JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Deformation of filamentous Escherichia coli cells in a microfluidic device: a new technique to study cell mechanics.
PUBLISHED: 01-01-2014
The mechanical properties of bacterial cells are determined by their stress-bearing elements. The size of typical bacterial cells, and the fact that different time and length scales govern their behavior, necessitate special experimental techniques in order to probe their mechanical properties under various spatiotemporal conditions. Here, we present such an experimental technique to study cell mechanics using hydrodynamic forces in a microfluidic device. We demonstrate the application of this technique by calculating the flexural rigidity of non-growing Escherichia coli cells. In addition, we compare the deformation of filamentous cells under growing and non-growing conditions during the deformation process. We show that, at low forces, the force needed to deform growing cells to the same extent as non-growing cells is approximately two times smaller. Following previous works, we interpret these results as the outcome of the difference between the elastic response of non-growing cells and the plastic-elastic response of growing cells. Finally, we observe some heterogeneity in the response of individual cells to the applied force. We suggest that this results from the individuality of different bacterial cells.
Authors: Olivier Galy, Kais Zrelli, Patricia Latour-Lambert, Lyndsey Kirwan, Nelly Henry.
Published: 05-02-2014
Bacterial adhesion and growth on interfaces lead to the formation of three-dimensional heterogeneous structures so-called biofilms. The cells dwelling in these structures are held together by physical interactions mediated by a network of extracellular polymeric substances. Bacterial biofilms impact many human activities and the understanding of their properties is crucial for a better control of their development — maintenance or eradication — depending on their adverse or beneficial outcome. This paper describes a novel methodology aiming to measure in situ the local physical properties of the biofilm that had been, until now, examined only from a macroscopic and homogeneous material perspective. The experiment described here involves introducing magnetic particles into a growing biofilm to seed local probes that can be remotely actuated without disturbing the structural properties of the biofilm. Dedicated magnetic tweezers were developed to exert a defined force on each particle embedded in the biofilm. The setup is mounted on the stage of a microscope to enable the recording of time-lapse images of the particle-pulling period. The particle trajectories are then extracted from the pulling sequence and the local viscoelastic parameters are derived from each particle displacement curve, thereby providing the 3D-spatial distribution of the parameters. Gaining insights into the biofilm mechanical profile is essential from an engineer's point of view for biofilm control purposes but also from a fundamental perspective to clarify the relationship between the architectural properties and the specific biology of these structures.
21 Related JoVE Articles!
Play Button
A Toolkit to Enable Hydrocarbon Conversion in Aqueous Environments
Authors: Eva K. Brinkman, Kira Schipper, Nadine Bongaerts, Mathias J. Voges, Alessandro Abate, S. Aljoscha Wahl.
Institutions: Delft University of Technology, Delft University of Technology.
This work puts forward a toolkit that enables the conversion of alkanes by Escherichia coli and presents a proof of principle of its applicability. The toolkit consists of multiple standard interchangeable parts (BioBricks)9 addressing the conversion of alkanes, regulation of gene expression and survival in toxic hydrocarbon-rich environments. A three-step pathway for alkane degradation was implemented in E. coli to enable the conversion of medium- and long-chain alkanes to their respective alkanols, alkanals and ultimately alkanoic-acids. The latter were metabolized via the native β-oxidation pathway. To facilitate the oxidation of medium-chain alkanes (C5-C13) and cycloalkanes (C5-C8), four genes (alkB2, rubA3, rubA4and rubB) of the alkane hydroxylase system from Gordonia sp. TF68,21 were transformed into E. coli. For the conversion of long-chain alkanes (C15-C36), theladA gene from Geobacillus thermodenitrificans was implemented. For the required further steps of the degradation process, ADH and ALDH (originating from G. thermodenitrificans) were introduced10,11. The activity was measured by resting cell assays. For each oxidative step, enzyme activity was observed. To optimize the process efficiency, the expression was only induced under low glucose conditions: a substrate-regulated promoter, pCaiF, was used. pCaiF is present in E. coli K12 and regulates the expression of the genes involved in the degradation of non-glucose carbon sources. The last part of the toolkit - targeting survival - was implemented using solvent tolerance genes, PhPFDα and β, both from Pyrococcus horikoshii OT3. Organic solvents can induce cell stress and decreased survivability by negatively affecting protein folding. As chaperones, PhPFDα and β improve the protein folding process e.g. under the presence of alkanes. The expression of these genes led to an improved hydrocarbon tolerance shown by an increased growth rate (up to 50%) in the presences of 10% n-hexane in the culture medium were observed. Summarizing, the results indicate that the toolkit enables E. coli to convert and tolerate hydrocarbons in aqueous environments. As such, it represents an initial step towards a sustainable solution for oil-remediation using a synthetic biology approach.
Bioengineering, Issue 68, Microbiology, Biochemistry, Chemistry, Chemical Engineering, Oil remediation, alkane metabolism, alkane hydroxylase system, resting cell assay, prefoldin, Escherichia coli, synthetic biology, homologous interaction mapping, mathematical model, BioBrick, iGEM
Play Button
Colorimetric Paper-based Detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from Large Volumes of Agricultural Water
Authors: Bledar Bisha, Jaclyn A. Adkins, Jana C. Jokerst, Jeffrey C. Chandler, Alma Pérez-Méndez, Shannon M. Coleman, Adrian O. Sbodio, Trevor V. Suslow, Michelle D. Danyluk, Charles S. Henry, Lawrence D. Goodridge.
Institutions: University of Wyoming, Colorado State University, Colorado State University, Colorado State University, University of California, Davis, University of Florida, McGill University.
This protocol describes rapid colorimetric detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from large volumes (10 L) of agricultural waters. Here, water is filtered through sterile Modified Moore Swabs (MMS), which consist of a simple gauze filter enclosed in a plastic cartridge, to concentrate bacteria. Following filtration, non-selective or selective enrichments for the target bacteria are performed in the MMS. For colorimetric detection of the target bacteria, the enrichments are then assayed using paper-based analytical devices (µPADs) embedded with bacteria-indicative substrates. Each substrate reacts with target-indicative bacterial enzymes, generating colored products that can be detected visually (qualitative detection) on the µPAD. Alternatively, digital images of the reacted µPADs can be generated with common scanning or photographic devices and analyzed using ImageJ software, allowing for more objective and standardized interpretation of results. Although the biochemical screening procedures are designed to identify the aforementioned bacterial pathogens, in some cases enzymes produced by background microbiota or the degradation of the colorimetric substrates may produce a false positive. Therefore, confirmation using a more discriminatory diagnostic is needed. Nonetheless, this bacterial concentration and detection platform is inexpensive, sensitive (0.1 CFU/ml detection limit), easy to perform, and rapid (concentration, enrichment, and detection are performed within approximately 24 hr), justifying its use as an initial screening method for the microbiological quality of agricultural water.
Environmental Sciences, Issue 88, Paper-based analytical device (µPAD), Colorimetric enzymatic detection, Salmonella spp., Listeria monocytogenes, Escherichia coli, Modified Moore Swab (MMS), agricultural water, food safety, environmental microbiology
Play Button
In situ Compressive Loading and Correlative Noninvasive Imaging of the Bone-periodontal Ligament-tooth Fibrous Joint
Authors: Andrew T. Jang, Jeremy D. Lin, Youngho Seo, Sergey Etchin, Arno Merkle, Kevin Fahey, Sunita P. Ho.
Institutions: University of California San Francisco, University of California San Francisco, Xradia Inc..
This study demonstrates a novel biomechanics testing protocol. The advantage of this protocol includes the use of an in situ loading device coupled to a high resolution X-ray microscope, thus enabling visualization of internal structural elements under simulated physiological loads and wet conditions. Experimental specimens will include intact bone-periodontal ligament (PDL)-tooth fibrous joints. Results will illustrate three important features of the protocol as they can be applied to organ level biomechanics: 1) reactionary force vs. displacement: tooth displacement within the alveolar socket and its reactionary response to loading, 2) three-dimensional (3D) spatial configuration and morphometrics: geometric relationship of the tooth with the alveolar socket, and 3) changes in readouts 1 and 2 due to a change in loading axis, i.e. from concentric to eccentric loads. Efficacy of the proposed protocol will be evaluated by coupling mechanical testing readouts to 3D morphometrics and overall biomechanics of the joint. In addition, this technique will emphasize on the need to equilibrate experimental conditions, specifically reactionary loads prior to acquiring tomograms of fibrous joints. It should be noted that the proposed protocol is limited to testing specimens under ex vivo conditions, and that use of contrast agents to visualize soft tissue mechanical response could lead to erroneous conclusions about tissue and organ-level biomechanics.
Bioengineering, Issue 85, biomechanics, bone-periodontal ligament-tooth complex, concentric loads, eccentric loads, contrast agent
Play Button
A Microfluidic Technique to Probe Cell Deformability
Authors: David J. Hoelzle, Bino A. Varghese, Clara K. Chan, Amy C. Rowat.
Institutions: University of California, Los Angeles, University of Notre Dame, University of Southern California.
Here we detail the design, fabrication, and use of a microfluidic device to evaluate the deformability of a large number of individual cells in an efficient manner. Typically, data for ~102 cells can be acquired within a 1 hr experiment. An automated image analysis program enables efficient post-experiment analysis of image data, enabling processing to be complete within a few hours. Our device geometry is unique in that cells must deform through a series of micron-scale constrictions, thereby enabling the initial deformation and time-dependent relaxation of individual cells to be assayed. The applicability of this method to human promyelocytic leukemia (HL-60) cells is demonstrated. Driving cells to deform through micron-scale constrictions using pressure-driven flow, we observe that human promyelocytic (HL-60) cells momentarily occlude the first constriction for a median time of 9.3 msec before passaging more quickly through the subsequent constrictions with a median transit time of 4.0 msec per constriction. By contrast, all-trans retinoic acid-treated (neutrophil-type) HL-60 cells occlude the first constriction for only 4.3 msec before passaging through the subsequent constrictions with a median transit time of 3.3 msec. This method can provide insight into the viscoelastic nature of cells, and ultimately reveal the molecular origins of this behavior.
Cellular Biology, Issue 91, cell mechanics, microfluidics, pressure-driven flow, image processing, high-throughput diagnostics, microfabrication
Play Button
A Versatile Automated Platform for Micro-scale Cell Stimulation Experiments
Authors: Anupama Sinha, Mais J. Jebrail, Hanyoup Kim, Kamlesh D. Patel, Steven S. Branda.
Institutions: Sandia National Laboratories, Sandia National Laboratories, Canon U.S. Life Sciences, Sandia National Laboratories.
Study of cells in culture (in vitro analysis) has provided important insight into complex biological systems. Conventional methods and equipment for in vitro analysis are well suited to study of large numbers of cells (≥105) in milliliter-scale volumes (≥0.1 ml). However, there are many instances in which it is necessary or desirable to scale down culture size to reduce consumption of the cells of interest and/or reagents required for their culture, stimulation, or processing. Unfortunately, conventional approaches do not support precise and reproducible manipulation of micro-scale cultures, and the microfluidics-based automated systems currently available are too complex and specialized for routine use by most laboratories. To address this problem, we have developed a simple and versatile technology platform for automated culture, stimulation, and recovery of small populations of cells (100 - 2,000 cells) in micro-scale volumes (1 - 20 μl). The platform consists of a set of fibronectin-coated microcapillaries ("cell perfusion chambers"), within which micro-scale cultures are established, maintained, and stimulated; a digital microfluidics (DMF) device outfitted with "transfer" microcapillaries ("central hub"), which routes cells and reagents to and from the perfusion chambers; a high-precision syringe pump, which powers transport of materials between the perfusion chambers and the central hub; and an electronic interface that provides control over transport of materials, which is coordinated and automated via pre-determined scripts. As an example, we used the platform to facilitate study of transcriptional responses elicited in immune cells upon challenge with bacteria. Use of the platform enabled us to reduce consumption of cells and reagents, minimize experiment-to-experiment variability, and re-direct hands-on labor. Given the advantages that it confers, as well as its accessibility and versatility, our platform should find use in a wide variety of laboratories and applications, and prove especially useful in facilitating analysis of cells and stimuli that are available in only limited quantities.
Bioengineering, Issue 78, Biomedical Engineering, Cellular Biology, Molecular Biology, Microbiology, Biophysics, Biochemistry, Nanotechnology, Miniaturization, Microtechnology, Cell culture techniques, Microfluidics, Host-pathogen interactions, Automated cell culture, Cell stimulation, Cell response, Cell-cell interactions, Digital microfluidics, Microsystems integration, cell culture
Play Button
Magnetic Tweezers for the Measurement of Twist and Torque
Authors: Jan Lipfert, Mina Lee, Orkide Ordu, Jacob W. J. Kerssemakers, Nynke H. Dekker.
Institutions: Delft University of Technology.
Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque while maintaining a constant stretching force. Here, it is illustrated how such a “conventional” magnetic tweezers experimental configuration can, through a straightforward modification of its field configuration to minimize the magnitude of the transverse field, be adapted to measure the degree of twist in a biological molecule. The resulting configuration is termed the freely-orbiting magnetic tweezers. Additionally, it is shown how further modification of the field configuration can yield a transverse field with a magnitude intermediate between that of the “conventional” magnetic tweezers and the freely-orbiting magnetic tweezers, which makes it possible to directly measure the torque stored in a biological molecule. This configuration is termed the magnetic torque tweezers. The accompanying video explains in detail how the conversion of conventional magnetic tweezers into freely-orbiting magnetic tweezers and magnetic torque tweezers can be accomplished, and demonstrates the use of these techniques. These adaptations maintain all the strengths of conventional magnetic tweezers while greatly expanding the versatility of this powerful instrument.
Bioengineering, Issue 87, magnetic tweezers, magnetic torque tweezers, freely-orbiting magnetic tweezers, twist, torque, DNA, single-molecule techniques
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
A Novel Method for Localizing Reporter Fluorescent Beads Near the Cell Culture Surface for Traction Force Microscopy
Authors: Samantha G. Knoll, M. Yakut Ali, M. Taher A. Saif.
Institutions: University of Illinois at Urbana-Champaign.
PA gels have long been used as a platform to study cell traction forces due to ease of fabrication and the ability to tune their elastic properties. When the substrate is coated with an extracellular matrix protein, cells adhere to the gel and apply forces, causing the gel to deform. The deformation depends on the cell traction and the elastic properties of the gel. If the deformation field of the surface is known, surface traction can be calculated using elasticity theory. Gel deformation is commonly measured by embedding fluorescent marker beads uniformly into the gel. The probes displace as the gel deforms. The probes near the surface of the gel are tracked. The displacements reported by these probes are considered as surface displacements. Their depths from the surface are ignored. This assumption introduces error in traction force evaluations. For precise measurement of cell forces, it is critical for the location of the beads to be known. We have developed a technique that utilizes simple chemistry to confine fluorescent marker beads, 0.1 and 1 µm in diameter, in PA gels, within 1.6 μm of the surface. We coat a coverslip with poly-D-lysine (PDL) and fluorescent beads. PA gel solution is then sandwiched between the coverslip and an adherent surface. The fluorescent beads transfer to the gel solution during curing. After polymerization, the PA gel contains fluorescent beads on a plane close to the gel surface.
Bioengineering, Issue 91, cell mechanics, polyacrylamide (PA) gel, traction force microscopy, fluorescent beads, poly-D-lysine (PDL), cell culture surface
Play Button
A Novel Stretching Platform for Applications in Cell and Tissue Mechanobiology
Authors: Dominique Tremblay, Charles M. Cuerrier, Lukasz Andrzejewski, Edward R. O'Brien, Andrew E. Pelling.
Institutions: University of Ottawa, University of Ottawa, University of Calgary, University of Ottawa, University of Ottawa.
Tools that allow the application of mechanical forces to cells and tissues or that can quantify the mechanical properties of biological tissues have contributed dramatically to the understanding of basic mechanobiology. These techniques have been extensively used to demonstrate how the onset and progression of various diseases are heavily influenced by mechanical cues. This article presents a multi-functional biaxial stretching (BAXS) platform that can either mechanically stimulate single cells or quantify the mechanical stiffness of tissues. The BAXS platform consists of four voice coil motors that can be controlled independently. Single cells can be cultured on a flexible substrate that can be attached to the motors allowing one to expose the cells to complex, dynamic, and spatially varying strain fields. Conversely, by incorporating a force load cell, one can also quantify the mechanical properties of primary tissues as they are exposed to deformation cycles. In both cases, a proper set of clamps must be designed and mounted to the BAXS platform motors in order to firmly hold the flexible substrate or the tissue of interest. The BAXS platform can be mounted on an inverted microscope to perform simultaneous transmitted light and/or fluorescence imaging to examine the structural or biochemical response of the sample during stretching experiments. This article provides experimental details of the design and usage of the BAXS platform and presents results for single cell and whole tissue studies. The BAXS platform was used to measure the deformation of nuclei in single mouse myoblast cells in response to substrate strain and to measure the stiffness of isolated mouse aortas. The BAXS platform is a versatile tool that can be combined with various optical microscopies in order to provide novel mechanobiological insights at the sub-cellular, cellular and whole tissue levels.
Bioengineering, Issue 88, cell stretching, tissue mechanics, nuclear mechanics, uniaxial, biaxial, anisotropic, mechanobiology
Play Button
Micropipette Aspiration of Substrate-attached Cells to Estimate Cell Stiffness
Authors: Myung-Jin Oh, Frank Kuhr, Fitzroy Byfield, Irena Levitan.
Institutions: University of Illinois, University of Pennsylvania .
Growing number of studies show that biomechanical properties of individual cells play major roles in multiple cellular functions, including cell proliferation, differentiation, migration and cell-cell interactions. The two key parameters of cellular biomechanics are cellular deformability or stiffness and the ability of the cells to contract and generate force. Here we describe a quick and simple method to estimate cell stiffness by measuring the degree of membrane deformation in response to negative pressure applied by a glass micropipette to the cell surface, a technique that is called Micropipette Aspiration or Microaspiration. Microaspiration is performed by pulling a glass capillary to create a micropipette with a very small tip (2-50 μm diameter depending on the size of a cell or a tissue sample), which is then connected to a pneumatic pressure transducer and brought to a close vicinity of a cell under a microscope. When the tip of the pipette touches a cell, a step of negative pressure is applied to the pipette by the pneumatic pressure transducer generating well-defined pressure on the cell membrane. In response to pressure, the membrane is aspirated into the pipette and progressive membrane deformation or "membrane projection" into the pipette is measured as a function of time. The basic principle of this experimental approach is that the degree of membrane deformation in response to a defined mechanical force is a function of membrane stiffness. The stiffer the membrane is, the slower the rate of membrane deformation and the shorter the steady-state aspiration length.The technique can be performed on isolated cells, both in suspension and substrate-attached, large organelles, and liposomes. Analysis is performed by comparing maximal membrane deformations achieved under a given pressure for different cell populations or experimental conditions. A "stiffness coefficient" is estimated by plotting the aspirated length of membrane deformation as a function of the applied pressure. Furthermore, the data can be further analyzed to estimate the Young's modulus of the cells (E), the most common parameter to characterize stiffness of materials. It is important to note that plasma membranes of eukaryotic cells can be viewed as a bi-component system where membrane lipid bilayer is underlied by the sub-membrane cytoskeleton and that it is the cytoskeleton that constitutes the mechanical scaffold of the membrane and dominates the deformability of the cellular envelope. This approach, therefore, allows probing the biomechanical properties of the sub-membrane cytoskeleton.
Bioengineering, Issue 67, Biophysics, Biomedical Engineering, Medicine, Cellular Biology, Cell stiffness, biomechanics, microaspiration, cell membrane, cytoskeleton
Play Button
Microfluidic Picoliter Bioreactor for Microbial Single-cell Analysis: Fabrication, System Setup, and Operation
Authors: Alexander Gruenberger, Christopher Probst, Antonia Heyer, Wolfgang Wiechert, Julia Frunzke, Dietrich Kohlheyer.
Institutions: Forschungszentrum Juelich GmbH.
In this protocol the fabrication, experimental setup and basic operation of the recently introduced microfluidic picoliter bioreactor (PLBR) is described in detail. The PLBR can be utilized for the analysis of single bacteria and microcolonies to investigate biotechnological and microbiological related questions concerning, e.g. cell growth, morphology, stress response, and metabolite or protein production on single-cell level. The device features continuous media flow enabling constant environmental conditions for perturbation studies, but in addition allows fast medium changes as well as oscillating conditions to mimic any desired environmental situation. To fabricate the single use devices, a silicon wafer containing sub micrometer sized SU-8 structures served as the replication mold for rapid polydimethylsiloxane casting. Chips were cut, assembled, connected, and set up onto a high resolution and fully automated microscope suited for time-lapse imaging, a powerful tool for spatio-temporal cell analysis. Here, the biotechnological platform organism Corynebacterium glutamicum was seeded into the PLBR and cell growth and intracellular fluorescence were followed over several hours unraveling time dependent population heterogeneity on single-cell level, not possible with conventional analysis methods such as flow cytometry. Besides insights into device fabrication, furthermore, the preparation of the preculture, loading, trapping of bacteria, and the PLBR cultivation of single cells and colonies is demonstrated. These devices will add a new dimension in microbiological research to analyze time dependent phenomena of single bacteria under tight environmental control. Due to the simple and relatively short fabrication process the technology can be easily adapted at any microfluidics lab and simply tailored towards specific needs.
Bioengineering, Issue 82, Soft lithography, SU-8 lithography, Picoliter bioreactor, Single-cell analysis, Polydimethylsiloxane, Corynebacterium glutamicum, Escherichia coli, Microfluidics, Lab-on-a-chip
Play Button
AFM-based Mapping of the Elastic Properties of Cell Walls: at Tissue, Cellular, and Subcellular Resolutions
Authors: Alexis Peaucelle.
Institutions: Université Paris Diderot, INRA Centre de Versailles-Grignon.
We describe a recently developed method to measure mechanical properties of the surfaces of plant tissues using atomic force microscopy (AFM) micro/nano-indentations, for a JPK AFM. Specifically, in this protocol we measure the apparent Young’s modulus of cell walls at subcellular resolutions across regions of up to 100 µm x 100 µm in floral meristems, hypocotyls, and roots. This requires careful preparation of the sample, the correct selection of micro-indenters and indentation depths. To account for cell wall properties only, measurements are performed in highly concentrated solutions of mannitol in order to plasmolyze the cells and thus remove the contribution of cell turgor pressure. In contrast to other extant techniques, by using different indenters and indentation depths, this method allows simultaneous multiscale measurements, i.e. at subcellular resolutions and across hundreds of cells comprising a tissue. This means that it is now possible to spatially-temporally characterize the changes that take place in the mechanical properties of cell walls during development, enabling these changes to be correlated with growth and differentiation. This represents a key step to understand how coordinated microscopic cellular changes bring about macroscopic morphogenetic events. However, several limitations remain: the method can only be used on fairly small samples (around 100 µm in diameter) and only on external tissues; the method is sensitive to tissue topography; it measures only certain aspects of the tissue’s complex mechanical properties. The technique is being developed rapidly and it is likely that most of these limitations will be resolved in the near future.
Plant Biology, Issue 89, Tissue growth, Cell wall, Plant mechanics, Elasticity, Young’s modulus, Root, Apical meristem, Hypocotyl, Organ formation, Biomechanics, Morphogenesis
Play Button
Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy
Authors: Gawain Thomas, Nancy A. Burnham, Terri Anne Camesano, Qi Wen.
Institutions: Worcester Polytechnic Institute, Worcester Polytechnic Institute.
Mechanical properties of cells and extracellular matrix (ECM) play important roles in many biological processes including stem cell differentiation, tumor formation, and wound healing. Changes in stiffness of cells and ECM are often signs of changes in cell physiology or diseases in tissues. Hence, cell stiffness is an index to evaluate the status of cell cultures. Among the multitude of methods applied to measure the stiffness of cells and tissues, micro-indentation using an Atomic Force Microscope (AFM) provides a way to reliably measure the stiffness of living cells. This method has been widely applied to characterize the micro-scale stiffness for a variety of materials ranging from metal surfaces to soft biological tissues and cells. The basic principle of this method is to indent a cell with an AFM tip of selected geometry and measure the applied force from the bending of the AFM cantilever. Fitting the force-indentation curve to the Hertz model for the corresponding tip geometry can give quantitative measurements of material stiffness. This paper demonstrates the procedure to characterize the stiffness of living cells using AFM. Key steps including the process of AFM calibration, force-curve acquisition, and data analysis using a MATLAB routine are demonstrated. Limitations of this method are also discussed.
Biophysics, Issue 76, Bioengineering, Cellular Biology, Molecular Biology, Physics, Chemical Engineering, Biomechanics, bioengineering (general), AFM, cell stiffness, microindentation, force spectroscopy, atomic force microscopy, microscopy
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
Play Button
Protocol for Biofilm Streamer Formation in a Microfluidic Device with Micro-pillars
Authors: Mahtab Hassanpourfard, Xiaohui Sun, Amin Valiei, Partha Mukherjee, Thomas Thundat, Yang Liu, Aloke Kumar.
Institutions: University of Alberta, University of Alberta, Texas A&M University, University of Alberta.
Several bacterial species possess the ability to attach to surfaces and colonize them in the form of thin films called biofilms. Biofilms that grow in porous media are relevant to several industrial and environmental processes such as wastewater treatment and CO2 sequestration. We used Pseudomonas fluorescens, a Gram-negative aerobic bacterium, to investigate biofilm formation in a microfluidic device that mimics porous media. The microfluidic device consists of an array of micro-posts, which were fabricated using soft-lithography. Subsequently, biofilm formation in these devices with flow was investigated and we demonstrate the formation of filamentous biofilms known as streamers in our device. The detailed protocols for fabrication and assembly of microfluidic device are provided here along with the bacterial culture protocols. Detailed procedures for experimentation with the microfluidic device are also presented along with representative results.
Bioengineering, Issue 90, biofilm, streamers, microfluidics, bio-microfluidics, porous media, bacteria, micro-pillars
Play Button
Bacterial Immobilization for Imaging by Atomic Force Microscopy
Authors: David P. Allison, Claretta J. Sullivan, Ninell Pollas Mortensen, Scott T. Retterer, Mitchel Doktycz.
Institutions: Oak Ridge National Laboratory, University of Tennessee , Eastern Virginia Medical School, Oak Ridge National Laboratory.
AFM is a high-resolution (nm scale) imaging tool that mechanically probes a surface. It has the ability to image cells and biomolecules, in a liquid environment, without the need to chemically treat the sample. In order to accomplish this goal, the sample must sufficiently adhere to the mounting surface to prevent removal by forces exerted by the scanning AFM cantilever tip. In many instances, successful imaging depends on immobilization of the sample to the mounting surface. Optimally, immobilization should be minimally invasive to the sample such that metabolic processes and functional attributes are not compromised. By coating freshly cleaved mica surfaces with porcine (pig) gelatin, negatively charged bacteria can be immobilized on the surface and imaged in liquid by AFM. Immobilization of bacterial cells on gelatin-coated mica is most likely due to electrostatic interaction between the negatively charged bacteria and the positively charged gelatin. Several factors can interfere with bacterial immobilization, including chemical constituents of the liquid in which the bacteria are suspended, the incubation time of the bacteria on the gelatin coated mica, surface characteristics of the bacterial strain and the medium in which the bacteria are imaged. Overall, the use of gelatin-coated mica is found to be generally applicable for imaging microbial cells.
Bioengineering, Issue 54, Bacteria, AFM imaging, Liquid imaging, Gelatin, Bacterial Immobilization
Play Button
Purifying Plasmid DNA from Bacterial Colonies Using the Qiagen Miniprep Kit
Authors: Shenyuan Zhang, Michael D. Cahalan.
Institutions: University of California, Irvine (UCI).
Plasmid DNA purification from E. coli is a core technique for molecular cloning. Small scale purification (miniprep) from less than 5 ml of bacterial culture is a quick way for clone verification or DNA isolation, followed by further enzymatic reactions (polymerase chain reaction and restriction enzyme digestion). Here, we video-recorded the general procedures of miniprep through the QIAGEN's QIAprep 8 Miniprep Kit, aiming to introducing this highly efficient technique to the general beginners for molecular biology techniques. The whole procedure is based on alkaline lysis of E. coli cells followed by adsorption of DNA onto silica in the presence of high salt. It consists of three steps: 1) preparation and clearing of a bacterial lysate, 2) adsorption of DNA onto the QIAprep membrane, 3) washing and elution of plasmid DNA. All steps are performed without the use of phenol, chloroform, CsCl, ethidium bromide, and without alcohol precipitation. It usually takes less than 2 hours to finish the entire procedure.
Issue 6, Basic Protocols, plasmid, DNA, purification, Qiagen
Play Button
Measuring Plant Cell Wall Extension (Creep) Induced by Acidic pH and by Alpha-Expansin
Authors: Daniel M. Durachko, Daniel J. Cosgrove.
Institutions: Penn State University .
Growing plant cell walls characteristically exhibit a property known as 'acid growth', by which we mean they are more extensible at low pH (< 5) 1. The plant hormone auxin rapidly stimulates cell elongation in young stems and similar tissues at least in part by an acid-growth mechanism 2, 3. Auxin activates a H+ pump in the plasma membrane, causing acidification of the cell wall solution. Wall acidification activates expansins, which are endogenous cell wall-loosening proteins 4, causing the cell wall to yield to the wall tensions created by cell turgor pressure. As a result, the cell begins to enlarge rapidly. This 'acid growth' phenomenon is readily measured in isolated (nonliving) cell wall specimens. The ability of cell walls to undergo acid-induced extension is not simply the result of the structural arrangement of the cell wall polysaccharides (e.g. pectins), but depends on the activity of expansins 5. Expansins do not have any known enzymatic activity and the only way to assay for expansin activity is to measure their induction of cell wall extension. This video report details the sources and preparation techniques for obtaining suitable wall materials for expansin assays and goes on to show acid-induced extension and expansin-induced extension of wall samples prepared from growing cucumber hypocotyls. To obtain suitable cell wall samples, cucumber seedlings are grown in the dark, the hypocotyls are cut and frozen at -80 °C. Frozen hypocotyls are abraded, flattened, and then clamped at constant tension in a special cuvette for extensometer measurements. To measure acid-induced extension, the walls are initially buffered at neutral pH, resulting in low activity of expansins that are components of the native cell walls. Upon buffer exchange to acidic pH, expansins are activated and the cell walls extend rapidly. We also demonstrate expansin activity in a reconstitution assay. For this part, we use a brief heat treatment to denature the native expansins in the cell wall samples. These inactivated cell walls do not extend even in acidic buffer, but addition of expansins to the cell walls rapidly restores their ability to extend.
Plant Biology, Issue 25, acid-induced growth, cell walls, expansin, extensometer assay, plant growth
Play Button
A Rapid Technique for the Visualization of Live Immobilized Yeast Cells
Authors: Karl Zawadzki, James Broach.
Institutions: Princeton University.
We present here a simple, rapid, and extremely flexible technique for the immobilization and visualization of growing yeast cells by epifluorescence microscopy. The technique is equally suited for visualization of static yeast populations, or time courses experiments up to ten hours in length. My microscopy investigates epigenetic inheritance at the silent mating loci in S. cerevisiae. There are two silent mating loci, HML and HMR, which are normally not expressed as they are packaged in heterochromatin. In the sir1 mutant background silencing is weakened such that each locus can either be in the expressed or silenced epigenetic state, so in the population as a whole there is a mix of cells of different epigenetic states for both HML and HMR. My microscopy demonstrated that there is no relationship between the epigenetic state of HML and HMR in an individual cell. sir1 cells stochastically switch epigenetic states, establishing silencing at a previously expressed locus or expressing a previously silenced locus. My time course microscopy tracked individual sir1 cells and their offspring to score the frequency of each of the four possible epigenetic switches, and thus the stability of each of the epigenetic states in sir1 cells. See also Xu et al., Mol. Cell 2006.
Microbiology, Issue 1, yeast, HML, HMR, epigenetic, loci, silencing, cerevisiae
Play Button
Measuring the Bending Stiffness of Bacterial Cells Using an Optical Trap
Authors: Siyuan Wang, Hugo Arellano-Santoyo, Peter A. Combs, Joshua W. Shaevitz.
Institutions: Princeton University, Princeton University.
We developed a protocol to measure the bending rigidity of filamentous rod-shaped bacteria. Forces are applied with an optical trap, a microscopic three-dimensional spring made of light that is formed when a high-intensity laser beam is focused to a very small spot by a microscope's objective lens. To bend a cell, we first bind live bacteria to a chemically-treated coverslip. As these cells grow, the middle of the cells remains bound to the coverslip but the growing ends are free of this restraint. By inducing filamentous growth with the drug cephalexin, we are able to identify cells in which one end of the cell was stuck to the surface while the other end remained unattached and susceptible to bending forces. A bending force is then applied with an optical trap by binding a polylysine-coated bead to the tip of a growing cell. Both the force and the displacement of the bead are recorded and the bending stiffness of the cell is the slope of this relationship.
Microbiology, Issue 38, optical trap, cell mechanics, E. coli, cell bending
Play Button
Stretching Micropatterned Cells on a PDMS Membrane
Authors: Nicolas Carpi, Matthieu Piel.
Institutions: Institut Curie.
Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment.
Bioengineering, Issue 83, micropatterns, stretching, forces, PDMS, microscopy, polarity, mechanical forces
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.