JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Different Approaches for Extracting Information from the Co-Occurrence Matrix.
PUBLISHED: 01-01-2013
In 1979 Haralick famously introduced a method for analyzing the texture of an image: a set of statistics extracted from the co-occurrence matrix. In this paper we investigate novel sets of texture descriptors extracted from the co-occurrence matrix; in addition, we compare and combine different strategies for extending these descriptors. The following approaches are compared: the standard approach proposed by Haralick, two methods that consider the co-occurrence matrix as a three-dimensional shape, a gray-level run-length set of features and the direct use of the co-occurrence matrix projected onto a lower dimensional subspace by principal component analysis. Texture descriptors are extracted from the co-occurrence matrix evaluated at multiple scales. Moreover, the descriptors are extracted not only from the entire co-occurrence matrix but also from subwindows. The resulting texture descriptors are used to train a support vector machine and ensembles. Results show that our novel extraction methods improve the performance of standard methods. We validate our approach across six medical datasets representing different image classification problems using the Wilcoxon signed rank test. The source code used for the approaches tested in this paper will be available at:
Authors: Yanping Chen, Adena Why, Gustavo Batista, Agenor Mafra-Neto, Eamonn Keogh.
Published: 10-15-2014
An inexpensive, noninvasive system that could accurately classify flying insects would have important implications for entomological research, and allow for the development of many useful applications in vector and pest control for both medical and agricultural entomology. Given this, the last sixty years have seen many research efforts devoted to this task. To date, however, none of this research has had a lasting impact. In this work, we show that pseudo-acoustic optical sensors can produce superior data; that additional features, both intrinsic and extrinsic to the insect’s flight behavior, can be exploited to improve insect classification; that a Bayesian classification approach allows to efficiently learn classification models that are very robust to over-fitting, and a general classification framework allows to easily incorporate arbitrary number of features. We demonstrate the findings with large-scale experiments that dwarf all previous works combined, as measured by the number of insects and the number of species considered.
21 Related JoVE Articles!
Play Button
Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules
Authors: James Smadbeck, Meghan B. Peterson, George A. Khoury, Martin S. Taylor, Christodoulos A. Floudas.
Institutions: Princeton University.
The aim of de novo protein design is to find the amino acid sequences that will fold into a desired 3-dimensional structure with improvements in specific properties, such as binding affinity, agonist or antagonist behavior, or stability, relative to the native sequence. Protein design lies at the center of current advances drug design and discovery. Not only does protein design provide predictions for potentially useful drug targets, but it also enhances our understanding of the protein folding process and protein-protein interactions. Experimental methods such as directed evolution have shown success in protein design. However, such methods are restricted by the limited sequence space that can be searched tractably. In contrast, computational design strategies allow for the screening of a much larger set of sequences covering a wide variety of properties and functionality. We have developed a range of computational de novo protein design methods capable of tackling several important areas of protein design. These include the design of monomeric proteins for increased stability and complexes for increased binding affinity. To disseminate these methods for broader use we present Protein WISDOM (, a tool that provides automated methods for a variety of protein design problems. Structural templates are submitted to initialize the design process. The first stage of design is an optimization sequence selection stage that aims at improving stability through minimization of potential energy in the sequence space. Selected sequences are then run through a fold specificity stage and a binding affinity stage. A rank-ordered list of the sequences for each step of the process, along with relevant designed structures, provides the user with a comprehensive quantitative assessment of the design. Here we provide the details of each design method, as well as several notable experimental successes attained through the use of the methods.
Genetics, Issue 77, Molecular Biology, Bioengineering, Biochemistry, Biomedical Engineering, Chemical Engineering, Computational Biology, Genomics, Proteomics, Protein, Protein Binding, Computational Biology, Drug Design, optimization (mathematics), Amino Acids, Peptides, and Proteins, De novo protein and peptide design, Drug design, In silico sequence selection, Optimization, Fold specificity, Binding affinity, sequencing
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer
Authors: Cuong H. Le, Jun Han, Christoph H. Borchers.
Institutions: University of Victoria, University of Victoria.
Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided.
Basic Protocol, Issue 81, eye, molecular imaging, chemistry technique, analytical, mass spectrometry, matrix assisted laser desorption/ionization (MALDI), tandem mass spectrometry, lipid, tissue imaging, bovine lens, dithranol, matrix, FTICR (Fourier Transform Ion Cyclotron Resonance)
Play Button
A Simple Stimulatory Device for Evoking Point-like Tactile Stimuli: A Searchlight for LFP to Spike Transitions
Authors: Antonio G. Zippo, Sara Nencini, Gian Carlo Caramenti, Maurizio Valente, Riccardo Storchi, Gabriele E.M. Biella.
Institutions: National Research Council, National Research Council, University of Manchester.
Current neurophysiological research has the aim to develop methodologies to investigate the signal route from neuron to neuron, namely in the transitions from spikes to Local Field Potentials (LFPs) and from LFPs to spikes. LFPs have a complex dependence on spike activity and their relation is still poorly understood1. The elucidation of these signal relations would be helpful both for clinical diagnostics (e.g. stimulation paradigms for Deep Brain Stimulation) and for a deeper comprehension of neural coding strategies in normal and pathological conditions (e.g. epilepsy, Parkinson disease, chronic pain). To this aim, one has to solve technical issues related to stimulation devices, stimulation paradigms and computational analyses. Therefore, a custom-made stimulation device was developed in order to deliver stimuli well regulated in space and time that does not incur in mechanical resonance. Subsequently, as an exemplification, a set of reliable LFP-spike relationships was extracted. The performance of the device was investigated by extracellular recordings, jointly spikes and LFP responses to the applied stimuli, from the rat Primary Somatosensory cortex. Then, by means of a multi-objective optimization strategy, a predictive model for spike occurrence based on LFPs was estimated. The application of this paradigm shows that the device is adequately suited to deliver high frequency tactile stimulation, outperforming common piezoelectric actuators. As a proof of the efficacy of the device, the following results were presented: 1) the timing and reliability of LFP responses well match the spike responses, 2) LFPs are sensitive to the stimulation history and capture not only the average response but also the trial-to-trial fluctuations in the spike activity and, finally, 3) by using the LFP signal it is possible to estimate a range of predictive models that capture different aspects of the spike activity.
Neuroscience, Issue 85, LFP, spike, tactile stimulus, Multiobjective function, Neuron, somatosensory cortex
Play Button
Reconstruction of 3-Dimensional Histology Volume and its Application to Study Mouse Mammary Glands
Authors: Rushin Shojaii, Stephanie Bacopulos, Wenyi Yang, Tigran Karavardanyan, Demetri Spyropoulos, Afshin Raouf, Anne Martel, Arun Seth.
Institutions: University of Toronto, Sunnybrook Research Institute, University of Toronto, Sunnybrook Research Institute, Medical University of South Carolina, University of Manitoba.
Histology volume reconstruction facilitates the study of 3D shape and volume change of an organ at the level of macrostructures made up of cells. It can also be used to investigate and validate novel techniques and algorithms in volumetric medical imaging and therapies. Creating 3D high-resolution atlases of different organs1,2,3 is another application of histology volume reconstruction. This provides a resource for investigating tissue structures and the spatial relationship between various cellular features. We present an image registration approach for histology volume reconstruction, which uses a set of optical blockface images. The reconstructed histology volume represents a reliable shape of the processed specimen with no propagated post-processing registration error. The Hematoxylin and Eosin (H&E) stained sections of two mouse mammary glands were registered to their corresponding blockface images using boundary points extracted from the edges of the specimen in histology and blockface images. The accuracy of the registration was visually evaluated. The alignment of the macrostructures of the mammary glands was also visually assessed at high resolution. This study delineates the different steps of this image registration pipeline, ranging from excision of the mammary gland through to 3D histology volume reconstruction. While 2D histology images reveal the structural differences between pairs of sections, 3D histology volume provides the ability to visualize the differences in shape and volume of the mammary glands.
Bioengineering, Issue 89, Histology Volume Reconstruction, Transgenic Mouse Model, Image Registration, Digital Histology, Image Processing, Mouse Mammary Gland
Play Button
From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data
Authors: Wen-Ting Tsai, Ahmed Hassan, Purbasha Sarkar, Joaquin Correa, Zoltan Metlagel, Danielle M. Jorgens, Manfred Auer.
Institutions: Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory, Lawrence Berkeley National Laboratory.
Modern 3D electron microscopy approaches have recently allowed unprecedented insight into the 3D ultrastructural organization of cells and tissues, enabling the visualization of large macromolecular machines, such as adhesion complexes, as well as higher-order structures, such as the cytoskeleton and cellular organelles in their respective cell and tissue context. Given the inherent complexity of cellular volumes, it is essential to first extract the features of interest in order to allow visualization, quantification, and therefore comprehension of their 3D organization. Each data set is defined by distinct characteristics, e.g., signal-to-noise ratio, crispness (sharpness) of the data, heterogeneity of its features, crowdedness of features, presence or absence of characteristic shapes that allow for easy identification, and the percentage of the entire volume that a specific region of interest occupies. All these characteristics need to be considered when deciding on which approach to take for segmentation. The six different 3D ultrastructural data sets presented were obtained by three different imaging approaches: resin embedded stained electron tomography, focused ion beam- and serial block face- scanning electron microscopy (FIB-SEM, SBF-SEM) of mildly stained and heavily stained samples, respectively. For these data sets, four different segmentation approaches have been applied: (1) fully manual model building followed solely by visualization of the model, (2) manual tracing segmentation of the data followed by surface rendering, (3) semi-automated approaches followed by surface rendering, or (4) automated custom-designed segmentation algorithms followed by surface rendering and quantitative analysis. Depending on the combination of data set characteristics, it was found that typically one of these four categorical approaches outperforms the others, but depending on the exact sequence of criteria, more than one approach may be successful. Based on these data, we propose a triage scheme that categorizes both objective data set characteristics and subjective personal criteria for the analysis of the different data sets.
Bioengineering, Issue 90, 3D electron microscopy, feature extraction, segmentation, image analysis, reconstruction, manual tracing, thresholding
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Quasi-light Storage for Optical Data Packets
Authors: Thomas Schneider, Stefan Preußler.
Institutions: Hochschule für Telekommunikation, Leipzig.
Today's telecommunication is based on optical packets which transmit the information in optical fiber networks around the world. Currently, the processing of the signals is done in the electrical domain. Direct storage in the optical domain would avoid the transfer of the packets to the electrical and back to the optical domain in every network node and, therefore, increase the speed and possibly reduce the energy consumption of telecommunications. However, light consists of photons which propagate with the speed of light in vacuum. Thus, the storage of light is a big challenge. There exist some methods to slow down the speed of the light, or to store it in excitations of a medium. However, these methods cannot be used for the storage of optical data packets used in telecommunications networks. Here we show how the time-frequency-coherence, which holds for every signal and therefore for optical packets as well, can be exploited to build an optical memory. We will review the background and show in detail and through examples, how a frequency comb can be used for the copying of an optical packet which enters the memory. One of these time domain copies is then extracted from the memory by a time domain switch. We will show this method for intensity as well as for phase modulated signals.
Physics, Issue 84, optical communications, Optical Light Storage, stimulated Brillouin scattering, Optical Signal Processing, optical data packets, telecommunications
Play Button
Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases
Authors: Hans-Peter Müller, Jan Kassubek.
Institutions: University of Ulm.
Diffusion tensor imaging (DTI) techniques provide information on the microstructural processes of the cerebral white matter (WM) in vivo. The present applications are designed to investigate differences of WM involvement patterns in different brain diseases, especially neurodegenerative disorders, by use of different DTI analyses in comparison with matched controls. DTI data analysis is performed in a variate fashion, i.e. voxelwise comparison of regional diffusion direction-based metrics such as fractional anisotropy (FA), together with fiber tracking (FT) accompanied by tractwise fractional anisotropy statistics (TFAS) at the group level in order to identify differences in FA along WM structures, aiming at the definition of regional patterns of WM alterations at the group level. Transformation into a stereotaxic standard space is a prerequisite for group studies and requires thorough data processing to preserve directional inter-dependencies. The present applications show optimized technical approaches for this preservation of quantitative and directional information during spatial normalization in data analyses at the group level. On this basis, FT techniques can be applied to group averaged data in order to quantify metrics information as defined by FT. Additionally, application of DTI methods, i.e. differences in FA-maps after stereotaxic alignment, in a longitudinal analysis at an individual subject basis reveal information about the progression of neurological disorders. Further quality improvement of DTI based results can be obtained during preprocessing by application of a controlled elimination of gradient directions with high noise levels. In summary, DTI is used to define a distinct WM pathoanatomy of different brain diseases by the combination of whole brain-based and tract-based DTI analysis.
Medicine, Issue 77, Neuroscience, Neurobiology, Molecular Biology, Biomedical Engineering, Anatomy, Physiology, Neurodegenerative Diseases, nuclear magnetic resonance, NMR, MR, MRI, diffusion tensor imaging, fiber tracking, group level comparison, neurodegenerative diseases, brain, imaging, clinical techniques
Play Button
High-throughput, Automated Extraction of DNA and RNA from Clinical Samples using TruTip Technology on Common Liquid Handling Robots
Authors: Rebecca C. Holmberg, Alissa Gindlesperger, Tinsley Stokes, Dane Brady, Nitu Thakore, Philip Belgrader, Christopher G. Cooney, Darrell P. Chandler.
Institutions: Akonni Biosystems, Inc., Akonni Biosystems, Inc., Akonni Biosystems, Inc., Akonni Biosystems, Inc..
TruTip is a simple nucleic acid extraction technology whereby a porous, monolithic binding matrix is inserted into a pipette tip. The geometry of the monolith can be adapted for specific pipette tips ranging in volume from 1.0 to 5.0 ml. The large porosity of the monolith enables viscous or complex samples to readily pass through it with minimal fluidic backpressure. Bi-directional flow maximizes residence time between the monolith and sample, and enables large sample volumes to be processed within a single TruTip. The fundamental steps, irrespective of sample volume or TruTip geometry, include cell lysis, nucleic acid binding to the inner pores of the TruTip monolith, washing away unbound sample components and lysis buffers, and eluting purified and concentrated nucleic acids into an appropriate buffer. The attributes and adaptability of TruTip are demonstrated in three automated clinical sample processing protocols using an Eppendorf epMotion 5070, Hamilton STAR and STARplus liquid handling robots, including RNA isolation from nasopharyngeal aspirate, genomic DNA isolation from whole blood, and fetal DNA extraction and enrichment from large volumes of maternal plasma (respectively).
Genetics, Issue 76, Bioengineering, Biomedical Engineering, Molecular Biology, Automation, Laboratory, Clinical Laboratory Techniques, Molecular Diagnostic Techniques, Analytic Sample Preparation Methods, Clinical Laboratory Techniques, Molecular Diagnostic Techniques, Genetic Techniques, Molecular Diagnostic Techniques, Automation, Laboratory, Chemistry, Clinical, DNA/RNA extraction, automation, nucleic acid isolation, sample preparation, nasopharyngeal aspirate, blood, plasma, high-throughput, sequencing
Play Button
Glycan Profiling of Plant Cell Wall Polymers using Microarrays
Authors: Isabel E. Moller, Filomena A. Pettolino, Charlie Hart, Edwin R. Lampugnani, William G.T. Willats, Antony Bacic.
Institutions: University of Melbourne, University of Melbourne, CSIRO Plant Industry, Black Mountain Laboratories, University of Copenhagen.
Plant cell walls are complex matrixes of heterogeneous glycans which play an important role in the physiology and development of plants and provide the raw materials for human societies (e.g. wood, paper, textile and biofuel industries)1,2. However, understanding the biosynthesis and function of these components remains challenging. Cell wall glycans are chemically and conformationally diverse due to the complexity of their building blocks, the glycosyl residues. These form linkages at multiple positions and differ in ring structure, isomeric or anomeric configuration, and in addition, are substituted with an array of non-sugar residues. Glycan composition varies in different cell and/or tissue types or even sub-domains of a single cell wall3. Furthermore, their composition is also modified during development1, or in response to environmental cues4. In excess of 2,000 genes have Plant cell walls are complex matrixes of heterogeneous glycans been predicted to be involved in cell wall glycan biosynthesis and modification in Arabidopsis5. However, relatively few of the biosynthetic genes have been functionally characterized 4,5. Reverse genetics approaches are difficult because the genes are often differentially expressed, often at low levels, between cell types6. Also, mutant studies are often hindered by gene redundancy or compensatory mechanisms to ensure appropriate cell wall function is maintained7. Thus novel approaches are needed to rapidly characterise the diverse range of glycan structures and to facilitate functional genomics approaches to understanding cell wall biosynthesis and modification. Monoclonal antibodies (mAbs)8,9 have emerged as an important tool for determining glycan structure and distribution in plants. These recognise distinct epitopes present within major classes of plant cell wall glycans, including pectins, xyloglucans, xylans, mannans, glucans and arabinogalactans. Recently their use has been extended to large-scale screening experiments to determine the relative abundance of glycans in a broad range of plant and tissue types simultaneously9,10,11. Here we present a microarray-based glycan screening method called Comprehensive Microarray Polymer Profiling (CoMPP) (Figures 1 & 2)10,11 that enables multiple samples (100 sec) to be screened using a miniaturised microarray platform with reduced reagent and sample volumes. The spot signals on the microarray can be formally quantified to give semi-quantitative data about glycan epitope occurrence. This approach is well suited to tracking glycan changes in complex biological systems12 and providing a global overview of cell wall composition particularly when prior knowledge of this is unavailable.
Plant Biology, Issue 70, Molecular Biology, Cellular Biology, Genetics, Genomics, Proteomics, Proteins, Cell Walls, Polysaccharides, Monoclonal Antibodies, Microarrays, CoMPP, glycans, Arabidopsis, tissue collection
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
Play Button
Tactile Conditioning And Movement Analysis Of Antennal Sampling Strategies In Honey Bees (Apis mellifera L.)
Authors: Samir Mujagić, Simon Michael Würth, Sven Hellbach, Volker Dürr.
Institutions: Bielefeld University.
Honey bees (Apis mellifera L.) are eusocial insects and well known for their complex division of labor and associative learning capability1, 2. The worker bees spend the first half of their life inside the dark hive, where they are nursing the larvae or building the regular hexagonal combs for food (e.g. pollen or nectar) and brood3. The antennae are extraordinary multisensory feelers and play a pivotal role in various tactile mediated tasks4, including hive building5 and pattern recognition6. Later in life, each single bee leaves the hive to forage for food. Then a bee has to learn to discriminate profitable food sources, memorize their location, and communicate it to its nest mates7. Bees use different floral signals like colors or odors7, 8, but also tactile cues from the petal surface9 to form multisensory memories of the food source. Under laboratory conditions, bees can be trained in an appetitive learning paradigm to discriminate tactile object features, such as edges or grooves with their antennae10, 11, 12, 13. This learning paradigm is closely related to the classical olfactory conditioning of the proboscis extension response (PER) in harnessed bees14. The advantage of the tactile learning paradigm in the laboratory is the possibility of combining behavioral experiments on learning with various physiological measurements, including the analysis of the antennal movement pattern.
Neuroscience, Issue 70, Physiology, Anatomy, Entomology, Behavior, Sensilla, Bees, behavioral sciences, Sense Organs, Honey bee, Apis mellifera L., Insect antenna, Tactile sampling, conditioning, Proboscis extension response, Motion capture
Play Button
Identification of Disease-related Spatial Covariance Patterns using Neuroimaging Data
Authors: Phoebe Spetsieris, Yilong Ma, Shichun Peng, Ji Hyun Ko, Vijay Dhawan, Chris C. Tang, David Eidelberg.
Institutions: The Feinstein Institute for Medical Research.
The scaled subprofile model (SSM)1-4 is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data2,5,6. Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors7,8. Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects5,6. Cross-validation within the derivation set can be performed using bootstrap resampling techniques9. Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets10. Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation11. These standardized values can in turn be used to assist in differential diagnosis12,13 and to assess disease progression and treatment effects at the network level7,14-16. We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.
Medicine, Issue 76, Neurobiology, Neuroscience, Anatomy, Physiology, Molecular Biology, Basal Ganglia Diseases, Parkinsonian Disorders, Parkinson Disease, Movement Disorders, Neurodegenerative Diseases, PCA, SSM, PET, imaging biomarkers, functional brain imaging, multivariate spatial covariance analysis, global normalization, differential diagnosis, PD, brain, imaging, clinical techniques
Play Button
Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns
Authors: Rangaraj M. Rangayyan, Shantanu Banik, J.E. Leo Desautels.
Institutions: University of Calgary , University of Calgary .
We demonstrate methods for the detection of architectural distortion in prior mammograms of interval-cancer cases based on analysis of the orientation of breast tissue patterns in mammograms. We hypothesize that architectural distortion modifies the normal orientation of breast tissue patterns in mammographic images before the formation of masses or tumors. In the initial steps of our methods, the oriented structures in a given mammogram are analyzed using Gabor filters and phase portraits to detect node-like sites of radiating or intersecting tissue patterns. Each detected site is then characterized using the node value, fractal dimension, and a measure of angular dispersion specifically designed to represent spiculating patterns associated with architectural distortion. Our methods were tested with a database of 106 prior mammograms of 56 interval-cancer cases and 52 mammograms of 13 normal cases using the features developed for the characterization of architectural distortion, pattern classification via quadratic discriminant analysis, and validation with the leave-one-patient out procedure. According to the results of free-response receiver operating characteristic analysis, our methods have demonstrated the capability to detect architectural distortion in prior mammograms, taken 15 months (on the average) before clinical diagnosis of breast cancer, with a sensitivity of 80% at about five false positives per patient.
Medicine, Issue 78, Anatomy, Physiology, Cancer Biology, angular spread, architectural distortion, breast cancer, Computer-Assisted Diagnosis, computer-aided diagnosis (CAD), entropy, fractional Brownian motion, fractal dimension, Gabor filters, Image Processing, Medical Informatics, node map, oriented texture, Pattern Recognition, phase portraits, prior mammograms, spectral analysis
Play Button
A Computer-assisted Multi-electrode Patch-clamp System
Authors: Rodrigo Perin, Henry Markram.
Institutions: Ecole Polytechnique Federale de Lausanne.
The patch-clamp technique is today the most well-established method for recording electrical activity from individual neurons or their subcellular compartments. Nevertheless, achieving stable recordings, even from individual cells, remains a time-consuming procedure of considerable complexity. Automation of many steps in conjunction with efficient information display can greatly assist experimentalists in performing a larger number of recordings with greater reliability and in less time. In order to achieve large-scale recordings we concluded the most efficient approach is not to fully automatize the process but to simplify the experimental steps and reduce the chances of human error while efficiently incorporating the experimenter's experience and visual feedback. With these goals in mind we developed a computer-assisted system which centralizes all the controls necessary for a multi-electrode patch-clamp experiment in a single interface, a commercially available wireless gamepad, while displaying experiment related information and guidance cues on the computer screen. Here we describe the different components of the system which allowed us to reduce the time required for achieving the recording configuration and substantially increase the chances of successfully recording large numbers of neurons simultaneously.
Neuroscience, Issue 80, Patch-clamp, automatic positioning, whole-cell, neuronal recording, in vitro, multi-electrode
Play Button
Automated Midline Shift and Intracranial Pressure Estimation based on Brain CT Images
Authors: Wenan Chen, Ashwin Belle, Charles Cockrell, Kevin R. Ward, Kayvan Najarian.
Institutions: Virginia Commonwealth University, Virginia Commonwealth University Reanimation Engineering Science (VCURES) Center, Virginia Commonwealth University, Virginia Commonwealth University, Virginia Commonwealth University.
In this paper we present an automated system based mainly on the computed tomography (CT) images consisting of two main components: the midline shift estimation and intracranial pressure (ICP) pre-screening system. To estimate the midline shift, first an estimation of the ideal midline is performed based on the symmetry of the skull and anatomical features in the brain CT scan. Then, segmentation of the ventricles from the CT scan is performed and used as a guide for the identification of the actual midline through shape matching. These processes mimic the measuring process by physicians and have shown promising results in the evaluation. In the second component, more features are extracted related to ICP, such as the texture information, blood amount from CT scans and other recorded features, such as age, injury severity score to estimate the ICP are also incorporated. Machine learning techniques including feature selection and classification, such as Support Vector Machines (SVMs), are employed to build the prediction model using RapidMiner. The evaluation of the prediction shows potential usefulness of the model. The estimated ideal midline shift and predicted ICP levels may be used as a fast pre-screening step for physicians to make decisions, so as to recommend for or against invasive ICP monitoring.
Medicine, Issue 74, Biomedical Engineering, Molecular Biology, Neurobiology, Biophysics, Physiology, Anatomy, Brain CT Image Processing, CT, Midline Shift, Intracranial Pressure Pre-screening, Gaussian Mixture Model, Shape Matching, Machine Learning, traumatic brain injury, TBI, imaging, clinical techniques
Play Button
Using SCOPE to Identify Potential Regulatory Motifs in Coregulated Genes
Authors: Viktor Martyanov, Robert H. Gross.
Institutions: Dartmouth College.
SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference1. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data1. In this article, we utilize a web version of SCOPE2 to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs3,4 and has been used in other studies5-8. The three algorithms that comprise SCOPE are BEAM9, which finds non-degenerate motifs (ACCGGT), PRISM10, which finds degenerate motifs (ASCGWT), and SPACER11, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well. Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor. Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a "Sample Search" button that allows the user to perform a trial run. Scope has a very friendly user interface that enables novice users to access the algorithm's full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from a file. The output from SCOPE contains a list of all identified motifs with their scores, number of occurrences, fraction of genes containing the motif, and the algorithm used to identify the motif. For each motif, result details include a consensus representation of the motif, a sequence logo, a position weight matrix, and a list of instances for every motif occurrence (with exact positions and "strand" indicated). Results are returned in a browser window and also optionally by email. Previous papers describe the SCOPE algorithms in detail1,2,9-11.
Genetics, Issue 51, gene regulation, computational biology, algorithm, promoter sequence motif
Play Button
Tomato Analyzer: A Useful Software Application to Collect Accurate and Detailed Morphological and Colorimetric Data from Two-dimensional Objects
Authors: Gustavo R. Rodríguez, Jennifer B. Moyseenko, Matthew D. Robbins, Nancy Huarachi Morejón, David M. Francis, Esther van der Knaap.
Institutions: The Ohio State University.
Measuring fruit morphology and color traits of vegetable and fruit crops in an objective and reproducible way is important for detailed phenotypic analyses of these traits. Tomato Analyzer (TA) is a software program that measures 37 attributes related to two-dimensional shape in a semi-automatic and reproducible manner1,2. Many of these attributes, such as angles at the distal and proximal ends of the fruit and areas of indentation, are difficult to quantify manually. The attributes are organized in ten categories within the software: Basic Measurement, Fruit Shape Index, Blockiness, Homogeneity, Proximal Fruit End Shape, Distal Fruit End Shape, Asymmetry, Internal Eccentricity, Latitudinal Section and Morphometrics. The last category requires neither prior knowledge nor predetermined notions of the shape attributes, so morphometric analysis offers an unbiased option that may be better adapted to high-throughput analyses than attribute analysis. TA also offers the Color Test application that was designed to collect color measurements from scanned images and allow scanning devices to be calibrated using color standards3. TA provides several options to export and analyze shape attribute, morphometric, and color data. The data may be exported to an excel file in batch mode (more than 100 images at one time) or exported as individual images. The user can choose between output that displays the average for each attribute for the objects in each image (including standard deviation), or an output that displays the attribute values for each object on the image. TA has been a valuable and effective tool for indentifying and confirming tomato fruit shape Quantitative Trait Loci (QTL), as well as performing in-depth analyses of the effect of key fruit shape genes on plant morphology. Also, TA can be used to objectively classify fruit into various shape categories. Lastly, fruit shape and color traits in other plant species as well as other plant organs such as leaves and seeds can be evaluated with TA.
Plant Biology, Issue 37, morphology, color, image processing, quantitative trait loci, software
Play Button
MALDI Sample Preparation: the Ultra Thin Layer Method
Authors: David Fenyo, Qingjun Wang, Jeffrey A. DeGrasse, Julio C. Padovan, Martine Cadene, Brian T. Chait.
Institutions: Rockefeller University.
This video demonstrates the preparation of an ultra-thin matrix/analyte layer for analyzing peptides and proteins by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) 1,2. The ultra-thin layer method involves the production of a substrate layer of matrix crystals (alpha-cyano-4-hydroxycinnamic acid) on the sample plate, which serves as a seeding ground for subsequent crystallization of a matrix/analyte mixture. Advantages of the ultra-thin layer method over other sample deposition approaches (e.g. dried droplet) are that it provides (i) greater tolerance to impurities such as salts and detergents, (ii) better resolution, and (iii) higher spatial uniformity. This method is especially useful for the accurate mass determination of proteins. The protocol was initially developed and optimized for the analysis of membrane proteins and used to successfully analyze ion channels, metabolite transporters, and receptors, containing between 2 and 12 transmembrane domains 2. Since the original publication, it has also shown to be equally useful for the analysis of soluble proteins. Indeed, we have used it for a large number of proteins having a wide range of properties, including those with molecular masses as high as 380 kDa 3. It is currently our method of choice for the molecular mass analysis of all proteins. The described procedure consistently produces high-quality spectra, and it is sensitive, robust, and easy to implement.
Cellular Biology, Issue 3, mass-spectrometry, ultra-thin layer, MALDI, MS, proteins
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.