JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Proactive and reactive processes in the medial frontal cortex: an electrophysiological study.
PLoS ONE
PUBLISHED: 01-01-2014
The posterior medial frontal cortex (pMFC) is known to be involved in adaptive goal-directed behavior, but its specific function is not yet clear. Most theories have proposed that the pMFC monitors performance in a reactive manner only, but it is possible that the pMFC also contributes to performance monitoring in a proactive manner. To date, the evidence for proactive pMFC activity is equivocal. Here, we investigated pMFC activity before, during and after the performance of a challenging motor task. Participants navigated a cursor through narrow and wide mazes in randomly intermixed trials. On each trial, participants saw previews of the actual maze display prior to gaining control of the cursor. Event-related potentials (ERPs) to the preview displays were compared to ERPs elicited by no-go signals and errors. Compared to the wider maze, the preview display for the more challenging narrow maze elicited a medial-frontal negativity (MFN) similar to the ERP components elicited by no-go signals and errors. Like these known ERP components, the preview-elicited MFN appeared to be generated from a source in pMFC. This is consistent with the hypothesis that the pMFC participates in adaptive behavior whenever there is a need for increased effort to maintain successful task performance.
Authors: Vivian Gu, Ola Mohamed Ali, Katherine L'Abbée Lacas, J. Bruno Debruille.
Published: 11-19-2014
ABSTRACT
Within the field of cognitive neuroscience, functional magnetic resonance imaging (fMRI) is a popular method of visualizing brain function. This is in part because of its excellent spatial resolution, which allows researchers to identify brain areas associated with specific cognitive processes. However, in the quest to localize brain functions, it is relevant to note that many cognitive, sensory, and motor processes have temporal distinctions that are imperative to capture, an aspect that is left unfulfilled by fMRI’s suboptimal temporal resolution. To better understand cognitive processes, it is thus advantageous to utilize event-related potential (ERP) recording as a method of gathering information about the brain. Some of its advantages include its fantastic temporal resolution, which gives researchers the ability to follow the activity of the brain down to the millisecond. It also directly indexes both excitatory and inhibitory post-synaptic potentials by which most brain computations are performed. This sits in contrast to fMRI, which captures an index of metabolic activity. Further, the non-invasive ERP method does not require a contrast condition: raw ERPs can be examined for just one experimental condition, a distinction from fMRI where control conditions must be subtracted from the experimental condition, leading to uncertainty in associating observations with experimental or contrast conditions. While it is limited by its poor spatial and subcortical activity resolution, ERP recordings’ utility, relative cost-effectiveness, and associated advantages offer strong rationale for its use in cognitive neuroscience to track rapid temporal changes in neural activity. In an effort to foster increase in its use as a research imaging method, and to ensure proper and accurate data collection, the present article will outline – in the framework of a paradigm using semantic categorization to examine the effects of antipsychotics and schizotypy on the N400 – the procedure and key aspects associated with ERP data acquisition.
26 Related JoVE Articles!
Play Button
A Comprehensive Protocol for Manual Segmentation of the Medial Temporal Lobe Structures
Authors: Matthew Moore, Yifan Hu, Sarah Woo, Dylan O'Hearn, Alexandru D. Iordan, Sanda Dolcos, Florin Dolcos.
Institutions: University of Illinois Urbana-Champaign, University of Illinois Urbana-Champaign, University of Illinois Urbana-Champaign.
The present paper describes a comprehensive protocol for manual tracing of the set of brain regions comprising the medial temporal lobe (MTL): amygdala, hippocampus, and the associated parahippocampal regions (perirhinal, entorhinal, and parahippocampal proper). Unlike most other tracing protocols available, typically focusing on certain MTL areas (e.g., amygdala and/or hippocampus), the integrative perspective adopted by the present tracing guidelines allows for clear localization of all MTL subregions. By integrating information from a variety of sources, including extant tracing protocols separately targeting various MTL structures, histological reports, and brain atlases, and with the complement of illustrative visual materials, the present protocol provides an accurate, intuitive, and convenient guide for understanding the MTL anatomy. The need for such tracing guidelines is also emphasized by illustrating possible differences between automatic and manual segmentation protocols. This knowledge can be applied toward research involving not only structural MRI investigations but also structural-functional colocalization and fMRI signal extraction from anatomically defined ROIs, in healthy and clinical groups alike.
Neuroscience, Issue 89, Anatomy, Segmentation, Medial Temporal Lobe, MRI, Manual Tracing, Amygdala, Hippocampus, Perirhinal Cortex, Entorhinal Cortex, Parahippocampal Cortex
50991
Play Button
Extracting Visual Evoked Potentials from EEG Data Recorded During fMRI-guided Transcranial Magnetic Stimulation
Authors: Boaz Sadeh, Galit Yovel.
Institutions: Tel-Aviv University, Tel-Aviv University.
Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator's coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes.
Neuroscience, Issue 87, Transcranial Magnetic Stimulation, Neuroimaging, Neuronavigation, Visual Perception, Evoked Potentials, Electroencephalography, Event-related potential, fMRI, Combined Neuroimaging Methods, Face perception, Body Perception
51063
Play Button
Barnes Maze Testing Strategies with Small and Large Rodent Models
Authors: Cheryl S. Rosenfeld, Sherry A. Ferguson.
Institutions: University of Missouri, Food and Drug Administration.
Spatial learning and memory of laboratory rodents is often assessed via navigational ability in mazes, most popular of which are the water and dry-land (Barnes) mazes. Improved performance over sessions or trials is thought to reflect learning and memory of the escape cage/platform location. Considered less stressful than water mazes, the Barnes maze is a relatively simple design of a circular platform top with several holes equally spaced around the perimeter edge. All but one of the holes are false-bottomed or blind-ending, while one leads to an escape cage. Mildly aversive stimuli (e.g. bright overhead lights) provide motivation to locate the escape cage. Latency to locate the escape cage can be measured during the session; however, additional endpoints typically require video recording. From those video recordings, use of automated tracking software can generate a variety of endpoints that are similar to those produced in water mazes (e.g. distance traveled, velocity/speed, time spent in the correct quadrant, time spent moving/resting, and confirmation of latency). Type of search strategy (i.e. random, serial, or direct) can be categorized as well. Barnes maze construction and testing methodologies can differ for small rodents, such as mice, and large rodents, such as rats. For example, while extra-maze cues are effective for rats, smaller wild rodents may require intra-maze cues with a visual barrier around the maze. Appropriate stimuli must be identified which motivate the rodent to locate the escape cage. Both Barnes and water mazes can be time consuming as 4-7 test trials are typically required to detect improved learning and memory performance (e.g. shorter latencies or path lengths to locate the escape platform or cage) and/or differences between experimental groups. Even so, the Barnes maze is a widely employed behavioral assessment measuring spatial navigational abilities and their potential disruption by genetic, neurobehavioral manipulations, or drug/ toxicant exposure.
Behavior, Issue 84, spatial navigation, rats, Peromyscus, mice, intra- and extra-maze cues, learning, memory, latency, search strategy, escape motivation
51194
Play Button
Automated Visual Cognitive Tasks for Recording Neural Activity Using a Floor Projection Maze
Authors: Tara K. Jacobson, Jonathan W. Ho, Brendon W. Kent, Fang-Chi Yang, Rebecca D. Burwell.
Institutions: Brown University, Brown University.
Neuropsychological tasks used in primates to investigate mechanisms of learning and memory are typically visually guided cognitive tasks. We have developed visual cognitive tasks for rats using the Floor Projection Maze1,2 that are optimized for visual abilities of rats permitting stronger comparisons of experimental findings with other species. In order to investigate neural correlates of learning and memory, we have integrated electrophysiological recordings into fully automated cognitive tasks on the Floor Projection Maze1,2. Behavioral software interfaced with an animal tracking system allows monitoring of the animal's behavior with precise control of image presentation and reward contingencies for better trained animals. Integration with an in vivo electrophysiological recording system enables examination of behavioral correlates of neural activity at selected epochs of a given cognitive task. We describe protocols for a model system that combines automated visual presentation of information to rodents and intracranial reward with electrophysiological approaches. Our model system offers a sophisticated set of tools as a framework for other cognitive tasks to better isolate and identify specific mechanisms contributing to particular cognitive processes.
Neurobiology, Issue 84, Rat behavioral tasks, visual discrimination, chronic electrophysiological recordings, Floor Projection Maze, neuropsychology, learning, memory
51316
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
51631
Play Button
Stimulating the Lip Motor Cortex with Transcranial Magnetic Stimulation
Authors: Riikka Möttönen, Jack Rogers, Kate E. Watkins.
Institutions: University of Oxford.
Transcranial magnetic stimulation (TMS) has proven to be a useful tool in investigating the role of the articulatory motor cortex in speech perception. Researchers have used single-pulse and repetitive TMS to stimulate the lip representation in the motor cortex. The excitability of the lip motor representation can be investigated by applying single TMS pulses over this cortical area and recording TMS-induced motor evoked potentials (MEPs) via electrodes attached to the lip muscles (electromyography; EMG). Larger MEPs reflect increased cortical excitability. Studies have shown that excitability increases during listening to speech as well as during viewing speech-related movements. TMS can be used also to disrupt the lip motor representation. A 15-min train of low-frequency sub-threshold repetitive stimulation has been shown to suppress motor excitability for a further 15-20 min. This TMS-induced disruption of the motor lip representation impairs subsequent performance in demanding speech perception tasks and modulates auditory-cortex responses to speech sounds. These findings are consistent with the suggestion that the motor cortex contributes to speech perception. This article describes how to localize the lip representation in the motor cortex and how to define the appropriate stimulation intensity for carrying out both single-pulse and repetitive TMS experiments.
Behavior, Issue 88, electromyography, motor cortex, motor evoked potential, motor excitability, speech, repetitive TMS, rTMS, virtual lesion, transcranial magnetic stimulation
51665
Play Button
Cortical Source Analysis of High-Density EEG Recordings in Children
Authors: Joe Bathelt, Helen O'Reilly, Michelle de Haan.
Institutions: UCL Institute of Child Health, University College London.
EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis. 
Behavior, Issue 88, EEG, electroencephalogram, development, source analysis, pediatric, minimum-norm estimation, cognitive neuroscience, event-related potentials 
51705
Play Button
Ex Vivo Preparations of the Intact Vomeronasal Organ and Accessory Olfactory Bulb
Authors: Wayne I. Doyle, Gary F. Hammen, Julian P. Meeks.
Institutions: UT Southwestern Medical Center, Washington University in St. Louis.
The mouse accessory olfactory system (AOS) is a specialized sensory pathway for detecting nonvolatile social odors, pheromones, and kairomones. The first neural circuit in the AOS pathway, called the accessory olfactory bulb (AOB), plays an important role in establishing sex-typical behaviors such as territorial aggression and mating. This small (<1 mm3) circuit possesses the capacity to distinguish unique behavioral states, such as sex, strain, and stress from chemosensory cues in the secretions and excretions of conspecifics. While the compact organization of this system presents unique opportunities for recording from large portions of the circuit simultaneously, investigation of sensory processing in the AOB remains challenging, largely due to its experimentally disadvantageous location in the brain. Here, we demonstrate a multi-stage dissection that removes the intact AOB inside a single hemisphere of the anterior mouse skull, leaving connections to both the peripheral vomeronasal sensory neurons (VSNs) and local neuronal circuitry intact. The procedure exposes the AOB surface to direct visual inspection, facilitating electrophysiological and optical recordings from AOB circuit elements in the absence of anesthetics. Upon inserting a thin cannula into the vomeronasal organ (VNO), which houses the VSNs, one can directly expose the periphery to social odors and pheromones while recording downstream activity in the AOB. This procedure enables controlled inquiries into AOS information processing, which can shed light on mechanisms linking pheromone exposure to changes in behavior.
Neuroscience, Issue 90, vomeronasal organ, accessory olfactory bulb, ex vivo, mouse, olfaction
51813
Play Button
Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents
Authors: Mikhail Kislin, Ekaterina Mugantseva, Dmitry Molotkov, Natalia Kulesskaya, Stanislav Khirug, Ilya Kirilkin, Evgeny Pryazhnikov, Julia Kolikova, Dmytro Toptunov, Mikhail Yuryev, Rashid Giniatullin, Vootele Voikar, Claudio Rivera, Heikki Rauvala, Leonard Khiroug.
Institutions: University of Helsinki, Neurotar LTD, University of Eastern Finland, University of Helsinki.
It is widely acknowledged that the use of general anesthetics can undermine the relevance of electrophysiological or microscopical data obtained from a living animal’s brain. Moreover, the lengthy recovery from anesthesia limits the frequency of repeated recording/imaging episodes in longitudinal studies. Hence, new methods that would allow stable recordings from non-anesthetized behaving mice are expected to advance the fields of cellular and cognitive neurosciences. Existing solutions range from mere physical restraint to more sophisticated approaches, such as linear and spherical treadmills used in combination with computer-generated virtual reality. Here, a novel method is described where a head-fixed mouse can move around an air-lifted mobile homecage and explore its environment under stress-free conditions. This method allows researchers to perform behavioral tests (e.g., learning, habituation or novel object recognition) simultaneously with two-photon microscopic imaging and/or patch-clamp recordings, all combined in a single experiment. This video-article describes the use of the awake animal head fixation device (mobile homecage), demonstrates the procedures of animal habituation, and exemplifies a number of possible applications of the method.
Empty Value, Issue 88, awake, in vivo two-photon microscopy, blood vessels, dendrites, dendritic spines, Ca2+ imaging, intrinsic optical imaging, patch-clamp
51869
Play Button
Using the Threat Probability Task to Assess Anxiety and Fear During Uncertain and Certain Threat
Authors: Daniel E. Bradford, Katherine P. Magruder, Rachel A. Korhumel, John J. Curtin.
Institutions: University of Wisconsin-Madison.
Fear of certain threat and anxiety about uncertain threat are distinct emotions with unique behavioral, cognitive-attentional, and neuroanatomical components. Both anxiety and fear can be studied in the laboratory by measuring the potentiation of the startle reflex. The startle reflex is a defensive reflex that is potentiated when an organism is threatened and the need for defense is high. The startle reflex is assessed via electromyography (EMG) in the orbicularis oculi muscle elicited by brief, intense, bursts of acoustic white noise (i.e., “startle probes”). Startle potentiation is calculated as the increase in startle response magnitude during presentation of sets of visual threat cues that signal delivery of mild electric shock relative to sets of matched cues that signal the absence of shock (no-threat cues). In the Threat Probability Task, fear is measured via startle potentiation to high probability (100% cue-contingent shock; certain) threat cues whereas anxiety is measured via startle potentiation to low probability (20% cue-contingent shock; uncertain) threat cues. Measurement of startle potentiation during the Threat Probability Task provides an objective and easily implemented alternative to assessment of negative affect via self-report or other methods (e.g., neuroimaging) that may be inappropriate or impractical for some researchers. Startle potentiation has been studied rigorously in both animals (e.g., rodents, non-human primates) and humans which facilitates animal-to-human translational research. Startle potentiation during certain and uncertain threat provides an objective measure of negative affective and distinct emotional states (fear, anxiety) to use in research on psychopathology, substance use/abuse and broadly in affective science. As such, it has been used extensively by clinical scientists interested in psychopathology etiology and by affective scientists interested in individual differences in emotion.
Behavior, Issue 91, Startle; electromyography; shock; addiction; uncertainty; fear; anxiety; humans; psychophysiology; translational
51905
Play Button
Measuring Neural and Behavioral Activity During Ongoing Computerized Social Interactions: An Examination of Event-Related Brain Potentials
Authors: Jason R. Themanson.
Institutions: Illinois Wesleyan University.
Social exclusion is a complex social phenomenon with powerful negative consequences. Given the impact of social exclusion on mental and emotional health, an understanding of how perceptions of social exclusion develop over the course of a social interaction is important for advancing treatments aimed at lessening the harmful costs of being excluded. To date, most scientific examinations of social exclusion have looked at exclusion after a social interaction has been completed. While this has been very helpful in developing an understanding of what happens to a person following exclusion, it has not helped to clarify the moment-to-moment dynamics of the process of social exclusion. Accordingly, the current protocol was developed to obtain an improved understanding of social exclusion by examining the patterns of event-related brain activation that are present during social interactions. This protocol allows greater precision and sensitivity in detailing the social processes that lead people to feel as though they have been excluded from a social interaction. Importantly, the current protocol can be adapted to include research projects that vary the nature of exclusionary social interactions by altering how frequently participants are included, how long the periods of exclusion will last in each interaction, and when exclusion will take place during the social interactions. Further, the current protocol can be used to examine variables and constructs beyond those related to social exclusion. This capability to address a variety of applications across psychology by obtaining both neural and behavioral data during ongoing social interactions suggests the present protocol could be at the core of a developing area of scientific inquiry related to social interactions.
Behavior, Issue 93, Event-related brain potentials (ERPs), Social Exclusion, Neuroscience, N2, P3, Cognitive Control
52060
Play Button
Use of an Eight-arm Radial Water Maze to Assess Working and Reference Memory Following Neonatal Brain Injury
Authors: Stephanie C. Penley, Cynthia M. Gaudet, Steven W. Threlkeld.
Institutions: Rhode Island College, Rhode Island College.
Working and reference memory are commonly assessed using the land based radial arm maze. However, this paradigm requires pretraining, food deprivation, and may introduce scent cue confounds. The eight-arm radial water maze is designed to evaluate reference and working memory performance simultaneously by requiring subjects to use extra-maze cues to locate escape platforms and remedies the limitations observed in land based radial arm maze designs. Specifically, subjects are required to avoid the arms previously used for escape during each testing day (working memory) as well as avoid the fixed arms, which never contain escape platforms (reference memory). Re-entries into arms that have already been used for escape during a testing session (and thus the escape platform has been removed) and re-entries into reference memory arms are indicative of working memory deficits. Alternatively, first entries into reference memory arms are indicative of reference memory deficits. We used this maze to compare performance of rats with neonatal brain injury and sham controls following induction of hypoxia-ischemia and show significant deficits in both working and reference memory after eleven days of testing. This protocol could be easily modified to examine many other models of learning impairment.
Behavior, Issue 82, working memory, reference memory, hypoxia-ischemia, radial arm maze, water maze
50940
Play Button
Functional Imaging of Auditory Cortex in Adult Cats using High-field fMRI
Authors: Trecia A. Brown, Joseph S. Gati, Sarah M. Hughes, Pam L. Nixon, Ravi S. Menon, Stephen G. Lomber.
Institutions: University of Western Ontario, University of Western Ontario, University of Western Ontario, University of Western Ontario, University of Western Ontario, University of Western Ontario, University of Western Ontario.
Current knowledge of sensory processing in the mammalian auditory system is mainly derived from electrophysiological studies in a variety of animal models, including monkeys, ferrets, bats, rodents, and cats. In order to draw suitable parallels between human and animal models of auditory function, it is important to establish a bridge between human functional imaging studies and animal electrophysiological studies. Functional magnetic resonance imaging (fMRI) is an established, minimally invasive method of measuring broad patterns of hemodynamic activity across different regions of the cerebral cortex. This technique is widely used to probe sensory function in the human brain, is a useful tool in linking studies of auditory processing in both humans and animals and has been successfully used to investigate auditory function in monkeys and rodents. The following protocol describes an experimental procedure for investigating auditory function in anesthetized adult cats by measuring stimulus-evoked hemodynamic changes in auditory cortex using fMRI. This method facilitates comparison of the hemodynamic responses across different models of auditory function thus leading to a better understanding of species-independent features of the mammalian auditory cortex.
Neuroscience, Issue 84, Central Nervous System, Ear, Animal Experimentation, Models, Animal, Functional Neuroimaging, Brain Mapping, Nervous System, Sense Organs, auditory cortex, BOLD signal change, hemodynamic response, hearing, acoustic stimuli
50872
Play Button
Deriving the Time Course of Glutamate Clearance with a Deconvolution Analysis of Astrocytic Transporter Currents
Authors: Annalisa Scimemi, Jeffrey S. Diamond.
Institutions: National Institutes of Health.
The highest density of glutamate transporters in the brain is found in astrocytes. Glutamate transporters couple the movement of glutamate across the membrane with the co-transport of 3 Na+ and 1 H+ and the counter-transport of 1 K+. The stoichiometric current generated by the transport process can be monitored with whole-cell patch-clamp recordings from astrocytes. The time course of the recorded current is shaped by the time course of the glutamate concentration profile to which astrocytes are exposed, the kinetics of glutamate transporters, and the passive electrotonic properties of astrocytic membranes. Here we describe the experimental and analytical methods that can be used to record glutamate transporter currents in astrocytes and isolate the time course of glutamate clearance from all other factors that shape the waveform of astrocytic transporter currents. The methods described here can be used to estimate the lifetime of flash-uncaged and synaptically-released glutamate at astrocytic membranes in any region of the central nervous system during health and disease.
Neurobiology, Issue 78, Neuroscience, Biochemistry, Molecular Biology, Cellular Biology, Anatomy, Physiology, Biophysics, Astrocytes, Synapses, Glutamic Acid, Membrane Transport Proteins, Astrocytes, glutamate transporters, uptake, clearance, hippocampus, stratum radiatum, CA1, gene, brain, slice, animal model
50708
Play Button
Low-stress Route Learning Using the Lashley III Maze in Mice
Authors: Amanda Bressler, David Blizard, Anne Andrews.
Institutions: Pennsylvania State University, Pennsylvania State University, Pennsylvania State University, Pennsylvania State University, University of California, Los Angeles, University of California, Los Angeles.
Many behavior tests designed to assess learning and memory in rodents, particularly mice, rely on visual cues, food and/or water deprivation, or other aversive stimuli to motivate task acquisition. As animals age, sensory modalities deteriorate. For example, many strains of mice develop hearing deficits or cataracts. Changes in the sensory systems required to guide mice during task acquisition present potential confounds in interpreting learning changes in aging animals. Moreover, the use of aversive stimuli to motivate animals to learn tasks is potentially confounding when comparing mice with differential sensitivities to stress. To minimize these types of confounding effects, we have implemented a modified version of the Lashley III maze. This maze relies on route learning, whereby mice learn to navigate a maze via repeated exposure under low stress conditions, e.g. dark phase, no food/water deprivation, until they navigate a path from the start location to a pseudo-home cage with 0 or 1 error(s) on two consecutive trials. We classify this as a low-stress behavior test because it does not rely on aversive stimuli to encourage exploration of the maze and learning of the task. The apparatus consists of a modular start box, a 4-arm maze body, and a goal box. At the end of the goal box is a pseudo-home cage that contains bedding similar to that found in the animal’s home cage and is specific to each animal for the duration of maze testing. It has been demonstrated previously that this pseudo-home cage provides sufficient reward to motivate mice to learn to navigate the maze1. Here, we present the visualization of the Lashley III maze procedure in the context of evaluating age-related differences in learning and memory in mice along with a comparison of learning behavior in two different background strains of mice. We hope that other investigators interested in evaluating the effects of aging or stress vulnerability in mice will consider this maze an attractive alternative to behavioral tests that involve more stressful learning tasks and/or visual cues.
Neuroscience, Issue 39, mouse, behavior testing, learning, memory, neuroscience, phenotyping, aging
1786
Play Button
Shallow Water (Paddling) Variants of Water Maze Tests in Mice
Authors: Robert M.J. Deacon.
Institutions: University of Oxford.
When Richard Morris devised his water maze in 19817, most behavioral work was done in rats. However, the greater understanding of mouse genetics led to the mouse becoming increasingly important. But researchers found that some strains of mutant mice were prone to problems like passively floating or diving when they were tested in the Morris water maze11. This was unsurprising considering their natural habitat; rats swim naturally (classically, the "sewer rat"), whereas mice evolved in the dry areas of central Asia. To overcome these problems, it was considered whether shallow water would be a sufficient stimulus to provide escape motivation for mice. This would also avoid the problems of drying the small creatures with a towel and then putting them in a heated recovery chamber to avoid hypothermia, which is a much more serious problem than with rats; the large ratio of surface area to volume of a mouse makes it particularly vulnerable to rapid heat loss. Another consideration was whether a more natural escape strategy could be used, to facilitate learning. Since animals that fall into water and swim away from the safety of the shore are unlikely to pass on their genes, animals have evolved a natural tendency to swim to the edge of a body of water. The Morris water maze, however, requires them to swim to a hidden platform towards the center of the maze - exactly opposite to their evolved behavior. Therefore the paddling maze should incorporate escape to the edge of the apparatus. This feature, coupled with the use of relatively non-aversive shallow water, embodies the "Refinement" aspect of the "3 Rs" of Russell and Burch8. Various types of maze design were tried; the common feature was that the water was always shallow (2 cm deep) and escape was via a tube piercing the transparent wall of the apparatus. Other tubes ("false exits") were also placed around the walls but these were blocked off. From the inside of the maze all false exits and the single true exit looked the same. Currently a dodecagonal (12-sided) maze is in use in Oxford, with 12 true/false exits set in the corners. In a recent development a transparent paddling Y-maze has been tested successfully.
Behavior, Issue 76, Neuroscience, Neurobiology, Medicine, Psychology, Mice, hippocampus, paddling pool, Alzheimer's, welfare, 3Rs, Morris water maze, paddling Y-maze, Barnes maze, animal model
2608
Play Button
Examining the Characteristics of Episodic Memory using Event-related Potentials in Patients with Alzheimer's Disease
Authors: Erin Hussey, Brandon Ally.
Institutions: Vanderbilt University.
Our laboratory uses event-related EEG potentials (ERPs) to understand and support behavioral investigations of episodic memory in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). Whereas behavioral data inform us about the patients' performance, ERPs allow us to record discrete changes in brain activity. Further, ERPs can give us insight into the onset, duration, and interaction of independent cognitive processes associated with memory retrieval. In patient populations, these types of studies are used to examine which aspects of memory are impaired and which remain relatively intact compared to a control population. The methodology for collecting ERP data from a vulnerable patient population while these participants perform a recognition memory task is reviewed. This protocol includes participant preparation, quality assurance, data acquisition, and data analysis. In addition to basic setup and acquisition, we will also demonstrate localization techniques to obtain greater spatial resolution and source localization using high-density (128 channel) electrode arrays.
Medicine, Issue 54, recognition memory, episodic memory, event-related potentials, dual process, Alzheimer's disease, amnestic mild cognitive impairment
2715
Play Button
Multi-electrode Array Recordings of Neuronal Avalanches in Organotypic Cultures
Authors: Dietmar Plenz, Craig V. Stewart, Woodrow Shew, Hongdian Yang, Andreas Klaus, Tim Bellay.
Institutions: National Institute of Mental Health.
The cortex is spontaneously active, even in the absence of any particular input or motor output. During development, this activity is important for the migration and differentiation of cortex cell types and the formation of neuronal connections1. In the mature animal, ongoing activity reflects the past and the present state of an animal into which sensory stimuli are seamlessly integrated to compute future actions. Thus, a clear understanding of the organization of ongoing i.e. spontaneous activity is a prerequisite to understand cortex function. Numerous recording techniques revealed that ongoing activity in cortex is comprised of many neurons whose individual activities transiently sum to larger events that can be detected in the local field potential (LFP) with extracellular microelectrodes, or in the electroencephalogram (EEG), the magnetoencephalogram (MEG), and the BOLD signal from functional magnetic resonance imaging (fMRI). The LFP is currently the method of choice when studying neuronal population activity with high temporal and spatial resolution at the mesoscopic scale (several thousands of neurons). At the extracellular microelectrode, locally synchronized activities of spatially neighbored neurons result in rapid deflections in the LFP up to several hundreds of microvolts. When using an array of microelectrodes, the organizations of such deflections can be conveniently monitored in space and time. Neuronal avalanches describe the scale-invariant spatiotemporal organization of ongoing neuronal activity in the brain2,3. They are specific to the superficial layers of cortex as established in vitro4,5, in vivo in the anesthetized rat 6, and in the awake monkey7. Importantly, both theoretical and empirical studies2,8-10 suggest that neuronal avalanches indicate an exquisitely balanced critical state dynamics of cortex that optimizes information transfer and information processing. In order to study the mechanisms of neuronal avalanche development, maintenance, and regulation, in vitro preparations are highly beneficial, as they allow for stable recordings of avalanche activity under precisely controlled conditions. The current protocol describes how to study neuronal avalanches in vitro by taking advantage of superficial layer development in organotypic cortex cultures, i.e. slice cultures, grown on planar, integrated microelectrode arrays (MEA; see also 11-14).
Neuroscience, Issue 54, neuronal activity, neuronal avalanches, organotypic culture, slice culture, microelectrode array, electrophysiology, local field potential, extracellular spikes
2949
Play Button
Correlating Behavioral Responses to fMRI Signals from Human Prefrontal Cortex: Examining Cognitive Processes Using Task Analysis
Authors: Joseph F.X. DeSouza, Shima Ovaysikia, Laura K. Pynn.
Institutions: Centre for Vision Research, York University, Centre for Vision Research, York University.
The aim of this methods paper is to describe how to implement a neuroimaging technique to examine complementary brain processes engaged by two similar tasks. Participants' behavior during task performance in an fMRI scanner can then be correlated to the brain activity using the blood-oxygen-level-dependent signal. We measure behavior to be able to sort correct trials, where the subject performed the task correctly and then be able to examine the brain signals related to correct performance. Conversely, if subjects do not perform the task correctly, and these trials are included in the same analysis with the correct trials we would introduce trials that were not only for correct performance. Thus, in many cases these errors can be used themselves to then correlate brain activity to them. We describe two complementary tasks that are used in our lab to examine the brain during suppression of an automatic responses: the stroop1 and anti-saccade tasks. The emotional stroop paradigm instructs participants to either report the superimposed emotional 'word' across the affective faces or the facial 'expressions' of the face stimuli1,2. When the word and the facial expression refer to different emotions, a conflict between what must be said and what is automatically read occurs. The participant has to resolve the conflict between two simultaneously competing processes of word reading and facial expression. Our urge to read out a word leads to strong 'stimulus-response (SR)' associations; hence inhibiting these strong SR's is difficult and participants are prone to making errors. Overcoming this conflict and directing attention away from the face or the word requires the subject to inhibit bottom up processes which typically directs attention to the more salient stimulus. Similarly, in the anti-saccade task3,4,5,6, where an instruction cue is used to direct only attention to a peripheral stimulus location but then the eye movement is made to the mirror opposite position. Yet again we measure behavior by recording the eye movements of participants which allows for the sorting of the behavioral responses into correct and error trials7 which then can be correlated to brain activity. Neuroimaging now allows researchers to measure different behaviors of correct and error trials that are indicative of different cognitive processes and pinpoint the different neural networks involved.
Neuroscience, Issue 64, fMRI, eyetracking, BOLD, attention, inhibition, Magnetic Resonance Imaging, MRI
3237
Play Button
Using MazeSuite and Functional Near Infrared Spectroscopy to Study Learning in Spatial Navigation
Authors: Hasan Ayaz, Patricia A. Shewokis, Adrian Curtin, Meltem Izzetoglu, Kurtulus Izzetoglu, Banu Onaral.
Institutions: Drexel University, Drexel University.
MazeSuite is a complete toolset to prepare, present and analyze navigational and spatial experiments1. MazeSuite can be used to design and edit adapted virtual 3D environments, track a participants' behavioral performance within the virtual environment and synchronize with external devices for physiological and neuroimaging measures, including electroencephalogram and eye tracking. Functional near-infrared spectroscopy (fNIR) is an optical brain imaging technique that enables continuous, noninvasive, and portable monitoring of changes in cerebral blood oxygenation related to human brain functions2-7. Over the last decade fNIR is used to effectively monitor cognitive tasks such as attention, working memory and problem solving7-11. fNIR can be implemented in the form of a wearable and minimally intrusive device; it has the capacity to monitor brain activity in ecologically valid environments. Cognitive functions assessed through task performance involve patterns of brain activation of the prefrontal cortex (PFC) that vary from the initial novel task performance, after practice and during retention12. Using positron emission tomography (PET), Van Horn and colleagues found that regional cerebral blood flow was activated in the right frontal lobe during the encoding (i.e., initial naïve performance) of spatial navigation of virtual mazes while there was little to no activation of the frontal regions after practice and during retention tests. Furthermore, the effects of contextual interference, a learning phenomenon related to organization of practice, are evident when individuals acquire multiple tasks under different practice schedules13,14. High contextual interference (random practice schedule) is created when the tasks to be learned are presented in a non-sequential, unpredictable order. Low contextual interference (blocked practice schedule) is created when the tasks to be learned are presented in a predictable order. Our goal here is twofold: first to illustrate the experimental protocol design process and the use of MazeSuite, and second, to demonstrate the setup and deployment of the fNIR brain activity monitoring system using Cognitive Optical Brain Imaging (COBI) Studio software15. To illustrate our goals, a subsample from a study is reported to show the use of both MazeSuite and COBI Studio in a single experiment. The study involves the assessment of cognitive activity of the PFC during the acquisition and learning of computer maze tasks for blocked and random orders. Two right-handed adults (one male, one female) performed 315 acquisition, 30 retention and 20 transfer trials across four days. Design, implementation, data acquisition and analysis phases of the study were explained with the intention to provide a guideline for future studies.
Neuroscience, Issue 56, Cognitive, optical, brain, imaging, functional near-infrared spectroscopy, fNIR, spatial, navigation, software
3443
Play Button
Preparation of Parasagittal Slices for the Investigation of Dorsal-ventral Organization of the Rodent Medial Entorhinal Cortex
Authors: Hugh Pastoll, Melanie White, Matthew Nolan.
Institutions: University of Edinburgh , University of Edinburgh .
Computation in the brain relies on neurons responding appropriately to their synaptic inputs. Neurons differ in their complement and distribution of membrane ion channels that determine how they respond to synaptic inputs. However, the relationship between these cellular properties and neuronal function in behaving animals is not well understood. One approach to this problem is to investigate topographically organized neural circuits in which the position of individual neurons maps onto information they encode or computations they carry out1. Experiments using this approach suggest principles for tuning of synaptic responses underlying information encoding in sensory and cognitive circuits2,3. The topographical organization of spatial representations along the dorsal-ventral axis of the medial entorhinal cortex (MEC) provides an opportunity to establish relationships between cellular mechanisms and computations important for spatial cognition. Neurons in layer II of the rodent MEC encode location using grid-like firing fields4-6. For neurons found at dorsal positions in the MEC the distance between the individual firing fields that form a grid is on the order of 30 cm, whereas for neurons at progressively more ventral positions this distance increases to greater than 1 m. Several studies have revealed cellular properties of neurons in layer II of the MEC that, like the spacing between grid firing fields, also differ according to their dorsal-ventral position, suggesting that these cellular properties are important for spatial computation2,7-10. Here we describe procedures for preparation and electrophysiological recording from brain slices that maintain the dorsal-ventral extent of the MEC enabling investigation of the topographical organization of biophysical and anatomical properties of MEC neurons. The dorsal-ventral position of identified neurons relative to anatomical landmarks is difficult to establish accurately with protocols that use horizontal slices of MEC7,8,11,12, as it is difficult to establish reference points for the exact dorsal-ventral location of the slice. The procedures we describe enable accurate and consistent measurement of location of recorded cells along the dorsal-ventral axis of the MEC as well as visualization of molecular gradients2,10. The procedures have been developed for use with adult mice (> 28 days) and have been successfully employed with mice up to 1.5 years old. With adjustments they could be used with younger mice or other rodent species. A standardized system of preparation and measurement will aid systematic investigation of the cellular and microcircuit properties of this area.
Neuroscience, Issue 61, Parasagittal slice, Medial Entorhinal Cortex, Stellate cell, Grid cell, Synaptic integration, Topographic map
3802
Play Button
Perceptual and Category Processing of the Uncanny Valley Hypothesis' Dimension of Human Likeness: Some Methodological Issues
Authors: Marcus Cheetham, Lutz Jancke.
Institutions: University of Zurich.
Mori's Uncanny Valley Hypothesis1,2 proposes that the perception of humanlike characters such as robots and, by extension, avatars (computer-generated characters) can evoke negative or positive affect (valence) depending on the object's degree of visual and behavioral realism along a dimension of human likeness (DHL) (Figure 1). But studies of affective valence of subjective responses to variously realistic non-human characters have produced inconsistent findings 3, 4, 5, 6. One of a number of reasons for this is that human likeness is not perceived as the hypothesis assumes. While the DHL can be defined following Mori's description as a smooth linear change in the degree of physical humanlike similarity, subjective perception of objects along the DHL can be understood in terms of the psychological effects of categorical perception (CP) 7. Further behavioral and neuroimaging investigations of category processing and CP along the DHL and of the potential influence of the dimension's underlying category structure on affective experience are needed. This protocol therefore focuses on the DHL and allows examination of CP. Based on the protocol presented in the video as an example, issues surrounding the methodology in the protocol and the use in "uncanny" research of stimuli drawn from morph continua to represent the DHL are discussed in the article that accompanies the video. The use of neuroimaging and morph stimuli to represent the DHL in order to disentangle brain regions neurally responsive to physical human-like similarity from those responsive to category change and category processing is briefly illustrated.
Behavior, Issue 76, Neuroscience, Neurobiology, Molecular Biology, Psychology, Neuropsychology, uncanny valley, functional magnetic resonance imaging, fMRI, categorical perception, virtual reality, avatar, human likeness, Mori, uncanny valley hypothesis, perception, magnetic resonance imaging, MRI, imaging, clinical techniques
4375
Play Button
The Dig Task: A Simple Scent Discrimination Reveals Deficits Following Frontal Brain Damage
Authors: Kris M. Martens, Cole Vonder Haar, Blake A. Hutsell, Michael R. Hoane.
Institutions: Southern Illinois University at Carbondale.
Cognitive impairment is the most frequent cause of disability in humans following brain damage, yet the behavioral tasks used to assess cognition in rodent models of brain injury is lacking. Borrowing from the operant literature our laboratory utilized a basic scent discrimination paradigm1-4 in order to assess deficits in frontally-injured rats. Previously we have briefly described the Dig task and demonstrated that rats with frontal brain damage show severe deficits across multiple tests within the task5. Here we present a more detailed protocol for this task. Rats are placed into a chamber and allowed to discriminate between two scented sands, one of which contains a reinforcer. The trial ends after the rat either correctly discriminates (defined as digging in the correct scented sand), incorrectly discriminates, or 30 sec elapses. Rats that correctly discriminate are allowed to recover and consume the reinforcer. Rats that discriminate incorrectly are immediately removed from the chamber. This can continue through a variety of reversals and novel scents. The primary analysis is the accuracy for each scent pairing (cumulative proportion correct for each scent). The general findings from the Dig task suggest that it is a simple experimental preparation that can assess deficits in rats with bilateral frontal cortical damage compared to rats with unilateral parietal damage. The Dig task can also be easily incorporated into an existing cognitive test battery. The use of more tasks such as this one can lead to more accurate testing of frontal function following injury, which may lead to therapeutic options for treatment. All animal use was conducted in accordance with protocols approved by the Institutional Animal Care and Use Committee.
Neuroscience, Issue 71, Medicine, Neurobiology, Anatomy, Physiology, Psychology, Behavior, cognitive assessment, dig task, scent discrimination, olfactory, brain injury, traumatic brain injury, TBI, brain damage, rats, animal model
50033
Play Button
Simultaneous EEG Monitoring During Transcranial Direct Current Stimulation
Authors: Pedro Schestatsky, Leon Morales-Quezada, Felipe Fregni.
Institutions: Universidade Federal do Rio Grande do Sul, Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Harvard Medical School, De Montfort University.
Transcranial direct current stimulation (tDCS) is a technique that delivers weak electric currents through the scalp. This constant electric current induces shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Although tDCS has most of its neuromodulatory effects on the underlying cortex, tDCS effects can also be observed in distant neural networks. Therefore, concomitant EEG monitoring of the effects of tDCS can provide valuable information on the mechanisms of tDCS. In addition, EEG findings can be an important surrogate marker for the effects of tDCS and thus can be used to optimize its parameters. This combined EEG-tDCS system can also be used for preventive treatment of neurological conditions characterized by abnormal peaks of cortical excitability, such as seizures. Such a system would be the basis of a non-invasive closed-loop device. In this article, we present a novel device that is capable of utilizing tDCS and EEG simultaneously. For that, we describe in a step-by-step fashion the main procedures of the application of this device using schematic figures, tables and video demonstrations. Additionally, we provide a literature review on clinical uses of tDCS and its cortical effects measured by EEG techniques.
Behavior, Issue 76, Medicine, Neuroscience, Neurobiology, Anatomy, Physiology, Biomedical Engineering, Psychology, electroencephalography, electroencephalogram, EEG, transcranial direct current stimulation, tDCS, noninvasive brain stimulation, neuromodulation, closed-loop system, brain, imaging, clinical techniques
50426
Play Button
High Density Event-related Potential Data Acquisition in Cognitive Neuroscience
Authors: Scott D. Slotnick.
Institutions: Boston College.
Functional magnetic resonance imaging (fMRI) is currently the standard method of evaluating brain function in the field of Cognitive Neuroscience, in part because fMRI data acquisition and analysis techniques are readily available. Because fMRI has excellent spatial resolution but poor temporal resolution, this method can only be used to identify the spatial location of brain activity associated with a given cognitive process (and reveals virtually nothing about the time course of brain activity). By contrast, event-related potential (ERP) recording, a method that is used much less frequently than fMRI, has excellent temporal resolution and thus can track rapid temporal modulations in neural activity. Unfortunately, ERPs are under utilized in Cognitive Neuroscience because data acquisition techniques are not readily available and low density ERP recording has poor spatial resolution. In an effort to foster the increased use of ERPs in Cognitive Neuroscience, the present article details key techniques involved in high density ERP data acquisition. Critically, high density ERPs offer the promise of excellent temporal resolution and good spatial resolution (or excellent spatial resolution if coupled with fMRI), which is necessary to capture the spatial-temporal dynamics of human brain function.
Neuroscience, Issue 38, ERP, electrodes, methods, setup
1945
Play Button
Morris Water Maze Experiment
Authors: Joseph Nunez.
Institutions: Michigan State University (MSU).
The Morris water maze is widely used to study spatial memory and learning. Animals are placed in a pool of water that is colored opaque with powdered non-fat milk or non-toxic tempera paint, where they must swim to a hidden escape platform. Because they are in opaque water, the animals cannot see the platform, and cannot rely on scent to find the escape route. Instead, they must rely on external/extra-maze cues. As the animals become more familiar with the task, they are able to find the platform more quickly. Developed by Richard G. Morris in 1984, this paradigm has become one of the "gold standards" of behavioral neuroscience.
Behavior, Issue 19, Declarative, Hippocampus, Memory, Procedural, Rodent, Spatial Learning
897
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.