JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Effects of Spatial Pattern Scale of Brain Activity on the Sensitivity of DOT, fMRI, EEG and MEG.
PLoS ONE
PUBLISHED: 01-01-2013
The objective of this work is to quantify how patterns of cortical activity at different spatial scales are measured by noninvasive functional neuroimaging sensors. We simulated cortical activation patterns at nine different spatial scales in a realistic head model and propagated this activity to magnetoencephalography (MEG), electroencephalography (EEG), diffuse optical tomography (DOT), and functional magnetic resonance imaging (fMRI) sensors in arrangements that are typically used in functional neuroimaging studies. We estimated contrast transfer functions (CTF), correlation distances in sensor space, and the minimum resolvable spatial scale of cortical activity for each modality. We found that CTF decreases as the spatial extent of cortical activity decreases, and that correlations between nearby sensors depend on the spatial extent of cortical activity. For cortical activity on the intermediate spatial scale of 6.7 cm(2), the correlation distances (r>0.5) were 1.0 cm for fMRI, 2.0 cm for DOT, 12.8 for EEG, 9.5 cm for MEG magnetometers and 9.7 cm for MEG gradiometers. The resolvable spatial pattern scale was found to be 1.43 cm(2) for MEG magnetometers, 0.88 cm(2) for MEG gradiometers, 376 cm(2) for EEG, 0.75 cm(2) for DOT, and 0.072 cm(2) for fMRI. These findings show that sensitivity to cortical activity varies substantially as a function of spatial scale within and between the different imaging modalities. This information should be taken into account when interpreting neuroimaging data and when choosing the number of nodes for network analyses in sensor space.
Authors: Karen J. Mullinger, Pierluigi Castellone, Richard Bowtell.
Published: 06-03-2013
ABSTRACT
Simultaneous EEG-fMRI allows the excellent temporal resolution of EEG to be combined with the high spatial accuracy of fMRI. The data from these two modalities can be combined in a number of ways, but all rely on the acquisition of high quality EEG and fMRI data. EEG data acquired during simultaneous fMRI are affected by several artifacts, including the gradient artefact (due to the changing magnetic field gradients required for fMRI), the pulse artefact (linked to the cardiac cycle) and movement artifacts (resulting from movements in the strong magnetic field of the scanner, and muscle activity). Post-processing methods for successfully correcting the gradient and pulse artifacts require a number of criteria to be satisfied during data acquisition. Minimizing head motion during EEG-fMRI is also imperative for limiting the generation of artifacts. Interactions between the radio frequency (RF) pulses required for MRI and the EEG hardware may occur and can cause heating. This is only a significant risk if safety guidelines are not satisfied. Hardware design and set-up, as well as careful selection of which MR sequences are run with the EEG hardware present must therefore be considered. The above issues highlight the importance of the choice of the experimental protocol employed when performing a simultaneous EEG-fMRI experiment. Based on previous research we describe an optimal experimental set-up. This provides high quality EEG data during simultaneous fMRI when using commercial EEG and fMRI systems, with safety risks to the subject minimized. We demonstrate this set-up in an EEG-fMRI experiment using a simple visual stimulus. However, much more complex stimuli can be used. Here we show the EEG-fMRI set-up using a Brain Products GmbH (Gilching, Germany) MRplus, 32 channel EEG system in conjunction with a Philips Achieva (Best, Netherlands) 3T MR scanner, although many of the techniques are transferable to other systems.
18 Related JoVE Articles!
Play Button
How to Detect Amygdala Activity with Magnetoencephalography using Source Imaging
Authors: Nicholas L. Balderston, Douglas H. Schultz, Sylvain Baillet, Fred J. Helmstetter.
Institutions: University of Wisconsin-Milwaukee, Montreal Neurological Institute, McGill University, Medical College of Wisconsin .
In trace fear conditioning a conditional stimulus (CS) predicts the occurrence of the unconditional stimulus (UCS), which is presented after a brief stimulus free period (trace interval)1. Because the CS and UCS do not co-occur temporally, the subject must maintain a representation of that CS during the trace interval. In humans, this type of learning requires awareness of the stimulus contingencies in order to bridge the trace interval2-4. However when a face is used as a CS, subjects can implicitly learn to fear the face even in the absence of explicit awareness*. This suggests that there may be additional neural mechanisms capable of maintaining certain types of "biologically-relevant" stimuli during a brief trace interval. Given that the amygdala is involved in trace conditioning, and is sensitive to faces, it is possible that this structure can maintain a representation of a face CS during a brief trace interval. It is challenging to understand how the brain can associate an unperceived face with an aversive outcome, even though the two stimuli are separated in time. Furthermore investigations of this phenomenon are made difficult by two specific challenges. First, it is difficult to manipulate the subject's awareness of the visual stimuli. One common way to manipulate visual awareness is to use backward masking. In backward masking, a target stimulus is briefly presented (< 30 msec) and immediately followed by a presentation of an overlapping masking stimulus5. The presentation of the mask renders the target invisible6-8. Second, masking requires very rapid and precise timing making it difficult to investigate neural responses evoked by masked stimuli using many common approaches. Blood-oxygenation level dependent (BOLD) responses resolve at a timescale too slow for this type of methodology, and real time recording techniques like electroencephalography (EEG) and magnetoencephalography (MEG) have difficulties recovering signal from deep sources. However, there have been recent advances in the methods used to localize the neural sources of the MEG signal9-11. By collecting high-resolution MRI images of the subject's brain, it is possible to create a source model based on individual neural anatomy. Using this model to "image" the sources of the MEG signal, it is possible to recover signal from deep subcortical structures, like the amygdala and the hippocampus*.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Medicine, Physiology, Anatomy, Psychology, Amygdala, Magnetoencephalography, Fear, awareness, masking, source imaging, conditional stimulus, unconditional stimulus, hippocampus, brain, magnetic resonance imaging, MRI, fMRI, imaging, clinical techniques
50212
Play Button
Mapping Cortical Dynamics Using Simultaneous MEG/EEG and Anatomically-constrained Minimum-norm Estimates: an Auditory Attention Example
Authors: Adrian K.C. Lee, Eric Larson, Ross K. Maddox.
Institutions: University of Washington.
Magneto- and electroencephalography (MEG/EEG) are neuroimaging techniques that provide a high temporal resolution particularly suitable to investigate the cortical networks involved in dynamical perceptual and cognitive tasks, such as attending to different sounds in a cocktail party. Many past studies have employed data recorded at the sensor level only, i.e., the magnetic fields or the electric potentials recorded outside and on the scalp, and have usually focused on activity that is time-locked to the stimulus presentation. This type of event-related field / potential analysis is particularly useful when there are only a small number of distinct dipolar patterns that can be isolated and identified in space and time. Alternatively, by utilizing anatomical information, these distinct field patterns can be localized as current sources on the cortex. However, for a more sustained response that may not be time-locked to a specific stimulus (e.g., in preparation for listening to one of the two simultaneously presented spoken digits based on the cued auditory feature) or may be distributed across multiple spatial locations unknown a priori, the recruitment of a distributed cortical network may not be adequately captured by using a limited number of focal sources. Here, we describe a procedure that employs individual anatomical MRI data to establish a relationship between the sensor information and the dipole activation on the cortex through the use of minimum-norm estimates (MNE). This inverse imaging approach provides us a tool for distributed source analysis. For illustrative purposes, we will describe all procedures using FreeSurfer and MNE software, both freely available. We will summarize the MRI sequences and analysis steps required to produce a forward model that enables us to relate the expected field pattern caused by the dipoles distributed on the cortex onto the M/EEG sensors. Next, we will step through the necessary processes that facilitate us in denoising the sensor data from environmental and physiological contaminants. We will then outline the procedure for combining and mapping MEG/EEG sensor data onto the cortical space, thereby producing a family of time-series of cortical dipole activation on the brain surface (or "brain movies") related to each experimental condition. Finally, we will highlight a few statistical techniques that enable us to make scientific inference across a subject population (i.e., perform group-level analysis) based on a common cortical coordinate space.
Neuroscience, Issue 68, Magnetoencephalography, MEG, Electroencephalography, EEG, audition, attention, inverse imaging
4262
Play Button
A Method for Investigating Age-related Differences in the Functional Connectivity of Cognitive Control Networks Associated with Dimensional Change Card Sort Performance
Authors: Bianca DeBenedictis, J. Bruce Morton.
Institutions: University of Western Ontario.
The ability to adjust behavior to sudden changes in the environment develops gradually in childhood and adolescence. For example, in the Dimensional Change Card Sort task, participants switch from sorting cards one way, such as shape, to sorting them a different way, such as color. Adjusting behavior in this way exacts a small performance cost, or switch cost, such that responses are typically slower and more error-prone on switch trials in which the sorting rule changes as compared to repeat trials in which the sorting rule remains the same. The ability to flexibly adjust behavior is often said to develop gradually, in part because behavioral costs such as switch costs typically decrease with increasing age. Why aspects of higher-order cognition, such as behavioral flexibility, develop so gradually remains an open question. One hypothesis is that these changes occur in association with functional changes in broad-scale cognitive control networks. On this view, complex mental operations, such as switching, involve rapid interactions between several distributed brain regions, including those that update and maintain task rules, re-orient attention, and select behaviors. With development, functional connections between these regions strengthen, leading to faster and more efficient switching operations. The current video describes a method of testing this hypothesis through the collection and multivariate analysis of fMRI data from participants of different ages.
Behavior, Issue 87, Neurosciences, fMRI, Cognitive Control, Development, Functional Connectivity
51003
Play Button
Extracting Visual Evoked Potentials from EEG Data Recorded During fMRI-guided Transcranial Magnetic Stimulation
Authors: Boaz Sadeh, Galit Yovel.
Institutions: Tel-Aviv University, Tel-Aviv University.
Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator's coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes.
Neuroscience, Issue 87, Transcranial Magnetic Stimulation, Neuroimaging, Neuronavigation, Visual Perception, Evoked Potentials, Electroencephalography, Event-related potential, fMRI, Combined Neuroimaging Methods, Face perception, Body Perception
51063
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Transcranial Direct Current Stimulation and Simultaneous Functional Magnetic Resonance Imaging
Authors: Marcus Meinzer, Robert Lindenberg, Robert Darkow, Lena Ulm, David Copland, Agnes Flöel.
Institutions: University of Queensland, Charité Universitätsmedizin.
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that uses weak electrical currents administered to the scalp to manipulate cortical excitability and, consequently, behavior and brain function. In the last decade, numerous studies have addressed short-term and long-term effects of tDCS on different measures of behavioral performance during motor and cognitive tasks, both in healthy individuals and in a number of different patient populations. So far, however, little is known about the neural underpinnings of tDCS-action in humans with regard to large-scale brain networks. This issue can be addressed by combining tDCS with functional brain imaging techniques like functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). In particular, fMRI is the most widely used brain imaging technique to investigate the neural mechanisms underlying cognition and motor functions. Application of tDCS during fMRI allows analysis of the neural mechanisms underlying behavioral tDCS effects with high spatial resolution across the entire brain. Recent studies using this technique identified stimulation induced changes in task-related functional brain activity at the stimulation site and also in more distant brain regions, which were associated with behavioral improvement. In addition, tDCS administered during resting-state fMRI allowed identification of widespread changes in whole brain functional connectivity. Future studies using this combined protocol should yield new insights into the mechanisms of tDCS action in health and disease and new options for more targeted application of tDCS in research and clinical settings. The present manuscript describes this novel technique in a step-by-step fashion, with a focus on technical aspects of tDCS administered during fMRI.
Behavior, Issue 86, noninvasive brain stimulation, transcranial direct current stimulation (tDCS), anodal stimulation (atDCS), cathodal stimulation (ctDCS), neuromodulation, task-related fMRI, resting-state fMRI, functional magnetic resonance imaging (fMRI), electroencephalography (EEG), inferior frontal gyrus (IFG)
51730
Play Button
Transcranial Magnetic Stimulation for Investigating Causal Brain-behavioral Relationships and their Time Course
Authors: Magdalena W. Sliwinska, Sylvia Vitello, Joseph T. Devlin.
Institutions: University College London.
Transcranial magnetic stimulation (TMS) is a safe, non-invasive brain stimulation technique that uses a strong electromagnet in order to temporarily disrupt information processing in a brain region, generating a short-lived “virtual lesion.” Stimulation that interferes with task performance indicates that the affected brain region is necessary to perform the task normally. In other words, unlike neuroimaging methods such as functional magnetic resonance imaging (fMRI) that indicate correlations between brain and behavior, TMS can be used to demonstrate causal brain-behavior relations. Furthermore, by varying the duration and onset of the virtual lesion, TMS can also reveal the time course of normal processing. As a result, TMS has become an important tool in cognitive neuroscience. Advantages of the technique over lesion-deficit studies include better spatial-temporal precision of the disruption effect, the ability to use participants as their own control subjects, and the accessibility of participants. Limitations include concurrent auditory and somatosensory stimulation that may influence task performance, limited access to structures more than a few centimeters from the surface of the scalp, and the relatively large space of free parameters that need to be optimized in order for the experiment to work. Experimental designs that give careful consideration to appropriate control conditions help to address these concerns. This article illustrates these issues with TMS results that investigate the spatial and temporal contributions of the left supramarginal gyrus (SMG) to reading.
Behavior, Issue 89, Transcranial magnetic stimulation, virtual lesion, chronometric, cognition, brain, behavior
51735
Play Button
Transferring Cognitive Tasks Between Brain Imaging Modalities: Implications for Task Design and Results Interpretation in fMRI Studies
Authors: Tracy Warbrick, Martina Reske, N. Jon Shah.
Institutions: Research Centre Jülich GmbH, Research Centre Jülich GmbH.
As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.
Behavior, Issue 91, fMRI, task design, data interpretation, cognitive neuroscience, visual oddball task, target detection
51793
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
50427
Play Button
Simultaneous EEG Monitoring During Transcranial Direct Current Stimulation
Authors: Pedro Schestatsky, Leon Morales-Quezada, Felipe Fregni.
Institutions: Universidade Federal do Rio Grande do Sul, Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Harvard Medical School, De Montfort University.
Transcranial direct current stimulation (tDCS) is a technique that delivers weak electric currents through the scalp. This constant electric current induces shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Although tDCS has most of its neuromodulatory effects on the underlying cortex, tDCS effects can also be observed in distant neural networks. Therefore, concomitant EEG monitoring of the effects of tDCS can provide valuable information on the mechanisms of tDCS. In addition, EEG findings can be an important surrogate marker for the effects of tDCS and thus can be used to optimize its parameters. This combined EEG-tDCS system can also be used for preventive treatment of neurological conditions characterized by abnormal peaks of cortical excitability, such as seizures. Such a system would be the basis of a non-invasive closed-loop device. In this article, we present a novel device that is capable of utilizing tDCS and EEG simultaneously. For that, we describe in a step-by-step fashion the main procedures of the application of this device using schematic figures, tables and video demonstrations. Additionally, we provide a literature review on clinical uses of tDCS and its cortical effects measured by EEG techniques.
Behavior, Issue 76, Medicine, Neuroscience, Neurobiology, Anatomy, Physiology, Biomedical Engineering, Psychology, electroencephalography, electroencephalogram, EEG, transcranial direct current stimulation, tDCS, noninvasive brain stimulation, neuromodulation, closed-loop system, brain, imaging, clinical techniques
50426
Play Button
Measuring Neural and Behavioral Activity During Ongoing Computerized Social Interactions: An Examination of Event-Related Brain Potentials
Authors: Jason R. Themanson.
Institutions: Illinois Wesleyan University.
Social exclusion is a complex social phenomenon with powerful negative consequences. Given the impact of social exclusion on mental and emotional health, an understanding of how perceptions of social exclusion develop over the course of a social interaction is important for advancing treatments aimed at lessening the harmful costs of being excluded. To date, most scientific examinations of social exclusion have looked at exclusion after a social interaction has been completed. While this has been very helpful in developing an understanding of what happens to a person following exclusion, it has not helped to clarify the moment-to-moment dynamics of the process of social exclusion. Accordingly, the current protocol was developed to obtain an improved understanding of social exclusion by examining the patterns of event-related brain activation that are present during social interactions. This protocol allows greater precision and sensitivity in detailing the social processes that lead people to feel as though they have been excluded from a social interaction. Importantly, the current protocol can be adapted to include research projects that vary the nature of exclusionary social interactions by altering how frequently participants are included, how long the periods of exclusion will last in each interaction, and when exclusion will take place during the social interactions. Further, the current protocol can be used to examine variables and constructs beyond those related to social exclusion. This capability to address a variety of applications across psychology by obtaining both neural and behavioral data during ongoing social interactions suggests the present protocol could be at the core of a developing area of scientific inquiry related to social interactions.
Behavior, Issue 93, Event-related brain potentials (ERPs), Social Exclusion, Neuroscience, N2, P3, Cognitive Control
52060
Play Button
Applications of EEG Neuroimaging Data: Event-related Potentials, Spectral Power, and Multiscale Entropy
Authors: Jennifer J. Heisz, Anthony R. McIntosh.
Institutions: Baycrest.
When considering human neuroimaging data, an appreciation of signal variability represents a fundamental innovation in the way we think about brain signal. Typically, researchers represent the brain's response as the mean across repeated experimental trials and disregard signal fluctuations over time as "noise". However, it is becoming clear that brain signal variability conveys meaningful functional information about neural network dynamics. This article describes the novel method of multiscale entropy (MSE) for quantifying brain signal variability. MSE may be particularly informative of neural network dynamics because it shows timescale dependence and sensitivity to linear and nonlinear dynamics in the data.
Neuroscience, Issue 76, Neurobiology, Anatomy, Physiology, Medicine, Biomedical Engineering, Electroencephalography, EEG, electroencephalogram, Multiscale entropy, sample entropy, MEG, neuroimaging, variability, noise, timescale, non-linear, brain signal, information theory, brain, imaging
50131
Play Button
Method for Simultaneous fMRI/EEG Data Collection during a Focused Attention Suggestion for Differential Thermal Sensation
Authors: Pamela K. Douglas, Maureen Pisani, Rory Reid, Austin Head, Edward Lau, Ebrahim Mirakhor, Jennifer Bramen, Billi Gordon, Ariana Anderson, Wesley T. Kerr, Chajoon Cheong, Mark S. Cohen.
Institutions: University of California, Los Angeles, University of California, Los Angeles, Yale School of Medicine, Korean Basic Science Institute.
In the present work, we demonstrate a method for concurrent collection of EEG/fMRI data. In our setup, EEG data are collected using a high-density 256-channel sensor net. The EEG amplifier itself is contained in a field isolation containment system (FICS), and MRI clock signals are synchronized with EEG data collection for subsequent MR artifact characterization and removal. We demonstrate this method first for resting state data collection. Thereafter, we demonstrate a protocol for EEG/fMRI data recording, while subjects listen to a tape asking them to visualize that their left hand is immersed in a cold-water bath and referred to, here, as the cold glove paradigm. Thermal differentials between each hand are measured throughout EEG/fMRI data collection using an MR compatible temperature sensor that we developed for this purpose. We collect cold glove EEG/fMRI data along with simultaneous differential hand temperature measurements both before and after hypnotic induction. Between pre and post sessions, single modality EEG data are collected during the hypnotic induction and depth assessment process. Our representative results demonstrate that significant changes in the EEG power spectrum can be measured during hypnotic induction, and that hand temperature changes during the cold glove paradigm can be detected rapidly using our MR compatible differential thermometry device.
Behavior, Issue 83, hypnosis, EEG, fMRI, MRI, cold glove, MRI compatible, temperature sensor
3298
Play Button
Probing the Brain in Autism Using fMRI and Diffusion Tensor Imaging
Authors: Rajesh K. Kana, Donna L. Murdaugh, Lauren E. Libero, Mark R. Pennick, Heather M. Wadsworth, Rishi Deshpande, Christi P. Hu.
Institutions: University of Alabama at Birmingham.
Newly emerging theories suggest that the brain does not function as a cohesive unit in autism, and this discordance is reflected in the behavioral symptoms displayed by individuals with autism. While structural neuroimaging findings have provided some insights into brain abnormalities in autism, the consistency of such findings is questionable. Functional neuroimaging, on the other hand, has been more fruitful in this regard because autism is a disorder of dynamic processing and allows examination of communication between cortical networks, which appears to be where the underlying problem occurs in autism. Functional connectivity is defined as the temporal correlation of spatially separate neurological events1. Findings from a number of recent fMRI studies have supported the idea that there is weaker coordination between different parts of the brain that should be working together to accomplish complex social or language problems2,3,4,5,6. One of the mysteries of autism is the coexistence of deficits in several domains along with relatively intact, sometimes enhanced, abilities. Such complex manifestation of autism calls for a global and comprehensive examination of the disorder at the neural level. A compelling recent account of the brain functioning in autism, the cortical underconnectivity theory,2,7 provides an integrating framework for the neurobiological bases of autism. The cortical underconnectivity theory of autism suggests that any language, social, or psychological function that is dependent on the integration of multiple brain regions is susceptible to disruption as the processing demand increases. In autism, the underfunctioning of integrative circuitry in the brain may cause widespread underconnectivity. In other words, people with autism may interpret information in a piecemeal fashion at the expense of the whole. Since cortical underconnectivity among brain regions, especially the frontal cortex and more posterior areas 3,6, has now been relatively well established, we can begin to further understand brain connectivity as a critical component of autism symptomatology. A logical next step in this direction is to examine the anatomical connections that may mediate the functional connections mentioned above. Diffusion Tensor Imaging (DTI) is a relatively novel neuroimaging technique that helps probe the diffusion of water in the brain to infer the integrity of white matter fibers. In this technique, water diffusion in the brain is examined in several directions using diffusion gradients. While functional connectivity provides information about the synchronization of brain activation across different brain areas during a task or during rest, DTI helps in understanding the underlying axonal organization which may facilitate the cross-talk among brain areas. This paper will describe these techniques as valuable tools in understanding the brain in autism and the challenges involved in this line of research.
Medicine, Issue 55, Functional magnetic resonance imaging (fMRI), MRI, Diffusion tensor imaging (DTI), Functional Connectivity, Neuroscience, Developmental disorders, Autism, Fractional Anisotropy
3178
Play Button
Investigating Social Cognition in Infants and Adults Using Dense Array Electroencephalography (dEEG)
Authors: Adekemi J. Akano, David W. Haley, Joanna Dudek.
Institutions: University Toronto Scarborough.
Dense array electroencephalography (dEEG), which provides a non-invasive window for measuring brain activity and a temporal resolution unsurpassed by any other current brain imaging technology1,2, is being used increasingly in the study of social cognitive functioning in infants and adults. While dEEG is enabling researchers to examine brain activity patterns with unprecedented levels of sensitivity, conventional EEG recording systems continue to face certain limitations, including 1) poor spatial resolution and source localization3,4,2) the physical discomfort for test subjects of enduring the individual application of numerous electrodes to the surface of the scalp, and 3) the complexity for researchers of learning to use multiple software packages to collect and process data. Here we present an overview of an established methodology that represents a significant improvement on conventional methodologies for studying EEG in infants and adults. Although several analytical software techniques can be used to establish indirect indices of source localization to improve the spatial resolution of dEEG, the HydroCel Geodesic Sensor Net (HCGSN) by Electrical Geodesics, Inc. (EGI), a dense sensory array that maintains equal distances among adjacent recording electrodes on all surfaces of the scalp, further enhances spatial resolution4,5,6 compared to standard dEEG systems. The sponge-based HCGSN can be applied rapidly and without scalp abrasion, making it ideal for use with adults7,8, children9,10,11, and infants12, in both research and clinical4,5,6,13,14,15 settings. This feature allows for considerable cost and time savings by decreasing the average net application time compared to other dEEG systems. Moreover, the HCGSN includes unified, seamless software applications for all phases of data, greatly simplifying the collection, processing, and analysis of dEEG data. The HCGSN features a low-profile electrode pedestal, which, when filled with electrolyte solution, creates a sealed microenvironment and an electrode-scalp interface. In all Geodesic dEEG systems, EEG sensors detect changes in voltage originating from the participant's scalp, along with a small amount of electrical noise originating from the room environment. Electrical signals from all sensors of the Geodesic sensor net are received simultaneously by the amplifier, where they are automatically processed, packaged, and sent to the data-acquisition computer (DAC). Once received by the DAC, scalp electrical activity can be isolated from artifacts for analysis using the filtering and artifact detection tools included in the EGI software. Typically, the HCGSN can be used continuously for only up to two hours because the electrolyte solution dries out over time, gradually decreasing the quality of the scalp-electrode interface. In the Parent-Infant Research Lab at the University of Toronto, we are using dEEG to study social cognitive processes including memory, emotion, goals, intentionality, anticipation, and executive functioning in both adult and infant participants.
Neuroscience, Issue 52, Developmental Affective Neuroscience, high density EEG, social cognition, infancy, and parenting
2759
Play Button
Coherence between Brain Cortical Function and Neurocognitive Performance during Changed Gravity Conditions
Authors: Vera Brümmer, Stefan Schneider, Tobias Vogt, Heiko Strüder, Heather Carnahan, Christopher D. Askew, Roland Csuhaj.
Institutions: German Sport University Cologne, University of Toronto, Queensland University of Technology, Gilching, Germany.
Previous studies of cognitive, mental and/or motor processes during short-, medium- and long-term weightlessness have only been descriptive in nature, and focused on psychological aspects. Until now, objective observation of neurophysiological parameters has not been carried out - undoubtedly because the technical and methodological means have not been available -, investigations into the neurophysiological effects of weightlessness are in their infancy (Schneider et al. 2008). While imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) would be hardly applicable in space, the non-invasive near-infrared spectroscopy (NIRS) technique represents a method of mapping hemodynamic processes in the brain in real time that is both relatively inexpensive and that can be employed even under extreme conditions. The combination with electroencephalography (EEG) opens up the possibility of following the electrocortical processes under changing gravity conditions with a finer temporal resolution as well as with deeper localization, for instance with electrotomography (LORETA). Previous studies showed an increase of beta frequency activity under normal gravity conditions and a decrease under weightlessness conditions during a parabolic flight (Schneider et al. 2008a+b). Tilt studies revealed different changes in brain function, which let suggest, that changes in parabolic flight might reflect emotional processes rather than hemodynamic changes. However, it is still unclear whether these are effects of changed gravity or hemodynamic changes within the brain. Combining EEG/LORETA and NIRS should for the first time make it possible to map the effect of weightlessness and reduced gravity on both hemodynamic and electrophysiological processes in the brain. Initially, this is to be done as part of a feasibility study during a parabolic flight. Afterwards, it is also planned to use both techniques during medium- and long-term space flight. It can be assumed that the long-term redistribution of the blood volume and the associated increase in the supply of oxygen to the brain will lead to changes in the central nervous system that are also responsible for anaemic processes, and which can in turn reduce performance (De Santo et al. 2005), which means that they could be crucial for the success and safety of a mission (Genik et al. 2005, Ellis 2000). Depending on these results, it will be necessary to develop and employ extensive countermeasures. Initial results for the MARS500 study suggest that, in addition to their significance in the context of the cardiovascular and locomotor systems, sport and physical activity can play a part in improving neurocognitive parameters. Before this can be fully established, however, it seems necessary to learn more about the influence of changing gravity conditions on neurophysiological processes and associated neurocognitive impairment.
Neuroscience, Issue 51, EEG, NIRS, electrotomography, parabolic flight, weightlessness, imaging, cognitive performance
2670
Play Button
Measurement Of Neuromagnetic Brain Function In Pre-school Children With Custom Sized MEG
Authors: Graciela Tesan, Blake W. Johnson, Melanie Reid, Rosalind Thornton, Stephen Crain.
Institutions: Macquarie University.
Magnetoencephalography is a technique that detects magnetic fields associated with cortical activity [1]. The electrophysiological activity of the brain generates electric fields - that can be recorded using electroencephalography (EEG)- and their concomitant magnetic fields - detected by MEG. MEG signals are detected by specialized sensors known as superconducting quantum interference devices (SQUIDs). Superconducting sensors require cooling with liquid helium at -270 °C. They are contained inside a vacumm-insulated helmet called a dewar, which is filled with liquid. SQUIDS are placed in fixed positions inside the helmet dewar in the helium coolant, and a subject's head is placed inside the helmet dewar for MEG measurements. The helmet dewar must be sized to satisfy opposing constraints. Clearly, it must be large enough to fit most or all of the heads in the population that will be studied. However, the helmet must also be small enough to keep most of the SQUID sensors within range of the tiny cerebral fields that they are to measure. Conventional whole-head MEG systems are designed to accommodate more than 90% of adult heads. However adult systems are not well suited for measuring brain function in pre-school chidren whose heads have a radius several cm smaller than adults. The KIT-Macquarie Brain Research Laboratory at Macquarie University uses a MEG system custom sized to fit the heads of pre-school children. This child system has 64 first-order axial gradiometers with a 50 mm baseline[2] and is contained inside a magnetically-shielded room (MSR) together with a conventional adult-sized MEG system [3,4]. There are three main advantages of the customized helmet dewar for studying children. First, the smaller radius of the sensor configuration brings the SQUID sensors into range of the neuromagnetic signals of children's heads. Second, the smaller helmet allows full insertion of a child's head into the dewar. Full insertion is prevented in adult dewar helmets because of the smaller crown to shoulder distance in children. These two factors are fundamental in recording brain activity using MEG because neuromagnetic signals attenuate rapidly with distance. Third, the customized child helmet aids in the symmetric positioning of the head and limits the freedom of movement of the child's head within the dewar. When used with a protocol that aligns the requirements of data collection with the motivational and behavioral capacities of children, these features significantly facilitate setup, positioning, and measurement of MEG signals.
Neuroscience, Issue 36, Magnetoencephalography, Pediatrics, Brain Mapping, Language, Brain Development, Cognitive Neuroscience, Language Acquisition, Linguistics
1693
Play Button
Functional Mapping with Simultaneous MEG and EEG
Authors: Hesheng Liu, Naoaki Tanaka, Steven Stufflebeam, Seppo Ahlfors, Matti Hämäläinen.
Institutions: MGH - Massachusetts General Hospital.
We use magnetoencephalography (MEG) and electroencephalography (EEG) to locate and determine the temporal evolution in brain areas involved in the processing of simple sensory stimuli. We will use somatosensory stimuli to locate the hand somatosensory areas, auditory stimuli to locate the auditory cortices, visual stimuli in four quadrants of the visual field to locate the early visual areas. These type of experiments are used for functional mapping in epileptic and brain tumor patients to locate eloquent cortices. In basic neuroscience similar experimental protocols are used to study the orchestration of cortical activity. The acquisition protocol includes quality assurance procedures, subject preparation for the combined MEG/EEG study, and acquisition of evoked-response data with somatosensory, auditory, and visual stimuli. We also demonstrate analysis of the data using the equivalent current dipole model and cortically-constrained minimum-norm estimates. Anatomical MRI data are employed in the analysis for visualization and for deriving boundaries of tissue boundaries for forward modeling and cortical location and orientation constraints for the minimum-norm estimates.
JoVE neuroscience, Issue 40, neuroscience, brain, MEG, EEG, functional imaging
1668
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.