as Autism and Schizophrenia
Authors: Gauthier Julie, Fadi F. Hamdan, Guy A. Rouleau.
Institutions: Universite de Montreal, Universite de Montreal, Universite de Montreal.
There are several lines of evidence supporting the role of de novo mutations as a mechanism for common disorders, such as autism and schizophrenia. First, the de novo mutation rate in humans is relatively high, so new mutations are generated at a high frequency in the population. However, de novo mutations have not been reported in most common diseases. Mutations in genes leading to severe diseases where there is a strong negative selection against the phenotype, such as lethality in embryonic stages or reduced reproductive fitness, will not be transmitted to multiple family members, and therefore will not be detected by linkage gene mapping or association studies. The observation of very high concordance in monozygotic twins and very low concordance in dizygotic twins also strongly supports the hypothesis that a significant fraction of cases may result from new mutations. Such is the case for diseases such as autism and schizophrenia. Second, despite reduced reproductive fitness1 and extremely variable environmental factors, the incidence of some diseases is maintained worldwide at a relatively high and constant rate. This is the case for autism and schizophrenia, with an incidence of approximately 1% worldwide. Mutational load can be thought of as a balance between selection for or against a deleterious mutation and its production by de novo mutation. Lower rates of reproduction constitute a negative selection factor that should reduce the number of mutant alleles in the population, ultimately leading to decreased disease prevalence. These selective pressures tend to be of different intensity in different environments. Nonetheless, these severe mental disorders have been maintained at a constant relatively high prevalence in the worldwide population across a wide range of cultures and countries despite a strong negative selection against them2. This is not what one would predict in diseases with reduced reproductive fitness, unless there was a high new mutation rate. Finally, the effects of paternal age: there is a significantly increased risk of the disease with increasing paternal age, which could result from the age related increase in paternal de novo mutations. This is the case for autism and schizophrenia3. The male-to-female ratio of mutation rate is estimated at about 4–6:1, presumably due to a higher number of germ-cell divisions with age in males. Therefore, one would predict that de novo mutations would more frequently come from males, particularly older males4. A high rate of new mutations may in part explain why genetic studies have so far failed to identify many genes predisposing to complexes diseases genes, such as autism and schizophrenia, and why diseases have been identified for a mere 3% of genes in the human genome. Identification for de novo mutations as a cause of a disease requires a targeted molecular approach, which includes studying parents and affected subjects. The process for determining if the genetic basis of a disease may result in part from de novo mutations and the molecular approach to establish this link will be illustrated, using autism and schizophrenia as examples.
Medicine, Issue 52, de novo mutation, complex diseases, schizophrenia, autism, rare variations, DNA sequencing
2534
Play Button
Nerve Excitability Assessment in Chemotherapy-induced Neurotoxicity
Authors: Susanna B. Park, Cindy S-Y. Lin, Matthew C. Kiernan.
Institutions: University of New South Wales , University of New South Wales , University of New South Wales .
Chemotherapy-induced neurotoxicity is a serious consequence of cancer treatment, which occurs with some of the most commonly used chemotherapies1,2. Chemotherapy-induced peripheral neuropathy produces symptoms of numbness and paraesthesia in the limbs and may progress to difficulties with fine motor skills and walking, leading to functional impairment. In addition to producing troubling symptoms, chemotherapy-induced neuropathy may limit treatment success leading to dose reduction or early cessation of treatment. Neuropathic symptoms may persist long-term, leaving permanent nerve damage in patients with an otherwise good prognosis3. As chemotherapy is utilised more often as a preventative measure, and survival rates increase, the importance of long-lasting and significant neurotoxicity will increase. There are no established neuroprotective or treatment options and a lack of sensitive assessment methods. Appropriate assessment of neurotoxicity will be critical as a prognostic factor and as suitable endpoints for future trials of neuroprotective agents. Current methods to assess the severity of chemotherapy-induced neuropathy utilise clinician-based grading scales which have been demonstrated to lack sensitivity to change and inter-observer objectivity4. Conventional nerve conduction studies provide information about compound action potential amplitude and conduction velocity, which are relatively non-specific measures and do not provide insight into ion channel function or resting membrane potential. Accordingly, prior studies have demonstrated that conventional nerve conduction studies are not sensitive to early change in chemotherapy-induced neurotoxicity4-6. In comparison, nerve excitability studies utilize threshold tracking techniques which have been developed to enable assessment of ion channels, pumps and exchangers in vivo in large myelinated human axons7-9. Nerve excitability techniques have been established as a tool to examine the development and severity of chemotherapy-induced neurotoxicity10-13. Comprising a number of excitability parameters, nerve excitability studies can be used to assess acute neurotoxicity arising immediately following infusion and the development of chronic, cumulative neurotoxicity. Nerve excitability techniques are feasible in the clinical setting, with each test requiring only 5 -10 minutes to complete. Nerve excitability equipment is readily commercially available, and a portable system has been devised so that patients can be tested in situ in the infusion centre setting. In addition, these techniques can be adapted for use in multiple chemotherapies. In patients treated with the chemotherapy oxaliplatin, primarily utilised for colorectal cancer, nerve excitability techniques provide a method to identify patients at-risk for neurotoxicity prior to the onset of chronic neuropathy. Nerve excitability studies have revealed the development of an acute Na+ channelopathy in motor and sensory axons10-13. Importantly, patients who demonstrated changes in excitability in early treatment were subsequently more likely to develop moderate to severe neurotoxicity11. However, across treatment, striking longitudinal changes were identified only in sensory axons which were able to predict clinical neurological outcome in 80% of patients10. These changes demonstrated a different pattern to those seen acutely following oxaliplatin infusion, and most likely reflect the development of significant axonal damage and membrane potential change in sensory nerves which develops longitudinally during oxaliplatin treatment10. Significant abnormalities developed during early treatment, prior to any reduction in conventional measures of nerve function, suggesting that excitability parameters may provide a sensitive biomarker.
Neuroscience, Issue 62, Chemotherapy, Neurotoxicity, Neuropathy, Nerve excitability, Ion channel function, Oxaliplatin, oncology, medicine
3439
Play Button
Roux-en-Y Gastric Bypass Operation in Rats
Authors: Marco Bueter, Kathrin Abegg, Florian Seyfried, Thomas A. Lutz, Carel W. le Roux.
Institutions: University Hospital Zürich, University of Zürich, University of Zürich, Imperial College London .
Currently, the most effective therapy for the treatment of morbid obesity to induce significant and maintained body weight loss with a proven mortality benefit is bariatric surgery1,2. Consequently, there has been a steady rise in the number of bariatric operations done worldwide in recent years with the Roux-en-Y gastric bypass (gastric bypass) being the most commonly performed operation3. Against this background, it is important to understand the physiological mechanisms by which gastric bypass induces and maintains body weight loss. These mechanisms are yet not fully understood, but may include reduced hunger and increased satiation4,5, increased energy expenditure6,7, altered preference for food high in fat and sugar8,9, altered salt and water handling of the kidney10 as well as alterations in gut microbiota11. Such changes seen after gastric bypass may at least partly stem from how the surgery alters the hormonal milieu because gastric bypass increases the postprandial release of peptide-YY (PYY) and glucagon-like-peptide-1 (GLP-1), hormones that are released by the gut in the presence of nutrients and that reduce eating12. During the last two decades numerous studies using rats have been carried out to further investigate physiological changes after gastric bypass. The gastric bypass rat model has proven to be a valuable experimental tool not least as it closely mimics the time profile and magnitude of human weight loss, but also allows researchers to control and manipulate critical anatomic and physiologic factors including the use of appropriate controls. Consequently, there is a wide array of rat gastric bypass models available in the literature reviewed elsewhere in more detail 13-15. The description of the exact surgical technique of these models varies widely and differs e.g. in terms of pouch size, limb lengths, and the preservation of the vagal nerve. If reported, mortality rates seem to range from 0 to 35%15. Furthermore, surgery has been carried out almost exclusively in male rats of different strains and ages. Pre- and postoperative diets also varied significantly. Technical and experimental variations in published gastric bypass rat models complicate the comparison and identification of potential physiological mechanisms involved in gastric bypass. There is no clear evidence that any of these models is superior, but there is an emerging need for standardization of the procedure to achieve consistent and comparable data. This article therefore aims to summarize and discuss technical and experimental details of our previously validated and published gastric bypass rat model.
Medicine, Issue 64, Physiology, Roux-en-Y Gastric bypass, rat model, gastric pouch size, gut hormones
3940
Play Button
Detection of Rare Genomic Variants from Pooled Sequencing Using SPLINTER
Authors: Francesco Vallania, Enrique Ramos, Sharon Cresci, Robi D. Mitra, Todd E. Druley.
Institutions: Washington University School of Medicine, Washington University School of Medicine, Washington University School of Medicine.
As DNA sequencing technology has markedly advanced in recent years2, it has become increasingly evident that the amount of genetic variation between any two individuals is greater than previously thought3. In contrast, array-based genotyping has failed to identify a significant contribution of common sequence variants to the phenotypic variability of common disease4,5. Taken together, these observations have led to the evolution of the Common Disease / Rare Variant hypothesis suggesting that the majority of the "missing heritability" in common and complex phenotypes is instead due to an individual's personal profile of rare or private DNA variants6-8. However, characterizing how rare variation impacts complex phenotypes requires the analysis of many affected individuals at many genomic loci, and is ideally compared to a similar survey in an unaffected cohort. Despite the sequencing power offered by today's platforms, a population-based survey of many genomic loci and the subsequent computational analysis required remains prohibitive for many investigators. To address this need, we have developed a pooled sequencing approach1,9 and a novel software package1 for highly accurate rare variant detection from the resulting data. The ability to pool genomes from entire populations of affected individuals and survey the degree of genetic variation at multiple targeted regions in a single sequencing library provides excellent cost and time savings to traditional single-sample sequencing methodology. With a mean sequencing coverage per allele of 25-fold, our custom algorithm, SPLINTER, uses an internal variant calling control strategy to call insertions, deletions and substitutions up to four base pairs in length with high sensitivity and specificity from pools of up to 1 mutant allele in 500 individuals. Here we describe the method for preparing the pooled sequencing library followed by step-by-step instructions on how to use the SPLINTER package for pooled sequencing analysis (http://www.ibridgenetwork.org/wustl/splinter). We show a comparison between pooled sequencing of 947 individuals, all of whom also underwent genome-wide array, at over 20kb of sequencing per person. Concordance between genotyping of tagged and novel variants called in the pooled sample were excellent. This method can be easily scaled up to any number of genomic loci and any number of individuals. By incorporating the internal positive and negative amplicon controls at ratios that mimic the population under study, the algorithm can be calibrated for optimal performance. This strategy can also be modified for use with hybridization capture or individual-specific barcodes and can be applied to the sequencing of naturally heterogeneous samples, such as tumor DNA.
Genetics, Issue 64, Genomics, Cancer Biology, Bioinformatics, Pooled DNA sequencing, SPLINTER, rare genetic variants, genetic screening, phenotype, high throughput, computational analysis, DNA, PCR, primers
3943
Play Button
Measuring Cation Transport by Na,K- and H,K-ATPase in Xenopus Oocytes by Atomic Absorption Spectrophotometry: An Alternative to Radioisotope Assays
Authors: Katharina L. Dürr, Neslihan N. Tavraz, Susan Spiller, Thomas Friedrich.
Institutions: Technical University of Berlin, Oregon Health & Science University.
Whereas cation transport by the electrogenic membrane transporter Na+,K+-ATPase can be measured by electrophysiology, the electroneutrally operating gastric H+,K+-ATPase is more difficult to investigate. Many transport assays utilize radioisotopes to achieve a sufficient signal-to-noise ratio, however, the necessary security measures impose severe restrictions regarding human exposure or assay design. Furthermore, ion transport across cell membranes is critically influenced by the membrane potential, which is not straightforwardly controlled in cell culture or in proteoliposome preparations. Here, we make use of the outstanding sensitivity of atomic absorption spectrophotometry (AAS) towards trace amounts of chemical elements to measure Rb+ or Li+ transport by Na+,K+- or gastric H+,K+-ATPase in single cells. Using Xenopus oocytes as expression system, we determine the amount of Rb+ (Li+) transported into the cells by measuring samples of single-oocyte homogenates in an AAS device equipped with a transversely heated graphite atomizer (THGA) furnace, which is loaded from an autosampler. Since the background of unspecific Rb+ uptake into control oocytes or during application of ATPase-specific inhibitors is very small, it is possible to implement complex kinetic assay schemes involving a large number of experimental conditions simultaneously, or to compare the transport capacity and kinetics of site-specifically mutated transporters with high precision. Furthermore, since cation uptake is determined on single cells, the flux experiments can be carried out in combination with two-electrode voltage-clamping (TEVC) to achieve accurate control of the membrane potential and current. This allowed e.g. to quantitatively determine the 3Na+/2K+ transport stoichiometry of the Na+,K+-ATPase and enabled for the first time to investigate the voltage dependence of cation transport by the electroneutrally operating gastric H+,K+-ATPase. In principle, the assay is not limited to K+-transporting membrane proteins, but it may work equally well to address the activity of heavy or transition metal transporters, or uptake of chemical elements by endocytotic processes.
Biochemistry, Issue 72, Chemistry, Biophysics, Bioengineering, Physiology, Molecular Biology, electrochemical processes, physical chemistry, spectrophotometry (application), spectroscopic chemical analysis (application), life sciences, temperature effects (biological, animal and plant), Life Sciences (General), Na+,K+-ATPase, H+,K+-ATPase, Cation Uptake, P-type ATPases, Atomic Absorption Spectrophotometry (AAS), Two-Electrode Voltage-Clamp, Xenopus Oocytes, Rb+ Flux, Transversely Heated Graphite Atomizer (THGA) Furnace, electrophysiology, animal model
50201
Play Button
In vitro Organoid Culture of Primary Mouse Colon Tumors
Authors: Xiang Xue, Yatrik M. Shah.
Institutions: University of Michigan , University of Michigan .
Several human and murine colon cancer cell lines have been established, physiologic integrity of colon tumors such as multiple cell layers, basal-apical polarity, ability to differentiate, and anoikis are not maintained in colon cancer derived cell lines. The present study demonstrates a method for culturing primary mouse colon tumor organoids adapted from Sato T et al. 1, which retains important physiologic features of colon tumors. This method consists of mouse colon tumor tissue collection, adjacent normal colon epithelium dissociation, colon tumor cells digestion into single cells, embedding colon tumor cells into matrigel, and selective culture based on the principle that tumor cells maintain growth on limiting nutrient conditions compared to normal epithelial cells. The primary tumor organoids if isolated from genetically modified mice provide a very useful system to assess tumor autonomous function of specific genes. Moreover, the tumor organoids are amenable to genetic manipulation by virus meditated gene delivery; therefore signaling pathways involved in the colon tumorigenesis could also be extensively investigated by overexpression or knockdown. Primary tumor organoids culture provides a physiologic relevant and feasible means to study the mechanisms and therapeutic modalities for colon tumorigenesis.
Cancer Biology, Issue 75, Medicine, Molecular Biology, Cellular Biology, Biomedical Engineering, Anatomy, Physiology, Genetics, Oncology, Surgery, Organoids, Tumor Cells, Cultured Colonic Neoplasms, Primary Cell Culture, Colon tumor, chelation, collagenase, matrigel, organoid, EGF, colon cancer, cancer, tumor, cell, isolation, immunohistochemistry, mouse, animal model
50210
Play Button
Assessment of Gastric Emptying in Non-obese Diabetic Mice Using a [13C]-octanoic Acid Breath Test
Authors: Christopher T. Creedon, Pieter-Jan Verhulst, Kyoung M. Choi, Jessica E. Mason, David R. Linden, Joseph H. Szurszewski, Simon J. Gibbons, Gianrico Farrugia.
Institutions: Mayo Clinic .
Gastric emptying studies in mice have been limited by the inability to follow gastric emptying changes in the same animal since the most commonly used techniques require killing of the animals and postmortem recovery of the meal1,2. This approach prevents longitudinal studies to determine changes in gastric emptying with age and progression of disease. The commonly used [13C]-octanoic acid breath test for humans3 has been modified for use in mice4-6 and rats7 and we previously showed that this test is reliable and responsive to changes in gastric emptying in response to drugs and during diabetic disease progression8. In this video presentation the principle and practical implementation of this modified test is explained. As in the previous study, NOD LtJ mice are used, a model of type 1 diabetes9. A proportion of these mice develop the symptoms of gastroparesis, a complication of diabetes characterized by delayed gastric emptying without mechanical obstruction of the stomach10. This paper demonstrates how to train the mice for testing, how to prepare the test meal and obtain 4 hr gastric emptying data and how to analyze the obtained data. The carbon isotope analyzer used in the present study is suitable for the automatic sampling of the air samples from up to 12 mice at the same time. This technique allows the longitudinal follow-up of gastric emptying from larger groups of mice with diabetes or other long-standing diseases.
Medicine, Issue 73, Biomedical Engineering, Molecular Biology, Anatomy, Physiology, Neurobiology, Gastrointestinal Tract, Gastrointestinal Diseases, Ion Channels, Diagnostic Techniques and Procedures, Electrophysiology, Gastric emptying, [13C]-octanoic acid, breath test, in vivo, clinical, assay, mice, animal model
50301
Play Button
Cell Population Analyses During Skin Carcinogenesis
Authors: Dongsheng Gu, Qipeng Fan, Jingwu Xie.
Institutions: Indiana University.
Cancer development is a multiple-step process involving many cell types including cancer precursor cells, immune cells, fibroblasts and endothelial cells. Each type of cells undergoes signaling and functional changes during carcinogenesis. The current challenge for many cancer researchers is to dissect these changes in each cell type during the multiple-step process in vivo. In the last few years, the authors have developed a set of procedures to isolate different cell populations during skin cancer development using K14creER/R26-SmoM2YFP mice. The procedure is divided into 6 parts: 1) generating appropriate mice for the study (K14creER+ and R26-SmoM2YFP+ mice in this protocol); 2) inducing SmoM2YFP expression in mouse skin; 3) preparing mouse skin biopsies; 4) isolating epidermis from skin; 5) preparing single cells from epidermis; 6) labeling single cell populations for flow cytometry analysis. Generation of sufficient number of mice with the right genotype is the limiting step in this protocol, which may take up to two months. The rest of steps take a few hours to a few days. Within this protocol, we also include a section for troubleshooting. Although we focus on skin cancer, this protocol may be modified to apply for other animal models of human diseases.
Cancer Biology, Issue 78, Medicine, Cellular Biology, Molecular Biology, Biomedical Engineering, Genetics, Anatomy, Physiology, Oncology, Cocarcinogenesis, animal models, Skin cancer, basal cell carcinoma, hedgehog, smoothened, keratinocyte, cancer, carcinogenesis, cells, cell culture, animal model
50311
Play Button
In Vivo Modeling of the Morbid Human Genome using Danio rerio
Authors: Adrienne R. Niederriter, Erica E. Davis, Christelle Golzio, Edwin C. Oh, I-Chun Tsai, Nicholas Katsanis.
Institutions: Duke University Medical Center, Duke University, Duke University Medical Center.
Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated.1 These aspects have allowed for significant advances in the analysis of embryogenesis, molecular processes, and morphogenetic signaling. Taken together, the advantages of this vertebrate model make zebrafish highly amenable to modeling the developmental defects in pediatric disease, and in some cases, adult-onset disorders. Because the zebrafish genome is highly conserved with that of humans (~70% orthologous), it is possible to recapitulate human disease states in zebrafish. This is accomplished either through the injection of mutant human mRNA to induce dominant negative or gain of function alleles, or utilization of morpholino (MO) antisense oligonucleotides to suppress genes to mimic loss of function variants. Through complementation of MO-induced phenotypes with capped human mRNA, our approach enables the interpretation of the deleterious effect of mutations on human protein sequence based on the ability of mutant mRNA to rescue a measurable, physiologically relevant phenotype. Modeling of the human disease alleles occurs through microinjection of zebrafish embryos with MO and/or human mRNA at the 1-4 cell stage, and phenotyping up to seven days post fertilization (dpf). This general strategy can be extended to a wide range of disease phenotypes, as demonstrated in the following protocol. We present our established models for morphogenetic signaling, craniofacial, cardiac, vascular integrity, renal function, and skeletal muscle disorder phenotypes, as well as others.
Molecular Biology, Issue 78, Genetics, Biomedical Engineering, Medicine, Developmental Biology, Biochemistry, Anatomy, Physiology, Bioengineering, Genomics, Medical, zebrafish, in vivo, morpholino, human disease modeling, transcription, PCR, mRNA, DNA, Danio rerio, animal model
50338
Play Button
Ex Vivo Treatment Response of Primary Tumors and/or Associated Metastases for Preclinical and Clinical Development of Therapeutics
Authors: Adriana D. Corben, Mohammad M. Uddin, Brooke Crawford, Mohammad Farooq, Shanu Modi, John Gerecitano, Gabriela Chiosis, Mary L. Alpaugh.
Institutions: Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center.
The molecular analysis of established cancer cell lines has been the mainstay of cancer research for the past several decades. Cell culture provides both direct and rapid analysis of therapeutic sensitivity and resistance. However, recent evidence suggests that therapeutic response is not exclusive to the inherent molecular composition of cancer cells but rather is greatly influenced by the tumor cell microenvironment, a feature that cannot be recapitulated by traditional culturing methods. Even implementation of tumor xenografts, though providing a wealth of information on drug delivery/efficacy, cannot capture the tumor cell/microenvironment crosstalk (i.e., soluble factors) that occurs within human tumors and greatly impacts tumor response. To this extent, we have developed an ex vivo (fresh tissue sectioning) technique which allows for the direct assessment of treatment response for preclinical and clinical therapeutics development. This technique maintains tissue integrity and cellular architecture within the tumor cell/microenvironment context throughout treatment response providing a more precise means to assess drug efficacy.
Cancer Biology, Issue 92, Ex vivo sectioning, Treatment response, Sensitivity/Resistance, Drug development, Patient tumors, Preclinical and Clinical
52157
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.