JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
A modern analgesics pain pyramid.
J Clin Pharm Ther
PUBLISHED: 10-13-2013
In an effort to provide guidance for the use of analgesics for pain management - while at the same time acknowledging the professional, patient and regulatory-legal concerns about the use of strong opioids - the World Health Organization (WHO) in 1986 suggested a conservative stepwise approach. In addition to the use of non-pharmacologic measures, the WHO recommended that pharmacotherapy be initiated using a non-opioid analgesic first and then progress through weak opioids or analgesic combinations to strong opioids if, and only if, needed. This approach gave a rationale, and a justification if necessary, for the use of opioids. This stepwise approach became widely known as the WHO analgesic ladder.
Authors: Ethan M. Anderson, Richard Mills, Todd A. Nolan, Alan C. Jenkins, Golam Mustafa, Chris Lloyd, Robert M. Caudle, John K. Neubert.
Published: 06-10-2013
ABSTRACT
We present an operant system for the detection of pain in awake, conscious rodents. The Orofacial Pain Assessment Device (OPAD) assesses pain behaviors in a more clinically relevant way by not relying on reflex-based measures of nociception. Food fasted, hairless (or shaved) rodents are placed into a Plexiglas chamber which has two Peltier-based thermodes that can be programmed to any temperature between 7 °C and 60 °C. The rodent is trained to make contact with these in order to access a reward bottle. During a session, a number of behavioral pain outcomes are automatically recorded and saved. These measures include the number of reward bottle activations (licks) and facial contact stimuli (face contacts), but custom measures like the lick/face ratio (total number of licks per session/total number of contacts) can also be created. The stimulus temperature can be set to a single temperature or multiple temperatures within a session. The OPAD is a high-throughput, easy to use operant assay which will lead to better translation of pain research in the future as it includes cortical input instead of relying on spinal reflex-based nociceptive assays.
19 Related JoVE Articles!
Play Button
Breathing-controlled Electrical Stimulation (BreEStim) for Management of Neuropathic Pain and Spasticity
Authors: Sheng Li.
Institutions: University of Texas Health Science Center at Houston , TIRR Memorial Hermann Hospital, TIRR Memorial Hermann Hospital.
Electrical stimulation (EStim) refers to the application of electrical current to muscles or nerves in order to achieve functional and therapeutic goals. It has been extensively used in various clinical settings. Based upon recent discoveries related to the systemic effects of voluntary breathing and intrinsic physiological interactions among systems during voluntary breathing, a new EStim protocol, Breathing-controlled Electrical Stimulation (BreEStim), has been developed to augment the effects of electrical stimulation. In BreEStim, a single-pulse electrical stimulus is triggered and delivered to the target area when the airflow rate of an isolated voluntary inspiration reaches the threshold. BreEStim integrates intrinsic physiological interactions that are activated during voluntary breathing and has demonstrated excellent clinical efficacy. Two representative applications of BreEStim are reported with detailed protocols: management of post-stroke finger flexor spasticity and neuropathic pain in spinal cord injury.
Medicine, Issue 71, Neuroscience, Neurobiology, Anatomy, Physiology, Behavior, electrical stimulation, BreEStim, electrode, voluntary breathing, respiration, inspiration, pain, neuropathic pain, pain management, spasticity, stroke, spinal cord injury, brain, central nervous system, CNS, clinical, electromyogram, neuromuscular electrical stimulation
50077
Play Button
Assessment of Morphine-induced Hyperalgesia and Analgesic Tolerance in Mice Using Thermal and Mechanical Nociceptive Modalities
Authors: Khadija Elhabazi, Safia Ayachi, Brigitte Ilien, Frédéric Simonin.
Institutions: Université de Strasbourg.
Opioid-induced hyperalgesia and tolerance severely impact the clinical efficacy of opiates as pain relievers in animals and humans. The molecular mechanisms underlying both phenomena are not well understood and their elucidation should benefit from the study of animal models and from the design of appropriate experimental protocols. We describe here a methodological approach for inducing, recording and quantifying morphine-induced hyperalgesia as well as for evidencing analgesic tolerance, using the tail-immersion and tail pressure tests in wild-type mice. As shown in the video, the protocol is divided into five sequential steps. Handling and habituation phases allow a safe determination of the basal nociceptive response of the animals. Chronic morphine administration induces significant hyperalgesia as shown by an increase in both thermal and mechanical sensitivity, whereas the comparison of analgesia time-courses after acute or repeated morphine treatment clearly indicates the development of tolerance manifested by a decline in analgesic response amplitude. This protocol may be similarly adapted to genetically modified mice in order to evaluate the role of individual genes in the modulation of nociception and morphine analgesia. It also provides a model system to investigate the effectiveness of potential therapeutic agents to improve opiate analgesic efficacy.
Neuroscience, Issue 89, mice, nociception, tail immersion test, tail pressure test, morphine, analgesia, opioid-induced hyperalgesia, tolerance
51264
Play Button
3D-Neuronavigation In Vivo Through a Patient's Brain During a Spontaneous Migraine Headache
Authors: Alexandre F. DaSilva, Thiago D. Nascimento, Tiffany Love, Marcos F. DosSantos, Ilkka K. Martikainen, Chelsea M. Cummiford, Misty DeBoer, Sarah R. Lucas, MaryCatherine A. Bender, Robert A. Koeppe, Theodore Hall, Sean Petty, Eric Maslowski, Yolanda R. Smith, Jon-Kar Zubieta.
Institutions: University of Michigan School of Dentistry, University of Michigan School of Dentistry, University of Michigan, University of Michigan, University of Michigan, University of Michigan.
A growing body of research, generated primarily from MRI-based studies, shows that migraine appears to occur, and possibly endure, due to the alteration of specific neural processes in the central nervous system. However, information is lacking on the molecular impact of these changes, especially on the endogenous opioid system during migraine headaches, and neuronavigation through these changes has never been done. This study aimed to investigate, using a novel 3D immersive and interactive neuronavigation (3D-IIN) approach, the endogenous µ-opioid transmission in the brain during a migraine headache attack in vivo. This is arguably one of the most central neuromechanisms associated with pain regulation, affecting multiple elements of the pain experience and analgesia. A 36 year-old female, who has been suffering with migraine for 10 years, was scanned in the typical headache (ictal) and nonheadache (interictal) migraine phases using Positron Emission Tomography (PET) with the selective radiotracer [11C]carfentanil, which allowed us to measure µ-opioid receptor availability in the brain (non-displaceable binding potential - µOR BPND). The short-life radiotracer was produced by a cyclotron and chemical synthesis apparatus on campus located in close proximity to the imaging facility. Both PET scans, interictal and ictal, were scheduled during separate mid-late follicular phases of the patient's menstrual cycle. During the ictal PET session her spontaneous headache attack reached severe intensity levels; progressing to nausea and vomiting at the end of the scan session. There were reductions in µOR BPND in the pain-modulatory regions of the endogenous µ-opioid system during the ictal phase, including the cingulate cortex, nucleus accumbens (NAcc), thalamus (Thal), and periaqueductal gray matter (PAG); indicating that µORs were already occupied by endogenous opioids released in response to the ongoing pain. To our knowledge, this is the first time that changes in µOR BPND during a migraine headache attack have been neuronavigated using a novel 3D approach. This method allows for interactive research and educational exploration of a migraine attack in an actual patient's neuroimaging dataset.
Medicine, Issue 88, μ-opioid, opiate, migraine, headache, pain, Positron Emission Tomography, molecular neuroimaging, 3D, neuronavigation
50682
Play Button
Meal Duration as a Measure of Orofacial Nociceptive Responses in Rodents
Authors: Phillip R. Kramer, Larry L. Bellinger.
Institutions: Texas A&M University Baylor College of Dentistry.
A lengthening in meal duration can be used to measure an increase in orofacial mechanical hyperalgesia having similarities to the guarding behavior of humans with orofacial pain. To measure meal duration unrestrained rats are continuously kept in sound attenuated, computerized feeding modules for days to weeks to record feeding behavior. These sound-attenuated chambers are equipped with chow pellet dispensers. The dispenser has a pellet trough with a photobeam placed at the bottom of the trough and when a rodent removes a pellet from the feeder trough this beam is no longer blocked, signaling the computer to drop another pellet. The computer records the date and time when the pellets were taken from the trough and from this data the experimenter can calculate the meal parameters. When calculating meal parameters a meal was defined based on previous work and was set at 10 min (in other words when the animal does not eat for 10 min that would be the end of the animal's meal) also the minimum meal size was set at 3 pellets. The meal duration, meal number, food intake, meal size and inter-meal interval can then be calculated by the software for any time period that the operator desires. Of the feeding parameters that can be calculated meal duration has been shown to be a continuous noninvasive biological marker of orofacial nociception in male rats and mice and female rats. Meal duration measurements are quantitative, require no training or animal manipulation, require cortical participation, and do not compete with other experimentally induced behaviors. These factors distinguish this assay from other operant or reflex methods for recording orofacial nociception.
Behavior, Issue 83, Pain, rat, nociception, myofacial, orofacial, tooth, temporomandibular joint (TMJ)
50745
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Drug-induced Sensitization of Adenylyl Cyclase: Assay Streamlining and Miniaturization for Small Molecule and siRNA Screening Applications
Authors: Jason M. Conley, Tarsis F. Brust, Ruqiang Xu, Kevin D. Burris, Val J. Watts.
Institutions: Purdue University, Eli Lilly and Company.
Sensitization of adenylyl cyclase (AC) signaling has been implicated in a variety of neuropsychiatric and neurologic disorders including substance abuse and Parkinson's disease. Acute activation of Gαi/o-linked receptors inhibits AC activity, whereas persistent activation of these receptors results in heterologous sensitization of AC and increased levels of intracellular cAMP. Previous studies have demonstrated that this enhancement of AC responsiveness is observed both in vitro and in vivo following the chronic activation of several types of Gαi/o-linked receptors including D2 dopamine and μ opioid receptors. Although heterologous sensitization of AC was first reported four decades ago, the mechanism(s) that underlie this phenomenon remain largely unknown. The lack of mechanistic data presumably reflects the complexity involved with this adaptive response, suggesting that nonbiased approaches could aid in identifying the molecular pathways involved in heterologous sensitization of AC. Previous studies have implicated kinase and Gbγ signaling as overlapping components that regulate the heterologous sensitization of AC. To identify unique and additional overlapping targets associated with sensitization of AC, the development and validation of a scalable cAMP sensitization assay is required for greater throughput. Previous approaches to study sensitization are generally cumbersome involving continuous cell culture maintenance as well as a complex methodology for measuring cAMP accumulation that involves multiple wash steps. Thus, the development of a robust cell-based assay that can be used for high throughput screening (HTS) in a 384 well format would facilitate future studies. Using two D2 dopamine receptor cellular models (i.e. CHO-D2L and HEK-AC6/D2L), we have converted our 48-well sensitization assay (>20 steps 4-5 days) to a five-step, single day assay in 384-well format. This new format is amenable to small molecule screening, and we demonstrate that this assay design can also be readily used for reverse transfection of siRNA in anticipation of targeted siRNA library screening.
Bioengineering, Issue 83, adenylyl cyclase, cAMP, heterologous sensitization, superactivation, D2 dopamine, μ opioid, siRNA
51218
Play Button
The Multiple Sclerosis Performance Test (MSPT): An iPad-Based Disability Assessment Tool
Authors: Richard A. Rudick, Deborah Miller, Francois Bethoux, Stephen M. Rao, Jar-Chi Lee, Darlene Stough, Christine Reece, David Schindler, Bernadett Mamone, Jay Alberts.
Institutions: Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation, Cleveland Clinic Foundation.
Precise measurement of neurological and neuropsychological impairment and disability in multiple sclerosis is challenging. We report a new test, the Multiple Sclerosis Performance Test (MSPT), which represents a new approach to quantifying MS related disability. The MSPT takes advantage of advances in computer technology, information technology, biomechanics, and clinical measurement science. The resulting MSPT represents a computer-based platform for precise, valid measurement of MS severity. Based on, but extending the Multiple Sclerosis Functional Composite (MSFC), the MSPT provides precise, quantitative data on walking speed, balance, manual dexterity, visual function, and cognitive processing speed. The MSPT was tested by 51 MS patients and 49 healthy controls (HC). MSPT scores were highly reproducible, correlated strongly with technician-administered test scores, discriminated MS from HC and severe from mild MS, and correlated with patient reported outcomes. Measures of reliability, sensitivity, and clinical meaning for MSPT scores were favorable compared with technician-based testing. The MSPT is a potentially transformative approach for collecting MS disability outcome data for patient care and research. Because the testing is computer-based, test performance can be analyzed in traditional or novel ways and data can be directly entered into research or clinical databases. The MSPT could be widely disseminated to clinicians in practice settings who are not connected to clinical trial performance sites or who are practicing in rural settings, drastically improving access to clinical trials for clinicians and patients. The MSPT could be adapted to out of clinic settings, like the patient’s home, thereby providing more meaningful real world data. The MSPT represents a new paradigm for neuroperformance testing. This method could have the same transformative effect on clinical care and research in MS as standardized computer-adapted testing has had in the education field, with clear potential to accelerate progress in clinical care and research.
Medicine, Issue 88, Multiple Sclerosis, Multiple Sclerosis Functional Composite, computer-based testing, 25-foot walk test, 9-hole peg test, Symbol Digit Modalities Test, Low Contrast Visual Acuity, Clinical Outcome Measure
51318
Play Button
Urinary Bladder Distention Evoked Visceromotor Responses as a Model for Bladder Pain in Mice
Authors: Katelyn E. Sadler, Jarred M. Stratton, Benedict J. Kolber.
Institutions: Duquesne University.
Approximately 3-8 million people in the United States suffer from interstitial cystitis/bladder pain syndrome (IC/BPS), a debilitating condition characterized by increased urgency and frequency of urination, as well as nocturia and general pelvic pain, especially upon bladder filling or voiding. Despite years of research, the cause of IC/BPS remains elusive and treatment strategies are unable to provide complete relief to patients. In order to study nervous system contributions to the condition, many animal models have been developed to mimic the pain and symptoms associated with IC/BPS. One such murine model is urinary bladder distension (UBD). In this model, compressed air of a specific pressure is delivered to the bladder of a lightly anesthetized animal over a set period of time. Throughout the procedure, wires in the superior oblique abdominal muscles record electrical activity from the muscle. This activity is known as the visceromotor response (VMR) and is a reliable and reproducible measure of nociception. Here, we describe the steps necessary to perform this technique in mice including surgical manipulations, physiological recording, and data analysis. With the use of this model, the coordination between primary sensory neurons, spinal cord secondary afferents, and higher central nervous system areas involved in bladder pain can be unraveled. This basic science knowledge can then be clinically translated to treat patients suffering from IC/BPS.
Medicine, Issue 86, Bladder pain, electromyogram (EMG), interstitial cystitis/bladder pain syndrome (IC/BPS), urinary bladder distension (UBD), visceromotor response (VMR)
51413
Play Button
Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy
Authors: Gawain Thomas, Nancy A. Burnham, Terri Anne Camesano, Qi Wen.
Institutions: Worcester Polytechnic Institute, Worcester Polytechnic Institute.
Mechanical properties of cells and extracellular matrix (ECM) play important roles in many biological processes including stem cell differentiation, tumor formation, and wound healing. Changes in stiffness of cells and ECM are often signs of changes in cell physiology or diseases in tissues. Hence, cell stiffness is an index to evaluate the status of cell cultures. Among the multitude of methods applied to measure the stiffness of cells and tissues, micro-indentation using an Atomic Force Microscope (AFM) provides a way to reliably measure the stiffness of living cells. This method has been widely applied to characterize the micro-scale stiffness for a variety of materials ranging from metal surfaces to soft biological tissues and cells. The basic principle of this method is to indent a cell with an AFM tip of selected geometry and measure the applied force from the bending of the AFM cantilever. Fitting the force-indentation curve to the Hertz model for the corresponding tip geometry can give quantitative measurements of material stiffness. This paper demonstrates the procedure to characterize the stiffness of living cells using AFM. Key steps including the process of AFM calibration, force-curve acquisition, and data analysis using a MATLAB routine are demonstrated. Limitations of this method are also discussed.
Biophysics, Issue 76, Bioengineering, Cellular Biology, Molecular Biology, Physics, Chemical Engineering, Biomechanics, bioengineering (general), AFM, cell stiffness, microindentation, force spectroscopy, atomic force microscopy, microscopy
50497
Play Button
The Sciatic Nerve Cuffing Model of Neuropathic Pain in Mice
Authors: Ipek Yalcin, Salim Megat, Florent Barthas, Elisabeth Waltisperger, Mélanie Kremer, Eric Salvat, Michel Barrot.
Institutions: Centre National de la Recherche Scientifique, Université de Strasbourg, Hôpitaux Universitaires de Strasbourg.
Neuropathic pain arises as a consequence of a lesion or a disease affecting the somatosensory system. This syndrome results from maladaptive changes in injured sensory neurons and along the entire nociceptive pathway within the central nervous system. It is usually chronic and challenging to treat. In order to study neuropathic pain and its treatments, different models have been developed in rodents. These models derive from known etiologies, thus reproducing peripheral nerve injuries, central injuries, and metabolic-, infectious- or chemotherapy-related neuropathies. Murine models of peripheral nerve injury often target the sciatic nerve which is easy to access and allows nociceptive tests on the hind paw. These models rely on a compression and/or a section. Here, the detailed surgery procedure for the "cuff model" of neuropathic pain in mice is described. In this model, a cuff of PE-20 polyethylene tubing of standardized length (2 mm) is unilaterally implanted around the main branch of the sciatic nerve. It induces a long-lasting mechanical allodynia, i.e., a nociceptive response to a normally non-nociceptive stimulus that can be evaluated by using von Frey filaments. Besides the detailed surgery and testing procedures, the interest of this model for the study of neuropathic pain mechanism, for the study of neuropathic pain sensory and anxiodepressive aspects, and for the study of neuropathic pain treatments are also discussed.
Medicine, Issue 89, pain, neuropathic pain, allodynia, von Frey, mouse, model, sciatic, cuff
51608
Play Button
Technique and Considerations in the Use of 4x1 Ring High-definition Transcranial Direct Current Stimulation (HD-tDCS)
Authors: Mauricio F. Villamar, Magdalena Sarah Volz, Marom Bikson, Abhishek Datta, Alexandre F. DaSilva, Felipe Fregni.
Institutions: Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Pontifical Catholic University of Ecuador, Charité University Medicine Berlin, The City College of The City University of New York, University of Michigan.
High-definition transcranial direct current stimulation (HD-tDCS) has recently been developed as a noninvasive brain stimulation approach that increases the accuracy of current delivery to the brain by using arrays of smaller "high-definition" electrodes, instead of the larger pad-electrodes of conventional tDCS. Targeting is achieved by energizing electrodes placed in predetermined configurations. One of these is the 4x1-ring configuration. In this approach, a center ring electrode (anode or cathode) overlying the target cortical region is surrounded by four return electrodes, which help circumscribe the area of stimulation. Delivery of 4x1-ring HD-tDCS is capable of inducing significant neurophysiological and clinical effects in both healthy subjects and patients. Furthermore, its tolerability is supported by studies using intensities as high as 2.0 milliamperes for up to twenty minutes. Even though 4x1 HD-tDCS is simple to perform, correct electrode positioning is important in order to accurately stimulate target cortical regions and exert its neuromodulatory effects. The use of electrodes and hardware that have specifically been tested for HD-tDCS is critical for safety and tolerability. Given that most published studies on 4x1 HD-tDCS have targeted the primary motor cortex (M1), particularly for pain-related outcomes, the purpose of this article is to systematically describe its use for M1 stimulation, as well as the considerations to be taken for safe and effective stimulation. However, the methods outlined here can be adapted for other HD-tDCS configurations and cortical targets.
Medicine, Issue 77, Neurobiology, Neuroscience, Physiology, Anatomy, Biomedical Engineering, Biophysics, Neurophysiology, Nervous System Diseases, Diagnosis, Therapeutics, Anesthesia and Analgesia, Investigative Techniques, Equipment and Supplies, Mental Disorders, Transcranial direct current stimulation, tDCS, High-definition transcranial direct current stimulation, HD-tDCS, Electrical brain stimulation, Transcranial electrical stimulation (tES), Noninvasive Brain Stimulation, Neuromodulation, non-invasive, brain, stimulation, clinical techniques
50309
Play Button
Rapid Determination of the Thermal Nociceptive Threshold in Diabetic Rats
Authors: Saeed Alshahrani, Filipe Fernandez-Conti, Amanda Araujo, Mauricio DiFulvio.
Institutions: Wright State University, Universidade São Judas Tadeu.
Painful diabetic neuropathy (PDN) is characterized by hyperalgesia i.e., increased sensitivity to noxious stimulus, and allodynia i.e., hypersensitivity to normally innocuous stimuli1. Hyperalgesia and allodynia have been studied in many different rodent models of diabetes mellitus2. However, as stated by Bölcskei et al, determination of "pain" in animal models is challenging due to its subjective nature3. Moreover, the traditional methods used to determine behavioral responses to noxious thermal stimuli usually lack reproducibility and pharmacological sensitivity3. For instance, by using the hot-plate method of Ankier4, flinch, withdrawal and/or licking of either hind- and/or fore-paws is quantified as reflex latencies at constant high thermal stimuli (52-55 °C). However, animals that are hyperalgesic to thermal stimulus do not reproducibly show differences in reflex latencies using those supra-threshold temperatures3,5. As the recently described method of Bölcskei et al.6, the procedures described here allows for the rapid, sensitive and reproducible determination of thermal nociceptive thresholds (TNTs) in mice and rats. The method uses slowly increasing thermal stimulus applied mostly to the skin of mouse/rat plantar surface. The method is particularly sensitive to study anti-nociception during hyperalgesic states such as PDN. The procedures described bellow are based on the ones published in detail by Almási et al 5 and Bölcskei et al 3. The procedures described here have been approved the Laboratory Animal Care and Use Committee (LACUC), Wright State University.
Neuroscience, Issue 63, Diabetes, painful diabetic neuropathy, nociception, thermal nociceptive threshold, nocifensive behavior
3785
Play Button
An Experimental Paradigm for the Prediction of Post-Operative Pain (PPOP)
Authors: Ruth Landau, John C. Kraft, Lisa Y. Flint, Brendan Carvalho, Philippe Richebé, Monica Cardoso, Patricia Lavand'homme, Michal Granot, David Yarnitsky, Alex Cahana.
Institutions: University of Washington School of Medicine.
Many women undergo cesarean delivery without problems, however some experience significant pain after cesarean section. Pain is associated with negative short-term and long-term effects on the mother. Prior to women undergoing surgery, can we predict who is at risk for developing significant postoperative pain and potentially prevent or minimize its negative consequences? These are the fundamental questions that a team from the University of Washington, Stanford University, the Catholic University in Brussels, Belgium, Santa Joana Women's Hospital in São Paulo, Brazil, and Rambam Medical Center in Israel is currently evaluating in an international research collaboration. The ultimate goal of this project is to provide optimal pain relief during and after cesarean section by offering individualized anesthetic care to women who appear to be more 'susceptible' to pain after surgery. A significant number of women experience moderate or severe acute post-partum pain after vaginal and cesarean deliveries. 1 Furthermore, 10-15% of women suffer chronic persistent pain after cesarean section. 2 With constant increase in cesarean rates in the US 3 and the already high rate in Brazil, this is bound to create a significant public health problem. When questioning women's fears and expectations from cesarean section, pain during and after it is their greatest concern. 4 Individual variability in severity of pain after vaginal or operative delivery is influenced by multiple factors including sensitivity to pain, psychological factors, age, and genetics. The unique birth experience leads to unpredictable requirements for analgesics, from 'none at all' to 'very high' doses of pain medication. Pain after cesarean section is an excellent model to study post-operative pain because it is performed on otherwise young and healthy women. Therefore, it is recommended to attenuate the pain during the acute phase because this may lead to chronic pain disorders. The impact of developing persistent pain is immense, since it may impair not only the ability of women to care for their child in the immediate postpartum period, but also their own well being for a long period of time. In a series of projects, an international research network is currently investigating the effect of pregnancy on pain modulation and ways to predict who will suffer acute severe pain and potentially chronic pain, by using simple pain tests and questionnaires in combination with genetic analysis. A relatively recent approach to investigate pain modulation is via the psychophysical measure of Diffuse Noxious Inhibitory Control (DNIC). This pain-modulating process is the neurophysiological basis for the well-known phenomenon of 'pain inhibits pain' from remote areas of the body. The DNIC paradigm has evolved recently into a clinical tool and simple test and has been shown to be a predictor of post-operative pain.5 Since pregnancy is associated with decreased pain sensitivity and/or enhanced processes of pain modulation, using tests that investigate pain modulation should provide a better understanding of the pathways involved with pregnancy-induced analgesia and may help predict pain outcomes during labor and delivery. For those women delivering by cesarean section, a DNIC test performed prior to surgery along with psychosocial questionnaires and genetic tests should enable one to identify women prone to suffer severe post-cesarean pain and persistent pain. These clinical tests should allow anesthesiologists to offer not only personalized medicine to women with the promise to improve well-being and satisfaction, but also a reduction in the overall cost of perioperative and long term care due to pain and suffering. On a larger scale, these tests that explore pain modulation may become bedside screening tests to predict the development of pain disorders following surgery.
JoVE Medicine, Issue 35, diffuse noxious inhibitory control, DNIC, temporal summation, TS, psychophysical testing, endogenous analgesia, pain modulation, pregnancy-induced analgesia, cesarean section, post-operative pain, prediction
1671
Play Button
Collecting And Measuring Wound Exudate Biochemical Mediators In Surgical Wounds
Authors: Brendan Carvalho, David J Clark, David Yeomans, Martin S Angst.
Institutions: Stanford University School of Medicine .
We describe a methodology by which we are able to collect and measure biochemical inflammatory and nociceptive mediators at the surgical wound site. Collecting site-specific biochemical markers is important to understand the relationship between levels in serum and surgical wound, determine any associations between mediator release, pain, analgesic use and other outcomes of interest, and evaluate the effect of systemic and peripheral drug administration on surgical wound biochemistry. This methodology has been applied to healthy women undergoing elective cesarean delivery with spinal anesthesia. We have measured wound exudate and serum mediators at the same time intervals as patient's pain scores and analgesics consumption for up to 48 hours post-cesarean delivery. Using this methodology we have been able to detect various biochemical mediators including nerve growth factor (NGF), prostaglandin E2 (PG-E2) substance P, IL-1β, IL-2, IL-4, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, TNFα, INFγ, G-CSF, GM-CSF, MCP-1 and MIP-1β. Studies applying this human surgical wound bioassay have found no correlations between wound and serum cytokine concentrations or their time-release profile (J Pain. 2008; 9(7):650-7).1 We also documented the utility of the technique to identify drug-mediated changes in wound cytokine content (Anesth Analg 2010; 111:1452-9).2
Medicine, Issue 68, Biochemistry, Anatomy, Physiology, Cytokines, Cesarean Section, Wound Healing, Wounds and Injuries, Surgical Procedures, Operative, Surgical wound, Exudate, cytokines, Substance P, Interleukin 10, Interleukin 6, Nerve growth factor, Prostaglandin E2, Cesarean, Analgesia
50133
Play Button
Improving IV Insulin Administration in a Community Hospital
Authors: Michael C. Magee.
Institutions: Wyoming Medical Center.
Diabetes mellitus is a major independent risk factor for increased morbidity and mortality in the hospitalized patient, and elevated blood glucose concentrations, even in non-diabetic patients, predicts poor outcomes.1-4 The 2008 consensus statement by the American Association of Clinical Endocrinologists (AACE) and the American Diabetes Association (ADA) states that "hyperglycemia in hospitalized patients, irrespective of its cause, is unequivocally associated with adverse outcomes."5 It is important to recognize that hyperglycemia occurs in patients with known or undiagnosed diabetes as well as during acute illness in those with previously normal glucose tolerance. The Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation (NICE-SUGAR) study involved over six thousand adult intensive care unit (ICU) patients who were randomized to intensive glucose control or conventional glucose control.6 Surprisingly, this trial found that intensive glucose control increased the risk of mortality by 14% (odds ratio, 1.14; p=0.02). In addition, there was an increased prevalence of severe hypoglycemia in the intensive control group compared with the conventional control group (6.8% vs. 0.5%, respectively; p<0.001). From this pivotal trial and two others,7,8 Wyoming Medical Center (WMC) realized the importance of controlling hyperglycemia in the hospitalized patient while avoiding the negative impact of resultant hypoglycemia. Despite multiple revisions of an IV insulin paper protocol, analysis of data from usage of the paper protocol at WMC shows that in terms of achieving normoglycemia while minimizing hypoglycemia, results were suboptimal. Therefore, through a systematical implementation plan, monitoring of patient blood glucose levels was switched from using a paper IV insulin protocol to a computerized glucose management system. By comparing blood glucose levels using the paper protocol to that of the computerized system, it was determined, that overall, the computerized glucose management system resulted in more rapid and tighter glucose control than the traditional paper protocol. Specifically, a substantial increase in the time spent within the target blood glucose concentration range, as well as a decrease in the prevalence of severe hypoglycemia (BG < 40 mg/dL), clinical hypoglycemia (BG < 70 mg/dL), and hyperglycemia (BG > 180 mg/dL), was witnessed in the first five months after implementation of the computerized glucose management system. The computerized system achieved target concentrations in greater than 75% of all readings while minimizing the risk of hypoglycemia. The prevalence of hypoglycemia (BG < 70 mg/dL) with the use of the computer glucose management system was well under 1%.
Medicine, Issue 64, Physiology, Computerized glucose management, Endotool, hypoglycemia, hyperglycemia, diabetes, IV insulin, paper protocol, glucose control
3705
Play Button
Principles of Rodent Surgery for the New Surgeon
Authors: Kathleen R. Pritchett-Corning, Guy B. Mulder, Yiying Luo, William J. White.
Institutions: Research Models and Services.
For both scientific and animal welfare reasons, training in basic surgical concepts and techniques should be undertaken before ever seeking to perform surgery on a rodent. Students, post-doctoral scholars, and others interested in performing surgery on rodents as part of a research protocol may not have had formal surgical training as part of their required coursework. Surgery itself is a technical skill, and one that will improve with practice. The principles of aseptic technique, however, often remain unexplained or untaught. For most new surgeons, this vital information is presented in piecemeal fashion or learned on the job, neither of which is ideal. It may also make learning how to perform a particular surgery difficult, as the new surgeon is learning both a surgical technique and the principles of asepsis at the same time. This article summarizes and makes recommendations for basic surgical skills and techniques necessary for successful rodent surgery. This article is designed to supplement hands-on training by the user's institution.
Basic Protocols, Issue 47, Surgery, aseptic technique, rodent, training, rat, mouse,
2586
Play Button
Behavioural Pharmacology in Classical Conditioning of the Proboscis Extension Response in Honeybees (Apis mellifera)
Authors: Johannes Felsenberg, Katrin B. Gehring, Victoria Antemann, Dorothea Eisenhardt.
Institutions: Freie Universität Berlin.
Honeybees (Apis mellifera) are well known for their communication and orientation skills and for their impressive learning capability1,2. Because the survival of a honeybee colony depends on the exploitation of food sources, forager bees learn and memorize variable flower sites as well as their profitability. Forager bees can be easily trained in natural settings where they forage at a feeding site and learn the related signals such as odor or color. Appetitive associative learning can also be studied under controlled conditions in the laboratory by conditioning the proboscis extension response (PER) of individually harnessed honeybees3,4. This learning paradigm enables the study of the neuronal and molecular mechanisms that underlie learning and memory formation in a simple and highly reliable way5-12. A behavioral pharmacology approach is used to study molecular mechanisms. Drugs are injected systemically to interfere with the function of specific molecules during or after learning and memory formation13-16. Here we demonstrate how to train harnessed honeybees in PER conditioning and how to apply drugs systemically by injection into the bee flight muscle.
Neuroscience, Issue 47, Classical conditioning, behavioural pharmacology, insect, invertebrate, honeybee, learning, memory
2282
Play Button
Determining heat and mechanical pain threshold in inflamed skin of human subjects
Authors: Martin S Angst, Martha Tingle, Nicholas G Phillips, Brendan Carvalho.
Institutions: Stanford University School of Medicine.
In a previous article in the Journal of Visualized Experiments we have demonstrated skin microdialysis techniques for the collection of tissue-specific nociceptive and inflammatory biochemicals in humans. In this article we will show pain-testing paradigms that are often used in tandem with microdialysis procedures. Combining pain tests with microdialysis provides the critical link between behavioral and biochemical data that allows identifying key biochemicals responsible for generating and propagating pain. Two models of evoking pain in inflamed skin of human study participants are shown. The first model evokes pain with aid of heat stimuli. Heat evoked pain as described here is predominantly mediated by small, non-myelinated peripheral nociceptive nerve fibers (C-fibers). The second model evokes pain via punctuated pressure stimuli. Punctuated pressure evoked pain is predominantly mediated by small, myelinated peripheral nociceptive nerve fibers (A-delta fibers). The two models are mechanistically distinct and independently examine nociceptive processing by the two major peripheral nerve fiber populations involved in pain signaling. Heat pain is evoked with aid of the TSA II, a commercially available thermo-sensory analyzer (Medoc Advanced Medical Systems, Durham, NC). Stimulus configuration and delivery is handled with aid of specific software. Thermodes vary in size and shape but in principle consist of a metal plate that can be heated or cooled at various rates and for different periods of time. Algorithms assessing heat-evoked pain are manifold. In the experiments shown here, study participants are asked to indicate at what point they start experiencing pain while the thermode in contact with skin is heated at a predetermined rate starting at a temperature that does not evoke pain. The thermode temperature at which a subject starts experiencing pain constitutes the heat pain threshold. Mechanical pain is evoked with punctuated probes. Such probes are commercially available from several manufacturers (von Frey hairs). However, the accuracy of von Frey hairs has been criticized and many investigators use custom made punctuated pressure probes. In the experiments shown here eight custom-made punctuated probes of different weights are applied in consecutive order, a procedure called up-down algorithm, to identify perceptional deflection points, i.e., a change from feeling no pain to feeling pain or vice versa. The average weight causing a perceptional deflection constitutes the mechanical pain threshold.
Medicine, Issue 23, Experimental pain, experimental inflammation, human, skin, heat stimuli, mechanical stimuli, pain threshold, psychophysics, non-myelinated nociceptive nerve fiber, small myelinated nociceptive nerve fiber
1092
Play Button
Murine Skin Transplantation
Authors: Kym R. Garrod, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI).
As one of the most stringent and least technically challenging models, skin transplantation is a standard method to assay host T cell responses to MHC-disparate donor antigens. The aim of this video-article is to provide the viewer with a step-by-step visual demonstration of skin transplantation using the mouse model. The protocol is divided into 5 main components: 1) harvesting donor skin; 2) preparing recipient for transplant; 3) skin transplant; 4) bandage removal and monitoring graft rejection; 5) helpful hints. Once proficient, the procedure itself should take <10 min to perform.
Immunology, Issue 11, allograft rejection, skin transplant, mouse
634
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.