JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
A systematic critical appraisal for non-pharmacological management of osteoarthritis using the appraisal of guidelines research and evaluation II instrument.
PUBLISHED: 01-01-2014
Clinical practice CPGs (CPGs) have been developed to summarize evidence related to the management of osteoarthritis (OA). CPGs facilitate uptake of evidence-based knowledge by consumers, health professionals, health administrators and policy makers. The objectives of the present review were: 1) to assess the quality of the CPGs on non-pharmacological management of OA; using a standardized and validated instrument--the Appraisal of Guidelines Research and Evaluation (AGREE II) tool--by three pairs of trained appraisers; and 2) to summarize the recommendations based on only high-quality existing CPGs. Scientific literature databases from 2001 to 2013 were systematically searched for the state of evidence, with 17 CPGs for OA being identified. Most CPGs effectively addressed only a minority of AGREE II domains. Scope and purpose was effectively addressed in 10 CPGs on the management of OA, stakeholder involvement in 12 CPGs, rigour of development in 10 CPGs, clarity/presentation in 17 CPGs, editorial independence in 2 CPGs, and applicability in none of the OA CPGs. The overall quality of the included CPGs, according to the 7-point AGREE II scoring system, is 4.8 ± 0.41 for OA. Therapeutic exercises, patient education, transcutaneous electrical nerve stimulation, acupuncture, orthoses and insoles, heat and cryotherapy, patellar tapping, and weight control are commonly recommended for the non-pharmacological management of OA by the high-quality CPGs. The general clinical management recommendations tended to be similar among high-quality CPGs, although interventions addressed varied. Non-pharmacological management interventions were superficially addressed in more than half of the selected CPGs. For CPGs to be standardized uniform creators should use the AGREE II criteria when developing CPGs. Innovative and effective methods of CPG implementation to users are needed to ultimately enhance the quality of life of arthritic individuals.
Electrical stimulation (EStim) refers to the application of electrical current to muscles or nerves in order to achieve functional and therapeutic goals. It has been extensively used in various clinical settings. Based upon recent discoveries related to the systemic effects of voluntary breathing and intrinsic physiological interactions among systems during voluntary breathing, a new EStim protocol, Breathing-controlled Electrical Stimulation (BreEStim), has been developed to augment the effects of electrical stimulation. In BreEStim, a single-pulse electrical stimulus is triggered and delivered to the target area when the airflow rate of an isolated voluntary inspiration reaches the threshold. BreEStim integrates intrinsic physiological interactions that are activated during voluntary breathing and has demonstrated excellent clinical efficacy. Two representative applications of BreEStim are reported with detailed protocols: management of post-stroke finger flexor spasticity and neuropathic pain in spinal cord injury.
22 Related JoVE Articles!
Play Button
Guidelines for Elective Pediatric Fiberoptic Intubation
Authors: Roland N. Kaddoum, Zulfiqar Ahmed, Alan A. D'Augsutine, Maria M. Zestos.
Institutions: St. Jude Children's Research Hospital, Children's Hospital of Michigan, Children's Hospital of Michigan.
Fiberoptic intubation in pediatric patients is often required especially in difficult airways of syndromic patients i.e. Pierre Robin Syndrome. Small babies will desaturate very quickly if ventilation is interrupted mainly to high metabolic rate. We describe guidelines to perform a safe fiberoptic intubation while maintaining spontaneous breathing throughout the procedure. Steps requiring the use of propofol pump, fentanyl, glycopyrrolate, red rubber catheter, metal insuflation hook, afrin, lubricant and lidocaine spray are shown.
Medicine, Issue 47, Fiberoptic, Intubation, Pediatric, elective
Play Button
Bladder Smooth Muscle Strip Contractility as a Method to Evaluate Lower Urinary Tract Pharmacology
Authors: F. Aura Kullmann, Stephanie L. Daugherty, William C. de Groat, Lori A. Birder.
Institutions: University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine.
We describe an in vitro method to measure bladder smooth muscle contractility, and its use for investigating physiological and pharmacological properties of the smooth muscle as well as changes induced by pathology. This method provides critical information for understanding bladder function while overcoming major methodological difficulties encountered in in vivo experiments, such as surgical and pharmacological manipulations that affect stability and survival of the preparations, the use of human tissue, and/or the use of expensive chemicals. It also provides a way to investigate the properties of each bladder component (i.e. smooth muscle, mucosa, nerves) in healthy and pathological conditions. The urinary bladder is removed from an anesthetized animal, placed in Krebs solution and cut into strips. Strips are placed into a chamber filled with warm Krebs solution. One end is attached to an isometric tension transducer to measure contraction force, the other end is attached to a fixed rod. Tissue is stimulated by directly adding compounds to the bath or by electric field stimulation electrodes that activate nerves, similar to triggering bladder contractions in vivo. We demonstrate the use of this method to evaluate spontaneous smooth muscle contractility during development and after an experimental spinal cord injury, the nature of neurotransmission (transmitters and receptors involved), factors involved in modulation of smooth muscle activity, the role of individual bladder components, and species and organ differences in response to pharmacological agents. Additionally, it could be used for investigating intracellular pathways involved in contraction and/or relaxation of the smooth muscle, drug structure-activity relationships and evaluation of transmitter release. The in vitro smooth muscle contractility method has been used extensively for over 50 years, and has provided data that significantly contributed to our understanding of bladder function as well as to pharmaceutical development of compounds currently used clinically for bladder management.
Medicine, Issue 90, Krebs, species differences, in vitro, smooth muscle contractility, neural stimulation
Play Button
Fetal Echocardiography and Pulsed-wave Doppler Ultrasound in a Rabbit Model of Intrauterine Growth Restriction
Authors: Ryan Hodges, Masayuki Endo, Andre La Gerche, Elisenda Eixarch, Philip DeKoninck, Vessilina Ferferieva, Jan D'hooge, Euan M. Wallace, Jan Deprest.
Institutions: University Hospitals Leuven, Monash University, Victoria, Australia, Katholieke Universiteit Leuven, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER).
Fetal intrauterine growth restriction (IUGR) results in abnormal cardiac function that is apparent antenatally due to advances in fetoplacental Doppler ultrasound and fetal echocardiography. Increasingly, these imaging modalities are being employed clinically to examine cardiac function and assess wellbeing in utero, thereby guiding timing of birth decisions. Here, we used a rabbit model of IUGR that allows analysis of cardiac function in a clinically relevant way. Using isoflurane induced anesthesia, IUGR is surgically created at gestational age day 25 by performing a laparotomy, exposing the bicornuate uterus and then ligating 40-50% of uteroplacental vessels supplying each gestational sac in a single uterine horn. The other horn in the rabbit bicornuate uterus serves as internal control fetuses. Then, after recovery at gestational age day 30 (full term), the same rabbit undergoes examination of fetal cardiac function. Anesthesia is induced with ketamine and xylazine intramuscularly, then maintained by a continuous intravenous infusion of ketamine and xylazine to minimize iatrogenic effects on fetal cardiac function. A repeat laparotomy is performed to expose each gestational sac and a microultrasound examination (VisualSonics VEVO 2100) of fetal cardiac function is performed. Placental insufficiency is evident by a raised pulsatility index or an absent or reversed end diastolic flow of the umbilical artery Doppler waveform. The ductus venosus and middle cerebral artery Doppler is then examined. Fetal echocardiography is performed by recording B mode, M mode and flow velocity waveforms in lateral and apical views. Offline calculations determine standard M-mode cardiac variables, tricuspid and mitral annular plane systolic excursion, speckle tracking and strain analysis, modified myocardial performance index and vascular flow velocity waveforms of interest. This small animal model of IUGR therefore affords examination of in utero cardiac function that is consistent with current clinical practice and is therefore useful in a translational research setting.
Medicine, Issue 76, Developmental Biology, Biomedical Engineering, Molecular Biology, Anatomy, Physiology, Cardiology, Fetal Therapies, Obstetric Surgical Procedures, Fetal Development, Surgical Procedures, Operative, intrauterine growth restriction, fetal echocardiography, Doppler ultrasound, fetal hemodynamics, animal model, clinical techniques
Play Button
Clinical Assessment of Spatiotemporal Gait Parameters in Patients and Older Adults
Authors: Julia F. Item-Glatthorn, Nicola A. Maffiuletti.
Institutions: Schulthess Clinic.
Spatial and temporal characteristics of human walking are frequently evaluated to identify possible gait impairments, mainly in orthopedic and neurological patients1-4, but also in healthy older adults5,6. The quantitative gait analysis described in this protocol is performed with a recently-introduced photoelectric system (see Materials table) which has the potential to be used in the clinic because it is portable, easy to set up (no subject preparation is required before a test), and does not require maintenance and sensor calibration. The photoelectric system consists of series of high-density floor-based photoelectric cells with light-emitting and light-receiving diodes that are placed parallel to each other to create a corridor, and are oriented perpendicular to the line of progression7. The system simply detects interruptions in light signal, for instance due to the presence of feet within the recording area. Temporal gait parameters and 1D spatial coordinates of consecutive steps are subsequently calculated to provide common gait parameters such as step length, single limb support and walking velocity8, whose validity against a criterion instrument has recently been demonstrated7,9. The measurement procedures are very straightforward; a single patient can be tested in less than 5 min and a comprehensive report can be generated in less than 1 min.
Medicine, Issue 93, gait analysis, walking, floor-based photocells, spatiotemporal, elderly, orthopedic patients, neurological patients
Play Button
Tangential Flow Ultrafiltration: A “Green” Method for the Size Selection and Concentration of Colloidal Silver Nanoparticles
Authors: Catherine B. Anders, Joshua D. Baker, Adam C. Stahler, Austin J. Williams, Jackie N. Sisco, John C. Trefry, Dawn P. Wooley, Ioana E. Pavel Sizemore.
Institutions: Wright State University, Wright State University.
Nowadays, AgNPs are extensively used in the manufacture of consumer products,1 water disinfectants,2 therapeutics,1, 3 and biomedical devices4 due to their powerful antimicrobial properties.3-6 These nanoparticle applications are strongly influenced by the AgNP size and aggregation state. Many challenges exist in the controlled fabrication7 and size-based isolation4,8 of unfunctionalized, homogenous AgNPs that are free from chemically aggressive capping/stabilizing agents or organic solvents.7-13 Limitations emerge from the toxicity of reagents, high costs or reduced efficiency of the AgNP synthesis or isolation methods (e.g., centrifugation, size-dependent solubility, size-exclusion chromatography, etc.).10,14-18 To overcome this, we recently showed that TFU permits greater control over the size, concentration and aggregation state of Creighton AgNPs (300 ml of 15.3 μg ml-1 down to 10 ml of 198.7 μg ml-1) than conventional methods of isolation such as ultracentrifugation.19 TFU is a recirculation method commonly used for the weight-based isolation of proteins, viruses and cells.20,21 Briefly, the liquid sample is passed through a series of hollow fiber membranes with pore size ranging from 1,000 kD to 10 kD. Smaller suspended or dissolved constituents in the sample will pass through the porous barrier together with the solvent (filtrate), while the larger constituents are retained (retentate). TFU may be considered a "green" method as it neither damages the sample nor requires additional solvent to eliminate toxic excess reagents and byproducts. Furthermore, TFU may be applied to a large variety of nanoparticles as both hydrophobic and hydrophilic filters are available. The two main objectives of this study were: 1) to illustrate the experimental aspects of the TFU approach through an invited video experience and 2) to demonstrate the feasibility of the TFU method for larger volumes of colloidal nanoparticles and smaller volumes of retentate. First, unfuctionalized AgNPs (4 L, 15.2 μg ml-1) were synthesized using the well-established Creighton method22,23 by the reduction of AgNO3 with NaBH4. AgNP polydispersity was then minimized via a 3-step TFU using a 50-nm filter (460 cm2) to remove AgNPs and AgNP-aggregates larger than 50 nm, followed by two 100-kD (200 cm2 and 20 cm2) filters to concentrate the AgNPs. Representative samples were characterized using transmission electron microscopy, UV-Vis absorption spectrophotometry, Raman spectroscopy, and inductively coupled plasma optical emission spectroscopy. The final retentate consisted of highly concentrated (4 ml, 8,539.9 μg ml-1) yet lowly aggregated and homogeneous AgNPs of 1-20 nm in diameter. This corresponds to a silver concentration yield of about 62%.
Chemistry, Issue 68, Biomedical Engineering, Chemical Engineering, Nanotechnology, silver nanoparticles, size selection, concentration, tangential flow ultrafiltration
Play Button
Tilt Testing with Combined Lower Body Negative Pressure: a "Gold Standard" for Measuring Orthostatic Tolerance
Authors: Clare L. Protheroe, Henrike (Rianne) J.C. Ravensbergen, Jessica A. Inskip, Victoria E. Claydon.
Institutions: Simon Fraser University .
Orthostatic tolerance (OT) refers to the ability to maintain cardiovascular stability when upright, against the hydrostatic effects of gravity, and hence to maintain cerebral perfusion and prevent syncope (fainting). Various techniques are available to assess OT and the effects of gravitational stress upon the circulation, typically by reproducing a presyncopal event (near-fainting episode) in a controlled laboratory environment. The time and/or degree of stress required to provoke this response provides the measure of OT. Any technique used to determine OT should: enable distinction between patients with orthostatic intolerance (of various causes) and asymptomatic control subjects; be highly reproducible, enabling evaluation of therapeutic interventions; avoid invasive procedures, which are known to impair OT1. In the late 1980s head-upright tilt testing was first utilized for diagnosing syncope2. Since then it has been used to assess OT in patients with syncope of unknown cause, as well as in healthy subjects to study postural cardiovascular reflexes2-6. Tilting protocols comprise three categories: passive tilt; passive tilt accompanied by pharmacological provocation; and passive tilt with combined lower body negative pressure (LBNP). However, the effects of tilt testing (and other orthostatic stress testing modalities) are often poorly reproducible, with low sensitivity and specificity to diagnose orthostatic intolerance7. Typically, a passive tilt includes 20-60 min of orthostatic stress continued until the onset of presyncope in patients2-6. However, the main drawback of this procedure is its inability to invoke presyncope in all individuals undergoing the test, and corresponding low sensitivity8,9. Thus, different methods were explored to increase the orthostatic stress and improve sensitivity. Pharmacological provocation has been used to increase the orthostatic challenge, for example using isoprenaline4,7,10,11 or sublingual nitrate12,13. However, the main drawback of these approaches are increases in sensitivity at the cost of unacceptable decreases in specificity10,14, with a high positive response rate immediately after administration15. Furthermore, invasive procedures associated with some pharmacological provocations greatly increase the false positive rate1. Another approach is to combine passive tilt testing with LBNP, providing a stronger orthostatic stress without invasive procedures or drug side-effects, using the technique pioneered by Professor Roger Hainsworth in the 1990s16-18. This approach provokes presyncope in almost all subjects (allowing for symptom recognition in patients with syncope), while discriminating between patients with syncope and healthy controls, with a specificity of 92%, sensitivity of 85%, and repeatability of 1.1±0.6 min16,17. This allows not only diagnosis and pathophysiological assessment19-22, but also the evaluation of treatments for orthostatic intolerance due to its high repeatability23-30. For these reasons, we argue this should be the "gold standard" for orthostatic stress testing, and accordingly this will be the method described in this paper.
Medicine, Issue 73, Anatomy, Physiology, Biomedical Engineering, Neurobiology, Kinesiology, Cardiology, tilt test, lower body negative pressure, orthostatic stress, syncope, orthostatic tolerance, fainting, gravitational stress, head upright, stroke, clinical techniques
Play Button
A Murine Model of Myocardial Ischemia-reperfusion Injury through Ligation of the Left Anterior Descending Artery
Authors: Zhaobin Xu, Jenna Alloush, Eric Beck, Noah Weisleder.
Institutions: The Ohio State University.
Acute or chronic myocardial infarction (MI) are cardiovascular events resulting in high morbidity and mortality. Establishing the pathological mechanisms at work during MI and developing effective therapeutic approaches requires methodology to reproducibly simulate the clinical incidence and reflect the pathophysiological changes associated with MI. Here, we describe a surgical method to induce MI in mouse models that can be used for short-term ischemia-reperfusion (I/R) injury as well as permanent ligation. The major advantage of this method is to facilitate location of the left anterior descending artery (LAD) to allow for accurate ligation of this artery to induce ischemia in the left ventricle of the mouse heart. Accurate positioning of the ligature on the LAD increases reproducibility of infarct size and thus produces more reliable results. Greater precision in placement of the ligature will improve the standard surgical approaches to simulate MI in mice, thus reducing the number of experimental animals necessary for statistically relevant studies and improving our understanding of the mechanisms producing cardiac dysfunction following MI. This mouse model of MI is also useful for the preclinical testing of treatments targeting myocardial damage following MI.
Medicine, Issue 86, Myocardial Ischemia/Reperfusion, permanent ligation, left anterior descending artery, myocardial infarction, LAD, ligation, Cardiac troponin I
Play Button
A Neuroscientific Approach to the Examination of Concussions in Student-Athletes
Authors: Caroline J. Ketcham, Eric Hall, Walter R. Bixby, Srikant Vallabhajosula, Stephen E. Folger, Matthew C. Kostek, Paul C. Miller, Kenneth P. Barnes, Kirtida Patel.
Institutions: Elon University, Elon University, Duquesne University, Elon University.
Concussions are occurring at alarming rates in the United States and have become a serious public health concern. The CDC estimates that 1.6 to 3.8 million concussions occur in sports and recreational activities annually. Concussion as defined by the 2013 Concussion Consensus Statement “may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an ‘impulsive’ force transmitted to the head.” Concussions leave the individual with both short- and long-term effects. The short-term effects of sport related concussions may include changes in playing ability, confusion, memory disturbance, the loss of consciousness, slowing of reaction time, loss of coordination, headaches, dizziness, vomiting, changes in sleep patterns and mood changes. These symptoms typically resolve in a matter of days. However, while some individuals recover from a single concussion rather quickly, many experience lingering effects that can last for weeks or months. The factors related to concussion susceptibility and the subsequent recovery times are not well known or understood at this time. Several factors have been suggested and they include the individual’s concussion history, the severity of the initial injury, history of migraines, history of learning disabilities, history of psychiatric comorbidities, and possibly, genetic factors. Many studies have individually investigated certain factors both the short-term and long-term effects of concussions, recovery time course, susceptibility and recovery. What has not been clearly established is an effective multifaceted approach to concussion evaluation that would yield valuable information related to the etiology, functional changes, and recovery. The purpose of this manuscript is to show one such multifaceted approached which examines concussions using computerized neurocognitive testing, event related potentials, somatosensory perceptual responses, balance assessment, gait assessment and genetic testing.
Medicine, Issue 94, Concussions, Student-Athletes, Mild Traumatic Brain Injury, Genetics, Cognitive Function, Balance, Gait, Somatosensory
Play Button
Establishment of a Surgically-induced Model in Mice to Investigate the Protective Role of Progranulin in Osteoarthritis
Authors: Yunpeng Zhao, Ben Liu, Chuan-ju Liu.
Institutions: NYU Hospital for Joint Diseases, New York University Medical Center.
Destabilization of medial meniscus (DMM) model is an important tool for studying the pathophysiological roles of numerous arthritis associated molecules in the pathogenesis of osteoarthritis (OA) in vivo. However, the detailed, especially the visualized protocol for establishing this complicated model in mice, is not available. Herein we took advantage of wildtype and progranulin (PGRN)-/- mice as examples to introduce a protocol for inducing DMM model in mice, and compared the onset of OA following establishment of this surgically induced model. The operations performed on mice were either sham operation, which just opened joint capsule, or DMM operation, which cut the menisco-tibial ligament and caused destabilization of medial meniscus. Osteoarthritis severity was evaluated using histological assay (e.g. Safranin O staining), expressions of OA-associated genes, degradation of cartilage extracellular matrix molecules, and osteophyte formation. DMM operation successfully induced OA initiation and progression in both wildtype and PGRN-/- mice, and loss of PGNR growth factor led to a more severe OA phenotype in this surgically induced model.
Bioengineering, Issue 84, Mouse, Cartilage, Surgery, Osteoarthritis, degenerative arthritis, progranulin, destabilization of medial meniscus (DMM)
Play Button
Cancer Borealis Stomatogastric Nervous System Dissection
Authors: Gabrielle J. Gutierrez, Rachel G. Grashow.
Institutions: Brandeis.
The stomatogastric ganglion (STG) is an excellent model for studying cellular and network interactions because it contains a relatively small number of cells (approximately 25 in C. borealis) which are well characterized. The cells in the STG exhibit a broad range of outputs and are responsible for the motor actions of the stomach. The stomach contains the gastric mill which breaks down food with three internal teeth, and the pylorus which filters the food before it reaches the midgut. The STG produces two rhythmic outputs to control the gastric mill and pylorus known as central pattern generators (CPGs). Each cell in the STG can participate in one or both of these rhythms. These CPGs allow for the study of neuromodulation, homeostasis, cellular and network variability, network development, and network recovery. The dissection of the stomatogastric nervous system (STNS) from the Jonah crab (Cancer borealis) is done in two parts; the gross and fine dissection. In the gross dissection the entire stomach is dissected from the crab. During the fine dissection the STNS is extracted from the stomach using a dissection microscope and micro-dissection tools (see figure 1). The STNS includes the STG, the oesophageal ganglion (OG), and the commissural ganglia (CoG) as well as the nerves that innervate the stomach muscles. Here, we show how to perform a complete dissection of the STNS in preparation for an electrophysiology experiment where the cells in the STG would be recorded from intracellularly and the peripheral nerves would be used for extracellular recordings. The proper technique for finding the desired nerves is shown as well as our technique of desheathing the ganglion to reveal the somata and neuropil.
neuroscience, Issue 25, STG, crab, STNS, neural network, central pattern generator, CPG
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
Play Button
DNA Methylation: Bisulphite Modification and Analysis
Authors: Kate Patterson, Laura Molloy, Wenjia Qu, Susan Clark.
Institutions: Garvan Institute of Medical Research, University of NSW.
Epigenetics describes the heritable changes in gene function that occur independently to the DNA sequence. The molecular basis of epigenetic gene regulation is complex, but essentially involves modifications to the DNA itself or the proteins with which DNA associates. The predominant epigenetic modification of DNA in mammalian genomes is methylation of cytosine nucleotides (5-MeC). DNA methylation provides instruction to gene expression machinery as to where and when the gene should be expressed. The primary target sequence for DNA methylation in mammals is 5'-CpG-3' dinucleotides (Figure 1). CpG dinucleotides are not uniformly distributed throughout the genome, but are concentrated in regions of repetitive genomic sequences and CpG "islands" commonly associated with gene promoters (Figure 1). DNA methylation patterns are established early in development, modulated during tissue specific differentiation and disrupted in many disease states including cancer. To understand the biological role of DNA methylation and its role in human disease, precise, efficient and reproducible methods are required to detect and quantify individual 5-MeCs. This protocol for bisulphite conversion is the "gold standard" for DNA methylation analysis and facilitates identification and quantification of DNA methylation at single nucleotide resolution. The chemistry of cytosine deamination by sodium bisulphite involves three steps (Figure 2). (1) Sulphonation: The addition of bisulphite to the 5-6 double bond of cytosine (2) Hydrolic Deamination: hydrolytic deamination of the resulting cytosine-bisulphite derivative to give a uracil-bisulphite derivative (3) Alkali Desulphonation: Removal of the sulphonate group by an alkali treatment, to give uracil. Bisulphite preferentially deaminates cytosine to uracil in single stranded DNA, whereas 5-MeC, is refractory to bisulphite-mediated deamination. Upon PCR amplification, uracil is amplified as thymine while 5-MeC residues remain as cytosines, allowing methylated CpGs to be distinguished from unmethylated CpGs by presence of a cytosine "C" versus thymine "T" residue during sequencing. DNA modification by bisulphite conversion is a well-established protocol that can be exploited for many methods of DNA methylation analysis. Since the detection of 5-MeC by bisulphite conversion was first demonstrated by Frommer et al.1 and Clark et al.2, methods based around bisulphite conversion of genomic DNA account for the majority of new data on DNA methylation. Different methods of post PCR analysis may be utilized, depending on the degree of specificity and resolution of methylation required. Cloning and sequencing is still the most readily available method that can give single nucleotide resolution for methylation across the DNA molecule.
Genetics, Issue 56, epigenetics, DNA methylation, Bisulphite, 5-methylcytosine (5-MeC), PCR
Play Button
Single Oocyte Bisulfite Mutagenesis
Authors: Michelle M. Denomme, Liyue Zhang, Mellissa R.W. Mann.
Institutions: Schulich School of Medicine and Dentistry, University of Western Ontario, Schulich School of Medicine and Dentistry, University of Western Ontario, Children's Health Research Institute.
Epigenetics encompasses all heritable and reversible modifications to chromatin that alter gene accessibility, and thus are the primary mechanisms for regulating gene transcription1. DNA methylation is an epigenetic modification that acts predominantly as a repressive mark. Through the covalent addition of a methyl group onto cytosines in CpG dinucleotides, it can recruit additional repressive proteins and histone modifications to initiate processes involved in condensing chromatin and silencing genes2. DNA methylation is essential for normal development as it plays a critical role in developmental programming, cell differentiation, repression of retroviral elements, X-chromosome inactivation and genomic imprinting. One of the most powerful methods for DNA methylation analysis is bisulfite mutagenesis. Sodium bisulfite is a DNA mutagen that deaminates cytosines into uracils. Following PCR amplification and sequencing, these conversion events are detected as thymines. Methylated cytosines are protected from deamination and thus remain as cytosines, enabling identification of DNA methylation at the individual nucleotide level3. Development of the bisulfite mutagenesis assay has advanced from those originally reported4-6 towards ones that are more sensitive and reproducible7. One key advancement was embedding smaller amounts of DNA in an agarose bead, thereby protecting DNA from the harsh bisulfite treatment8. This enabled methylation analysis to be performed on pools of oocytes and blastocyst-stage embryos9. The most sophisticated bisulfite mutagenesis protocol to date is for individual blastocyst-stage embryos10. However, since blastocysts have on average 64 cells (containing 120-720 pg of genomic DNA), this method is not efficacious for methylation studies on individual oocytes or cleavage-stage embryos. Taking clues from agarose embedding of minute DNA amounts including oocytes11, here we present a method whereby oocytes are directly embedded in an agarose and lysis solution bead immediately following retrieval and removal of the zona pellucida from the oocyte. This enables us to bypass the two main challenges of single oocyte bisulfite mutagenesis: protecting a minute amount of DNA from degradation, and subsequent loss during the numerous protocol steps. Importantly, as data are obtained from single oocytes, the issue of PCR bias within pools is eliminated. Furthermore, inadvertent cumulus cell contamination is detectable by this method since any sample with more than one methylation pattern may be excluded from analysis12. This protocol provides an improved method for successful and reproducible analyses of DNA methylation at the single-cell level and is ideally suited for individual oocytes as well as cleavage-stage embryos.
Genetics, Issue 64, Developmental Biology, Biochemistry, Bisulfite mutagenesis, DNA methylation, individual oocyte, individual embryo, mouse model, PCR, epigenetics
Play Button
Movement Retraining using Real-time Feedback of Performance
Authors: Michael Anthony Hunt.
Institutions: University of British Columbia .
Any modification of movement - especially movement patterns that have been honed over a number of years - requires re-organization of the neuromuscular patterns responsible for governing the movement performance. This motor learning can be enhanced through a number of methods that are utilized in research and clinical settings alike. In general, verbal feedback of performance in real-time or knowledge of results following movement is commonly used clinically as a preliminary means of instilling motor learning. Depending on patient preference and learning style, visual feedback (e.g. through use of a mirror or different types of video) or proprioceptive guidance utilizing therapist touch, are used to supplement verbal instructions from the therapist. Indeed, a combination of these forms of feedback is commonplace in the clinical setting to facilitate motor learning and optimize outcomes. Laboratory-based, quantitative motion analysis has been a mainstay in research settings to provide accurate and objective analysis of a variety of movements in healthy and injured populations. While the actual mechanisms of capturing the movements may differ, all current motion analysis systems rely on the ability to track the movement of body segments and joints and to use established equations of motion to quantify key movement patterns. Due to limitations in acquisition and processing speed, analysis and description of the movements has traditionally occurred offline after completion of a given testing session. This paper will highlight a new supplement to standard motion analysis techniques that relies on the near instantaneous assessment and quantification of movement patterns and the display of specific movement characteristics to the patient during a movement analysis session. As a result, this novel technique can provide a new method of feedback delivery that has advantages over currently used feedback methods.
Medicine, Issue 71, Biophysics, Anatomy, Physiology, Physics, Biomedical Engineering, Behavior, Psychology, Kinesiology, Physical Therapy, Musculoskeletal System, Biofeedback, biomechanics, gait, movement, walking, rehabilitation, clinical, training
Play Button
Optimized Analysis of DNA Methylation and Gene Expression from Small, Anatomically-defined Areas of the Brain
Authors: Marc Bettscheider, Arleta Kuczynska, Osborne Almeida, Dietmar Spengler.
Institutions: Max Planck Institute of Psychiatry.
Exposure to diet, drugs and early life adversity during sensitive windows of life 1,2 can lead to lasting changes in gene expression that contribute to the display of physiological and behavioural phenotypes. Such environmental programming is likely to increase the susceptibility to metabolic, cardiovascular and mental diseases 3,4. DNA methylation and histone modifications are considered key processes in the mediation of the gene-environment dialogue and appear also to underlay environmental programming 5. In mammals, DNA methylation typically comprises the covalent addition of a methyl group at the 5-position of cytosine within the context of CpG dinucleotides. CpG methylation occurs in a highly tissue- and cell-specific manner making it a challenge to study discrete, small regions of the brain where cellular heterogeneity is high and tissue quantity limited. Moreover, because gene expression and methylation are closely linked events, increased value can be gained by comparing both parameters in the same sample. Here, a step-by-step protocol (Figure 1) for the investigation of epigenetic programming in the brain is presented using the 'maternal separation' paradigm of early life adversity for illustrative purposes. The protocol describes the preparation of micropunches from differentially-aged mouse brains from which DNA and RNA can be simultaneously isolated, thus allowing DNA methylation and gene expression analyses in the same sample.
Neuroscience, Issue 65, Genetics, Physiology, Epigenetics, DNA methylation, early-life stress, maternal separation, bisulfite sequencing
Play Button
Physical, Chemical and Biological Characterization of Six Biochars Produced for the Remediation of Contaminated Sites
Authors: Mackenzie J. Denyes, Michèle A. Parisien, Allison Rutter, Barbara A. Zeeb.
Institutions: Royal Military College of Canada, Queen's University.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.
Environmental Sciences, Issue 93, biochar, characterization, carbon sequestration, remediation, International Biochar Initiative (IBI), soil amendment
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
Play Button
Analysis of Tubular Membrane Networks in Cardiac Myocytes from Atria and Ventricles
Authors: Eva Wagner, Sören Brandenburg, Tobias Kohl, Stephan E. Lehnart.
Institutions: Heart Research Center Goettingen, University Medical Center Goettingen, German Center for Cardiovascular Research (DZHK) partner site Goettingen, University of Maryland School of Medicine.
In cardiac myocytes a complex network of membrane tubules - the transverse-axial tubule system (TATS) - controls deep intracellular signaling functions. While the outer surface membrane and associated TATS membrane components appear to be continuous, there are substantial differences in lipid and protein content. In ventricular myocytes (VMs), certain TATS components are highly abundant contributing to rectilinear tubule networks and regular branching 3D architectures. It is thought that peripheral TATS components propagate action potentials from the cell surface to thousands of remote intracellular sarcoendoplasmic reticulum (SER) membrane contact domains, thereby activating intracellular Ca2+ release units (CRUs). In contrast to VMs, the organization and functional role of TATS membranes in atrial myocytes (AMs) is significantly different and much less understood. Taken together, quantitative structural characterization of TATS membrane networks in healthy and diseased myocytes is an essential prerequisite towards better understanding of functional plasticity and pathophysiological reorganization. Here, we present a strategic combination of protocols for direct quantitative analysis of TATS membrane networks in living VMs and AMs. For this, we accompany primary cell isolations of mouse VMs and/or AMs with critical quality control steps and direct membrane staining protocols for fluorescence imaging of TATS membranes. Using an optimized workflow for confocal or superresolution TATS image processing, binarized and skeletonized data are generated for quantitative analysis of the TATS network and its components. Unlike previously published indirect regional aggregate image analysis strategies, our protocols enable direct characterization of specific components and derive complex physiological properties of TATS membrane networks in living myocytes with high throughput and open access software tools. In summary, the combined protocol strategy can be readily applied for quantitative TATS network studies during physiological myocyte adaptation or disease changes, comparison of different cardiac or skeletal muscle cell types, phenotyping of transgenic models, and pharmacological or therapeutic interventions.
Bioengineering, Issue 92, cardiac myocyte, atria, ventricle, heart, primary cell isolation, fluorescence microscopy, membrane tubule, transverse-axial tubule system, image analysis, image processing, T-tubule, collagenase
Play Button
Development of a Virtual Reality Assessment of Everyday Living Skills
Authors: Stacy A. Ruse, Vicki G. Davis, Alexandra S. Atkins, K. Ranga R. Krishnan, Kolleen H. Fox, Philip D. Harvey, Richard S.E. Keefe.
Institutions: NeuroCog Trials, Inc., Duke-NUS Graduate Medical Center, Duke University Medical Center, Fox Evaluation and Consulting, PLLC, University of Miami Miller School of Medicine.
Cognitive impairments affect the majority of patients with schizophrenia and these impairments predict poor long term psychosocial outcomes.  Treatment studies aimed at cognitive impairment in patients with schizophrenia not only require demonstration of improvements on cognitive tests, but also evidence that any cognitive changes lead to clinically meaningful improvements.  Measures of “functional capacity” index the extent to which individuals have the potential to perform skills required for real world functioning.  Current data do not support the recommendation of any single instrument for measurement of functional capacity.  The Virtual Reality Functional Capacity Assessment Tool (VRFCAT) is a novel, interactive gaming based measure of functional capacity that uses a realistic simulated environment to recreate routine activities of daily living. Studies are currently underway to evaluate and establish the VRFCAT’s sensitivity, reliability, validity, and practicality. This new measure of functional capacity is practical, relevant, easy to use, and has several features that improve validity and sensitivity of measurement of function in clinical trials of patients with CNS disorders.
Behavior, Issue 86, Virtual Reality, Cognitive Assessment, Functional Capacity, Computer Based Assessment, Schizophrenia, Neuropsychology, Aging, Dementia
Play Button
Magnetic Tweezers for the Measurement of Twist and Torque
Authors: Jan Lipfert, Mina Lee, Orkide Ordu, Jacob W. J. Kerssemakers, Nynke H. Dekker.
Institutions: Delft University of Technology.
Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque while maintaining a constant stretching force. Here, it is illustrated how such a “conventional” magnetic tweezers experimental configuration can, through a straightforward modification of its field configuration to minimize the magnitude of the transverse field, be adapted to measure the degree of twist in a biological molecule. The resulting configuration is termed the freely-orbiting magnetic tweezers. Additionally, it is shown how further modification of the field configuration can yield a transverse field with a magnitude intermediate between that of the “conventional” magnetic tweezers and the freely-orbiting magnetic tweezers, which makes it possible to directly measure the torque stored in a biological molecule. This configuration is termed the magnetic torque tweezers. The accompanying video explains in detail how the conversion of conventional magnetic tweezers into freely-orbiting magnetic tweezers and magnetic torque tweezers can be accomplished, and demonstrates the use of these techniques. These adaptations maintain all the strengths of conventional magnetic tweezers while greatly expanding the versatility of this powerful instrument.
Bioengineering, Issue 87, magnetic tweezers, magnetic torque tweezers, freely-orbiting magnetic tweezers, twist, torque, DNA, single-molecule techniques
Play Button
Using Visual and Narrative Methods to Achieve Fair Process in Clinical Care
Authors: Laura S. Lorenz, Jon A. Chilingerian.
Institutions: Brandeis University, Brandeis University.
The Institute of Medicine has targeted patient-centeredness as an important area of quality improvement. A major dimension of patient-centeredness is respect for patient's values, preferences, and expressed needs. Yet specific approaches to gaining this understanding and translating it to quality care in the clinical setting are lacking. From a patient perspective quality is not a simple concept but is best understood in terms of five dimensions: technical outcomes; decision-making efficiency; amenities and convenience; information and emotional support; and overall patient satisfaction. Failure to consider quality from this five-pronged perspective results in a focus on medical outcomes, without considering the processes central to quality from the patient's perspective and vital to achieving good outcomes. In this paper, we argue for applying the concept of fair process in clinical settings. Fair process involves using a collaborative approach to exploring diagnostic issues and treatments with patients, explaining the rationale for decisions, setting expectations about roles and responsibilities, and implementing a core plan and ongoing evaluation. Fair process opens the door to bringing patient expertise into the clinical setting and the work of developing health care goals and strategies. This paper provides a step by step illustration of an innovative visual approach, called photovoice or photo-elicitation, to achieve fair process in clinical work with acquired brain injury survivors and others living with chronic health conditions. Applying this visual tool and methodology in the clinical setting will enhance patient-provider communication; engage patients as partners in identifying challenges, strengths, goals, and strategies; and support evaluation of progress over time. Asking patients to bring visuals of their lives into the clinical interaction can help to illuminate gaps in clinical knowledge, forge better therapeutic relationships with patients living with chronic conditions such as brain injury, and identify patient-centered goals and possibilities for healing. The process illustrated here can be used by clinicians, (primary care physicians, rehabilitation therapists, neurologists, neuropsychologists, psychologists, and others) working with people living with chronic conditions such as acquired brain injury, mental illness, physical disabilities, HIV/AIDS, substance abuse, or post-traumatic stress, and by leaders of support groups for the types of patients described above and their family members or caregivers.
Medicine, Issue 48, person-centered care, participatory visual methods, photovoice, photo-elicitation, narrative medicine, acquired brain injury, disability, rehabilitation, palliative care
Play Button
Improving IV Insulin Administration in a Community Hospital
Authors: Michael C. Magee.
Institutions: Wyoming Medical Center.
Diabetes mellitus is a major independent risk factor for increased morbidity and mortality in the hospitalized patient, and elevated blood glucose concentrations, even in non-diabetic patients, predicts poor outcomes.1-4 The 2008 consensus statement by the American Association of Clinical Endocrinologists (AACE) and the American Diabetes Association (ADA) states that "hyperglycemia in hospitalized patients, irrespective of its cause, is unequivocally associated with adverse outcomes."5 It is important to recognize that hyperglycemia occurs in patients with known or undiagnosed diabetes as well as during acute illness in those with previously normal glucose tolerance. The Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation (NICE-SUGAR) study involved over six thousand adult intensive care unit (ICU) patients who were randomized to intensive glucose control or conventional glucose control.6 Surprisingly, this trial found that intensive glucose control increased the risk of mortality by 14% (odds ratio, 1.14; p=0.02). In addition, there was an increased prevalence of severe hypoglycemia in the intensive control group compared with the conventional control group (6.8% vs. 0.5%, respectively; p<0.001). From this pivotal trial and two others,7,8 Wyoming Medical Center (WMC) realized the importance of controlling hyperglycemia in the hospitalized patient while avoiding the negative impact of resultant hypoglycemia. Despite multiple revisions of an IV insulin paper protocol, analysis of data from usage of the paper protocol at WMC shows that in terms of achieving normoglycemia while minimizing hypoglycemia, results were suboptimal. Therefore, through a systematical implementation plan, monitoring of patient blood glucose levels was switched from using a paper IV insulin protocol to a computerized glucose management system. By comparing blood glucose levels using the paper protocol to that of the computerized system, it was determined, that overall, the computerized glucose management system resulted in more rapid and tighter glucose control than the traditional paper protocol. Specifically, a substantial increase in the time spent within the target blood glucose concentration range, as well as a decrease in the prevalence of severe hypoglycemia (BG < 40 mg/dL), clinical hypoglycemia (BG < 70 mg/dL), and hyperglycemia (BG > 180 mg/dL), was witnessed in the first five months after implementation of the computerized glucose management system. The computerized system achieved target concentrations in greater than 75% of all readings while minimizing the risk of hypoglycemia. The prevalence of hypoglycemia (BG < 70 mg/dL) with the use of the computer glucose management system was well under 1%.
Medicine, Issue 64, Physiology, Computerized glucose management, Endotool, hypoglycemia, hyperglycemia, diabetes, IV insulin, paper protocol, glucose control
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.