JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
An efficient large-scale retroviral transduction method involving preloading the vector into a RetroNectin-coated bag with low-temperature shaking.
PUBLISHED: 01-01-2014
In retroviral vector-mediated gene transfer, transduction efficiency can be hampered by inhibitory molecules derived from the culture fluid of virus producer cell lines. To remove these inhibitory molecules to enable better gene transduction, we had previously developed a transduction method using a fibronectin fragment-coated vessel (i.e., the RetroNectin-bound virus transduction method). In the present study, we developed a method that combined RetroNectin-bound virus transduction with low-temperature shaking and applied this method in manufacturing autologous retroviral-engineered T cells for adoptive transfer gene therapy in a large-scale closed system. Retroviral vector was preloaded into a RetroNectin-coated bag and incubated at 4°C for 16 h on a reciprocating shaker at 50 rounds per minute. After the supernatant was removed, activated T cells were added to the bag. The bag transduction method has the advantage of increasing transduction efficiency, as simply flipping over the bag during gene transduction facilitates more efficient utilization of the retroviral vector adsorbed on the top and bottom surfaces of the bag. Finally, we performed validation runs of endoribonuclease MazF-modified CD4(+) T cell manufacturing for HIV-1 gene therapy and T cell receptor-modified T cell manufacturing for MAGE-A4 antigen-expressing cancer gene therapy and achieved over 200-fold (? 10(10)) and 100-fold (? 5 × 10(9)) expansion, respectively. In conclusion, we demonstrated that the large-scale closed transduction system is highly efficient for retroviral vector-based T cell manufacturing for adoptive transfer gene therapy, and this technology is expected to be amenable to automation and improve current clinical gene therapy protocols.
Authors: Paul D. Bryson, Chupei Zhang, Chi-Lin Lee, Pin Wang.
Published: 06-19-2013
Lentiviral vectors (LVs) are a powerful means of delivering genetic material to many types of cells. Because of safety concerns associated with these HIV-1 derived vectors, producing large quantities of LVs is challenging. In this paper, we report a method for producing high titers of self-inactivating LVs. We retrovirally transduce the tet-off stable producer cell line GPR to generate a cell line, GPRS, which can express all the viral components, including a dendritic cell-specific glycoprotein, SVGmu. Then, we use concatemeric DNA transfection to transfect the LV transfer plasmid encoding a reporter gene GFP in combination with a selectable marker. Several of the resulting clones can produce LV at a titer 10-fold greater than what we achieve with transient transfection. Plus, these viruses efficiently transduce dendritic cells in vitro and generate a strong T cell immune response to our reporter antigen. This method may be a good option for producing strong LV-based vaccines for clinical studies of cancer or infectious diseases.
21 Related JoVE Articles!
Play Button
Production of Replication-Defective Retrovirus by Transient Transfection of 293T cells
Authors: L Cristina Gavrilescu, Richard A Van Etten.
Institutions: Tufts University.
Our lab studies human myeloproliferative diseases induced by such oncogenes as Bcr-Abl or growth factor receptor-derived oncogenes (ZNF198-FGFR1, Bcr-PDGFRα, etc.). We are able to model and study a human-like disease in our mouse model, by transplanting bone marrow cells previously infected with a retrovirus expressing the oncogene of interest. Replication-defective retrovirus encoding a human oncogene and a marker (GFP, RFP, antibiotic resistance gene, etc.) is produced by a transient transfection protocol using 293T cells, a human renal epithelial cell line transformed by the adenovirus E1A gene product. 293 cells have the unusual property of being highly transfectable by calcium phosphate (CaPO4), with up to 50-80% transfection efficiency readily attainable. Here, we co-transfect 293 cells with a retroviral vector expressing the oncogene of interest and a plasmid that expresses the gag-pol-env packaging functions, such as the single-genome packaging constructs kat or pCL, in this case the EcoPak plasmid. The initial transfection is further improved by use of chloroquine. Stocks of ecotropic virus, collected as culture supernatant 48 hrs. post-transfection, can be stored at -80°C and used for infection of cell-lines in view of transformation and in vitro studies, or primary cells such as mouse bone marrow cells, that can then be used for transplant in our mouse model.
Cellular Biology, issue 10, retrovirus, transfection, 293T cells
Play Button
Packaging HIV- or FIV-based Lentivector Expression Constructs & Transduction of VSV-G Pseudotyped Viral Particles
Authors: Amy Mendenhall, Jacob Lesnik, Chandreyee Mukherjee, Travis Antes, Ranjita Sengupta.
Institutions: System Biosciences.
As with standard plasmid vectors, it is possible to transfect lentivectors in plasmid form into cells with low-to-medium efficiency to obtain transient expression of effectors. Packaging lentiviral expression constructs into pseudoviral particles, however, enables up to 100% transduction, even with difficult-to-transfect cells, such as primary, stem, and differentiated cells. Moreover, the lentiviral delivery does not produce the specific cellular responses typically associated with chemical transfections, such as cell death resulting from toxicity of the transfection reagent 1, 2. When transduced into target cells, the lentiviral construct integrates into genomic DNA and provides stable expression of the small hairpin RNA (shRNA), cDNA, microRNA or reporter gene 3, 4. Target cells stably expressing the effector molecule can be isolated using a selectable marker contained in the expression vector construct such as puromycin or GFP. After pseudoviral particles infect target cells, they cannot replicate within target cells because the viral structural genes are absent and the long terminal repeats (LTRs) are designed to be self-inactivating upon transduction 5, 6. There are three main components necessary for efficient lentiviral packaging 1, 5, 6, 7. 1. The lentiviral expression vector that contains some of the genetic elements required for packaging, stable integration of the viral expression construct into genomic DNA, and expression of the effector or reporter. 2. The lentiviral packaging plasmids that provide the proteins essential for transcription and packaging of an RNA copy of the expression construct into recombinant pseudoviral particles. This protocol uses the pPACK plasmids (SBI) that encode for gag, pol, and rev from the HIV or FIV genome and Vesicular Stomatitis Virus g protein (VSV-G) for the viral coat protein. 3. 293TN producer cells (derived from HEK293 cells) that express the SV40 large T antigen, which is required for high-titer lentiviral production and a neomycin resistance gene, useful for reselecting the cells for maintenance. An overview of the viral production protocol can be seen in Figure 1. Viral production starts by co-transfecting 293TN producer cells with the lentiviral expression vector and the packaging plasmids. Viral particles are secreted into the media. After 48-72 hours the cell culture media is harvested. Cellular debris is removed from the cell culture media, and the viral particles are precipitated by centrifugation with PEG-it for concentration. Produced lentiviral particles are then titered and can be used to transduce target cells. Details of viral titering are not included in this protocol, but can be found at: 8. This protocol has been optimized using the specific products indicated. Other reagents may be substituted, but the same results cannot be guaranteed.
Immunology, Issue 62, lentivector, virus packaging, pseudovirus production, lentiviral packaging, HIV-based lentivector, lentiviral delivery, lentiviral transduction, lentivirus concentration, stable expression, stable cell lines
Play Button
Transduction of Human Cells with Polymer-complexed Ecotropic Lentivirus for Enhanced Biosafety
Authors: Bonnie Barrilleaux, Paul Knoepfler.
Institutions: University of California, Davis.
Stem and tumor cell biology studies often require viral transduction of human cells with known or suspected oncogenes, raising major safety issues for laboratory personnel. Pantropic lentiviruses, such as the commonly used VSV-G pseudotype, are a valuable tool for studying gene function because they can transduce many cell types, including non-dividing cells. However, researchers may wish to avoid production and centrifugation of pantropic viruses encoding oncogenes due to higher biosafety level handling requirements and safety issues. Several potent oncogenes, including c-Myc and SV40 large T antigen, are known to enhance production of induced pluripotent stem cells (iPSC). All other known iPSC-inducing genetic changes (OCT4, SOX2, KLF4, NANOG, LIN28, and p53 loss of function) also have links to cancer, making them of relatively high safety concern as well. While these cancer-related viruses are useful in studying cellular reprogramming and pluripotency, they must be used safely. To address these biosafety issues, we demonstrate a method for transduction of human cells with ecotropic lentivirus, with additional emphasis on reduced cost and convenient handling. We have produced ecotropic lentivirus with sufficiently high titer to transduce greater than 90% of receptor-expressing human cells exposed to the virus, validating the efficacy of this approach. Lentivirus is often concentrated by ultracentrifugation; however, this process takes several hours and can produce aerosols infectious to human biomedical researchers. As an alternative, viral particles can be more safely sedimented onto cells by complexation with chondroitin sulfate and polybrene (CS/PB). This technique increases the functional viral titer up to 3-fold in cells stably expressing murine retrovirus receptor, with negligible added time and cost. Transduction of human dermal fibroblasts (HDFs) is maximally enhanced using CS/PB concentrations approximately 4-fold lower than the optimal value previously reported for cancer cell lines, suggesting that polymer concentration should be titrated for the target cell type of interest. We therefore describe the use of methylthiazolyldiphenyl-tetrazolium bromide (MTT) to assay for polymer toxicity in a new cell type. We observe equivalent viability of HDFs after viral transduction using either polymer complexation or the standard dose of polybrene (PB, 6 μg/ml), indicating minimal acute toxicity. In this protocol, we describe the use of ecotropic lentivirus for overexpression of oncogenes in human cells, reducing biosafety risks and increasing the transduction rate. We also demonstrate the use of polymer complexation to enhance transduction while avoiding aerosol-forming centrifugation of viral particles.
Virology, Issue 53, ecotropic, lentivirus, biosafety, oncogenes, cellular reprogramming, induced pluripotent stem cells, cancer
Play Button
Selecting and Isolating Colonies of Human Induced Pluripotent Stem Cells Reprogrammed from Adult Fibroblasts
Authors: Urszula Polak, Calley Hirsch, Sherman Ku, Joel Gottesfeld, Sharon Y.R. Dent, Marek Napierala.
Institutions: University of Texas M.D. Anderson Cancer Center, Poznan University of Medical Sciences, The Scripps Research Institute.
Herein we present a protocol of reprogramming human adult fibroblasts into human induced pluripotent stem cells (hiPSC) using retroviral vectors encoding Oct3/4, Sox2, Klf4 and c-myc (OSKM) in the presence of sodium butyrate 1-3. We used this method to reprogram late passage (>p10) human adult fibroblasts derived from Friedreich's ataxia patient (GM03665, Coriell Repository). The reprogramming approach includes highly efficient transduction protocol using repetitive centrifugation of fibroblasts in the presence of virus-containing media. The reprogrammed hiPSC colonies were identified using live immunostaining for Tra-1-81, a surface marker of pluripotent cells, separated from non-reprogrammed fibroblasts and manually passaged 4,5. These hiPSC were then transferred to Matrigel plates and grown in feeder-free conditions, directly from the reprogramming plate. Starting from the first passage, hiPSC colonies demonstrate characteristic hES-like morphology. Using this protocol more than 70% of selected colonies can be successfully expanded and established into cell lines. The established hiPSC lines displayed characteristic pluripotency markers including surface markers TRA-1-60 and SSEA-4, as well as nuclear markers Oct3/4, Sox2 and Nanog. The protocol presented here has been established and tested using adult fibroblasts obtained from Friedreich's ataxia patients and control individuals 6, human newborn fibroblasts, as well as human keratinocytes.
Developmental Biology, Issue 60, stem cells, induced pluripotent stem cells, iPSC, somatic cell reprogramming, pluripotency, retroviral transduction
Play Button
High-Efficiency Transduction of Liver Cancer Cells by Recombinant Adeno-Associated Virus Serotype 3 Vectors
Authors: Chen Ling, Yuan Lu, Binbin Cheng, Katherine E. McGoogan, Samantha W.Y. Gee, Wenqin Ma, Baozheng Li, George V. Aslanidi, Arun Srivastava.
Institutions: University of Florida.
Recombinant vectors based on a non-pathogenic human parvovirus, the adeno-associated virus 2 (AAV2) have been developed, and are currently in use in a number of gene therapy clinical trials. More recently, a number of additional AAV serotypes have also been isolated, which have been shown to exhibit selective tissue-tropism in various small and large animal models1. Of the 10 most commonly used AAV serotypes, AAV3 is by far the least efficient in transducing cells and tissues in vitro as well as in vivo. However, in our recently published studies, we have documented that AAV3 vectors transduce human liver cancer - hepatoblastoma (HB) and hepatocellular carcinoma (HCC) - cell lines extremely efficiently because AAV3 utilizes human hepatocyte growth factor receptor as a cellular co-receptor for binding and entry in these cells2,3. In this article, we describe the steps required to achieve high-efficiency transduction of human liver cancer cells by recombinant AAV3 vectors carrying a reporter gene. The use of recombinant AAV3 vectors carrying a therapeutic gene may eventually lead to the potential gene therapy of liver cancers in humans.
Medicine, Issue 49, Adeno-associated virus, viral vectors, gene transfer, gene expression, liver cancer, gene therapy
Play Button
Adenovirus-mediated Genetic Removal of Signaling Molecules in Cultured Primary Mouse Embryonic Fibroblasts
Authors: Steve P. Hawley, Melanie K. B. Wills, Nina Jones.
Institutions: University of Guelph.
The ability to genetically remove specific components of various cell signalling cascades has been an integral tool in modern signal transduction analysis. One particular method to achieve this conditional deletion is via the use of the Cre-loxP system. This method involves flanking the gene of interest with loxP sites, which are specific recognition sequences for the Cre recombinase protein. Exposure of the so-called floxed (flanked by loxP site) DNA to this enzyme results in a Cre-mediated recombination event at the loxP sites, and subsequent excision of the intervening gene3. Several different methods exist to administer Cre recombinase to the site of interest. In this video, we demonstrate the use of an adenovirus containing the Cre recombinase gene to infect primary mouse embryonic fibroblasts (MEFs) obtained from embryos containing a floxed Rac1 allele1. Our rationale for selecting Rac1 MEFs for our experiments is that clear morphological changes can be seen upon deletion of Rac1, due to alterations in the actin cytoskeleton2,5. 72 hours following viral transduction and Cre expression, cells were stained using the actin dye phalloidin and imaged using confocal laser scanning microscopy. It was observed that MEFs which had been exposed to the adeno-Cre virus appeared contracted and elongated in morphology compared to uninfected cells, consistent with previous reports2,5. The adenovirus method of Cre recombinase delivery is advantageous as the adeno-Cre virus is easily available, and gene deletion via Cre in nearly 100% of the cells can be achieved with optimized adenoviral infection.
Cellular Biology, Issue 43, Cre-loxP, andenovirus, MEF, actin cytoskeleton, cell culture
Play Button
Colony Forming Cell (CFC) Assay for Human Hematopoietic Cells
Authors: Nayan J. Sarma, Akiko Takeda, Nabeel R. Yaseen.
Institutions: Washington University School of Medicine.
Human hematopoietic stem/progenitor cells are usually obtained from bone marrow, cord blood, or peripheral blood and are used to study hematopoiesis and leukemogenesis. They have the capacity to differentiate into lymphoid and myeloid lineages. The colony forming cell (CFC) assay is used to study the proliferation and differentiation pattern of hematopoietic progenitors by their ability to form colonies in a semisolid medium. The number and the morphology of the colonies formed by a fixed number of input cells provide preliminary information about the ability of progenitors to differentiate and proliferate. Cells can be harvested from individual colonies or from the whole plate to further assess their numbers and differentiation states using flow cytometry and morphologic evaluation of Giemsa-stained slides. This assay is useful for assessing myeloid but not lymphoid differentiation. The term myeloid in this context is used in its wider sense to encompass granulocytic, monocytic, erythroid, and megakaryocytic lineages. We have used this assay to assess the effects of oncogenes on the differentiation of primary human CD34+ cells derived from peripheral blood. For this purpose cells are transduced with either control retroviral construct or a construct expressing the oncogene of interest, in this case NUP98-HOXA9. We employ a commonly used retroviral vector, MSCV-IRES-GFP, that expresses a bicistronic mRNA that produces the gene of interest and a GFP marker. Cells are pre-activated by growing in the presence of cytokines for two days prior to retroviral transduction. After another two days, GFP+ cells are isolated by fluorescence-activated cell sorting (FACS) and mixed with a methylcellulose-containing semisolid medium supplemented with cytokines and incubated till colonies appear on the surface, typically 14 days. The number and morphology of the colonies are documented. Cells are then removed from the plates, washed, counted, and subjected to flow cytometry and morphologic examination. Flow cytometry with antibodies specific to the cell surface markers expressed during hematopoiesis provides information about lineage and maturation stage. Morphological studies of individual cells under a microscope after Wright- Giemsa staining provide further information with regard to lineage and maturation. Comparison of cells transduced with control empty vector to those transduced with an oncogene reveals the effects of the oncogene on hematopoietic differentiation.
Medicine, Issue 46, CFC assay, Hematopoietic progenitors, CD34, methylcellulose, flow cytometry, Wright/Giemsa
Play Button
Lineage-reprogramming of Pericyte-derived Cells of the Adult Human Brain into Induced Neurons
Authors: Marisa Karow, Christian Schichor, Ruth Beckervordersandforth, Benedikt Berninger.
Institutions: Ludwig Maximilians University Munich, Ludwig-Maximilians University Munich, Friedrich-Alexander-Universität Erlangen-Nürnberg, Johannes Gutenberg University Mainz.
Direct lineage-reprogramming of non-neuronal cells into induced neurons (iNs) may provide insights into the molecular mechanisms underlying neurogenesis and enable new strategies for in vitro modeling or repairing the diseased brain. Identifying brain-resident non-neuronal cell types amenable to direct conversion into iNs might allow for launching such an approach in situ, i.e. within the damaged brain tissue. Here we describe a protocol developed in the attempt of identifying cells derived from the adult human brain that fulfill this premise. This protocol involves: (1) the culturing of human cells from the cerebral cortex obtained from adult human brain biopsies; (2) the in vitro expansion (approximately requiring 2-4 weeks) and characterization of the culture by immunocytochemistry and flow cytometry; (3) the enrichment by fluorescence-activated cell sorting (FACS) using anti-PDGF receptor-β and anti-CD146 antibodies; (4) the retrovirus-mediated transduction with the neurogenic transcription factors sox2 and ascl1; (5) and finally the characterization of the resultant pericyte-derived induced neurons (PdiNs) by immunocytochemistry (14 days to 8 weeks following retroviral transduction). At this stage, iNs can be probed for their electrical properties by patch-clamp recording. This protocol provides a highly reproducible procedure for the in vitro lineage conversion of brain-resident pericytes into functional human iNs.
Neuroscience, Issue 87, Pericytes, lineage-reprogramming, induced neurons, cerebral cortex
Play Button
Retroviral Transduction of T-cell Receptors in Mouse T-cells
Authors: Shi Zhong, Karolina Malecek, Arianne Perez-Garcia, Michelle Krogsgaard.
Institutions: New York University School of Medicine, New York University School of Medicine.
T-cell receptors (TCRs) play a central role in the immune system. TCRs on T-cell surfaces can specifically recognize peptide antigens presented by antigen presenting cells (APCs)1. This recognition leads to the activation of T-cells and a series of functional outcomes (e.g. cytokine production, killing of the target cells). Understanding the functional role of TCRs is critical to harness the power of the immune system to treat a variety of immunology related diseases (e.g. cancer or autoimmunity). It is convenient to study TCRs in mouse models, which can be accomplished in several ways. Making TCR transgenic mouse models is costly and time-consuming and currently there are only a limited number of them available2-4. Alternatively, mice with antigen-specific T-cells can be generated by bone marrow chimera. This method also takes several weeks and requires expertise5. Retroviral transduction of TCRs into in vitro activated mouse T-cells is a quick and relatively easy method to obtain T-cells of desired peptide-MHC specificity. Antigen-specific T-cells can be generated in one week and used in any downstream applications. Studying transduced T-cells also has direct application to human immunotherapy, as adoptive transfer of human T-cells transduced with antigen-specific TCRs is an emerging strategy for cancer treatment6. Here we present a protocol to retrovirally transduce TCRs into in vitro activated mouse T-cells. Both human and mouse TCR genes can be used. Retroviruses carrying specific TCR genes are generated and used to infect mouse T-cells activated with anti-CD3 and anti-CD28 antibodies. After in vitro expansion, transduced T-cells are analyzed by flow cytometry.
Immunology, Issue 44, T-cell, T-cell receptor, Retrovirus, Mouse, Transduction, Spleen
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
Play Button
Clinical Application of Sleeping Beauty and Artificial Antigen Presenting Cells to Genetically Modify T Cells from Peripheral and Umbilical Cord Blood
Authors: M. Helen Huls, Matthew J. Figliola, Margaret J. Dawson, Simon Olivares, Partow Kebriaei, Elizabeth J. Shpall, Richard E. Champlin, Harjeet Singh, Laurence J.N. Cooper.
Institutions: U.T. MD Anderson Cancer Center, U.T. MD Anderson Cancer Center.
The potency of clinical-grade T cells can be improved by combining gene therapy with immunotherapy to engineer a biologic product with the potential for superior (i) recognition of tumor-associated antigens (TAAs), (ii) persistence after infusion, (iii) potential for migration to tumor sites, and (iv) ability to recycle effector functions within the tumor microenvironment. Most approaches to genetic manipulation of T cells engineered for human application have used retrovirus and lentivirus for the stable expression of CAR1-3. This approach, although compliant with current good manufacturing practice (GMP), can be expensive as it relies on the manufacture and release of clinical-grade recombinant virus from a limited number of production facilities. The electro-transfer of nonviral plasmids is an appealing alternative to transduction since DNA species can be produced to clinical grade at approximately 1/10th the cost of recombinant GMP-grade virus. To improve the efficiency of integration we adapted Sleeping Beauty (SB) transposon and transposase for human application4-8. Our SB system uses two DNA plasmids that consist of a transposon coding for a gene of interest (e.g. 2nd generation CD19-specific CAR transgene, designated CD19RCD28) and a transposase (e.g. SB11) which inserts the transgene into TA dinucleotide repeats9-11. To generate clinically-sufficient numbers of genetically modified T cells we use K562-derived artificial antigen presenting cells (aAPC) (clone #4) modified to express a TAA (e.g. CD19) as well as the T cell costimulatory molecules CD86, CD137L, a membrane-bound version of interleukin (IL)-15 (peptide fused to modified IgG4 Fc region) and CD64 (Fc-γ receptor 1) for the loading of monoclonal antibodies (mAb)12. In this report, we demonstrate the procedures that can be undertaken in compliance with cGMP to generate CD19-specific CAR+ T cells suitable for human application. This was achieved by the synchronous electro-transfer of two DNA plasmids, a SB transposon (CD19RCD28) and a SB transposase (SB11) followed by retrieval of stable integrants by the every-7-day additions (stimulation cycle) of γ-irradiated aAPC (clone #4) in the presence of soluble recombinant human IL-2 and IL-2113. Typically 4 cycles (28 days of continuous culture) are undertaken to generate clinically-appealing numbers of T cells that stably express the CAR. This methodology to manufacturing clinical-grade CD19-specific T cells can be applied to T cells derived from peripheral blood (PB) or umbilical cord blood (UCB). Furthermore, this approach can be harnessed to generate T cells to diverse tumor types by pairing the specificity of the introduced CAR with expression of the TAA, recognized by the CAR, on the aAPC.
Immunology, Issue 72, Cellular Biology, Medicine, Molecular Biology, Cancer Biology, Biomedical Engineering, Hematology, Biochemistry, Genetics, T-Lymphocytes, Antigen-Presenting Cells, Leukemia, Lymphoid, Lymphoma, Antigens, CD19, Immunotherapy, Adoptive, Electroporation, Genetic Engineering, Gene Therapy, Sleeping Beauty, CD19, T cells, Chimeric Antigen Receptor, Artificial Antigen Presenting Cells, Clinical Trial, Peripheral Blood, Umbilical Cord Blood, Cryopreservation, Electroporation
Play Button
Adenoviral Transduction of Naive CD4 T Cells to Study Treg Differentiation
Authors: Sebastian C. Warth, Vigo Heissmeyer.
Institutions: Helmholtz Zentrum München.
Regulatory T cells (Tregs) are essential to provide immune tolerance to self as well as to certain foreign antigens. Tregs can be generated from naive CD4 T cells in vitro with TCR- and co-stimulation in the presence of TGFβ and IL-2. This bears enormous potential for future therapies, however, the molecules and signaling pathways that control differentiation are largely unknown. Primary T cells can be manipulated through ectopic gene expression, but common methods fail to target the most important naive state of the T cell prior to primary antigen recognition. Here, we provide a protocol to express ectopic genes in naive CD4 T cells in vitro before inducing Treg differentiation. It applies transduction with the replication-deficient adenovirus and explains its generation and production. The adenovirus can take up large inserts (up to 7 kb) and can be equipped with promoters to achieve high and transient overexpression in T cells. It effectively transduces naive mouse T cells if they express a transgenic Coxsackie adenovirus receptor (CAR). Importantly, after infection the T cells remain naive (CD44low, CD62Lhigh) and resting (CD25-, CD69-) and can be activated and differentiated into Tregs similar to non-infected cells. Thus, this method enables manipulation of CD4 T cell differentiation from its very beginning. It ensures that ectopic gene expression is already in place when early signaling events of the initial TCR stimulation induces cellular changes that eventually lead into Treg differentiation.
Immunology, Issue 78, Cellular Biology, Molecular Biology, Medicine, Biomedical Engineering, Bioengineering, Infection, Genetics, Microbiology, Virology, T-Lymphocytes, Regulatory, CD4-Positive T-Lymphocytes, Regulatory, Adenoviruses, Human, MicroRNAs, Antigens, Differentiation, T-Lymphocyte, Gene Transfer Techniques, Transduction, Genetic, Transfection, Adenovirus, gene transfer, microRNA, overexpression, knock down, CD4 T cells, in vitro differentiation, regulatory T cell, virus, cell, flow cytometry
Play Button
Vascular Gene Transfer from Metallic Stent Surfaces Using Adenoviral Vectors Tethered through Hydrolysable Cross-linkers
Authors: Ilia Fishbein, Scott P. Forbes, Richard F. Adamo, Michael Chorny, Robert J. Levy, Ivan S. Alferiev.
Institutions: The Children's Hospital of Philadelphia, University of Pennsylvania.
In-stent restenosis presents a major complication of stent-based revascularization procedures widely used to re-establish blood flow through critically narrowed segments of coronary and peripheral arteries. Endovascular stents capable of tunable release of genes with anti-restenotic activity may present an alternative strategy to presently used drug-eluting stents. In order to attain clinical translation, gene-eluting stents must exhibit predictable kinetics of stent-immobilized gene vector release and site-specific transduction of vasculature, while avoiding an excessive inflammatory response typically associated with the polymer coatings used for physical entrapment of the vector. This paper describes a detailed methodology for coatless tethering of adenoviral gene vectors to stents based on a reversible binding of the adenoviral particles to polyallylamine bisphosphonate (PABT)-modified stainless steel surface via hydrolysable cross-linkers (HC). A family of bifunctional (amine- and thiol-reactive) HC with an average t1/2 of the in-chain ester hydrolysis ranging between 5 and 50 days were used to link the vector with the stent. The vector immobilization procedure is typically carried out within 9 hr and consists of several steps: 1) incubation of the metal samples in an aqueous solution of PABT (4 hr); 2) deprotection of thiol groups installed in PABT with tris(2-carboxyethyl) phosphine (20 min); 3) expansion of thiol reactive capacity of the metal surface by reacting the samples with polyethyleneimine derivatized with pyridyldithio (PDT) groups (2 hr); 4) conversion of PDT groups to thiols with dithiothreitol (10 min); 5) modification of adenoviruses with HC (1 hr); 6) purification of modified adenoviral particles by size-exclusion column chromatography (15 min) and 7) immobilization of thiol-reactive adenoviral particles on the thiolated steel surface (1 hr). This technique has wide potential applicability beyond stents, by facilitating surface engineering of bioprosthetic devices to enhance their biocompatibility through the substrate-mediated gene delivery to the cells interfacing the implanted foreign material.
Medicine, Issue 90, gene therapy, bioconjugation, adenoviral vectors, stents, local gene delivery, smooth muscle cells, endothelial cells, bioluminescence imaging
Play Button
Live Cell Imaging of Primary Rat Neonatal Cardiomyocytes Following Adenoviral and Lentiviral Transduction Using Confocal Spinning Disk Microscopy
Authors: Takashi Sakurai, Anthony Lanahan, Melissa J. Woolls, Na Li, Daniela Tirziu, Masahiro Murakami.
Institutions: Max-Planck-Institute for Molecular Biomedicine and Institute of Cell Biology, Yale Cardiovascular Research Center and Section of Cardiovascular Medicine.
Primary rat neonatal cardiomyocytes are useful in basic in vitro cardiovascular research because they can be easily isolated in large numbers in a single procedure. Due to advances in microscope technology it is relatively easy to capture live cell images for the purpose of investigating cellular events in real time with minimal concern regarding phototoxicity to the cells. This protocol describes how to take live cell timelapse images of primary rat neonatal cardiomyocytes using a confocal spinning disk microscope following lentiviral and adenoviral transduction to modulate properties of the cell. The application of two different types of viruses makes it easier to achieve an appropriate transduction rate and expression levels for two different genes. Well focused live cell images can be obtained using the microscope’s autofocus system, which maintains stable focus for long time periods. Applying this method, the functions of exogenously engineered proteins expressed in cultured primary cells can be analyzed. Additionally, this system can be used to examine the functions of genes through the use of siRNAs as well as of chemical modulators.
Cellular Biology, Issue 88, live cell imaging, cardiomyocyte, primary cell culture, adenovirus, lentivirus, confocal spinning disk microscopy
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
Play Button
A Video Protocol of Retroviral Infection in Primary Intestinal Organoid Culture
Authors: Amanda Andersson-Rolf, Juergen Fink, Roxana C. Mustata, Bon-Kyoung Koo.
Institutions: University of Cambridge, University of Cambridge.
Lgr5-positive stem cells can be supplemented with the essential growth factors Egf, Noggin, and R-Spondin, which allows us to culture ever-expanding primary 3D epithelial structures in vitro. Both the architecture and physiological properties of these 'mini-guts', also called organoids, closely resemble their in vivo counterparts. This makes them an attractive model system for the small intestinal epithelium. Using retroviral transduction, functional genetics can now be performed by conditional gene overexpression or knockdown. This video demonstrates the procedure of organoid culture, the generation of retroviruses, and the retroviral transduction of organoids to assist phenotypic analysis of the small intestinal epithelium in vitro. This novel organotypic model system in combination with retroviral mediated gene expression provides a valuable tool for rapid analysis of gene function in vitro without the need of costly and time-consuming generation for transgenic animals.
Genetics, Issue 90, Retrovirus, Lentivirus, Organoid culture, Lgr5, Intestine, 3Rs
Play Button
Production of Lentiviral Vectors for Transducing Cells from the Central Nervous System
Authors: Mingjie Li, Nada Husic, Ying Lin, B. Joy Snider.
Institutions: Washington University School of Medicine.
Efficient gene delivery in the central nervous system (CNS) is important in studying gene functions, modeling neurological diseases and developing therapeutic approaches. Lentiviral vectors are attractive tools in transduction of neurons and other cell types in CNS as they transduce both dividing and non-dividing cells, support sustained expression of transgenes, and have relatively large packaging capacity and low toxicity 1-3. Lentiviral vectors have been successfully used in transducing many neural cell types in vitro 4-6 and in animals 7-10. Great efforts have been made to develop lentiviral vectors with improved biosafety and efficiency for gene delivery. The current third generation replication-defective and self-inactivating (SIN) lentiviral vectors are depicted in Figure 1. The required elements for vector packaging are split into four plasmids. In the lentiviral transfer plasmid, the U3 region in the 5' long terminal repeat (LTR) is replaced with a strong promoter from another virus. This modification allows the transcription of the vector sequence independent of HIV-1 Tat protein that is normally required for HIV gene expression 11. The packaging signal (Ψ) is essential for encapsidation and the Rev-responsive element (RRE) is required for producing high titer vectors. The central polypurine tract (cPPT) is important for nuclear import of the vector DNA, a feature required for transducing non-dividing cells 12. In the 3' LTR, the cis-regulatory sequences are completely removed from the U3 region. This deletion is copied to 5' LTR after reverse transcription, resulting in transcriptional inactivation of both LTRs. Plasmid pMDLg/pRRE contains HIV-1 gag/pol genes, which provide structural proteins and reverse transcriptase. pRSV-Rev encodes Rev which binds to the RRE for efficient RNA export from the nucleus. pCMV-G encodes the vesicular stomatitis virus glycoprotein (VSV-G) that replaces HIV-1 Env. VSV-G expands the tropism of the vectors and allows concentration via ultracentrifugation 13. All the genes encoding the accessory proteins, including Vif, Vpr, Vpu, and Nef are excluded in the packaging system. The production and manipulation of lentiviral vectors should be carried out according to NIH guidelines for research involving recombinant DNA ( An approval from individual Institutional Biological and Chemical Safety Committee may be required before using lentiviral vectors. Lentiviral vectors are commonly produced by cotransfection of 293T cells with lentiviral transfer plasmid and the helper plasmids encoding the proteins required for vector packaging. Many lentiviral transfer plasmids and helper plasmids can be obtained from Addgene, a non-profit plasmid repository ( Some stable packaging cell lines have been developed, but these systems provide less flexibility and their packaging efficiency generally declines over time 14, 15. Commercially available transfection kits may support high efficiency of transfection 16, but they can be very expensive for large scale vector preparations. Calcium phosphate precipitation methods provide highly efficient transfection of 293T cells and thus provide a reliable and cost effective approach for lentiviral vector production. In this protocol, we produce lentiviral vectors by cotransfection of 293T cells with four plasmids based on the calcium phosphate precipitation principle, followed by purification and concentration with ultracentrifugation through a 20% sucrose cushion. The vector titers are determined by fluorescence- activated cell sorting (FACS) analysis or by real time qPCR. The production and titration of lentiviral vectors in this protocol can be finished with 9 days. We provide an example of transducing these vectors into murine neocortical cultures containing both neurons and astrocytes. We demonstrate that lentiviral vectors support high efficiency of transduction and cell type-specific gene expression in primary cultured cells from CNS.
Neuroscience, Issue 63, Cell culture, transduction, lentiviral vector, neuron, astrocyte, promoter, CNS, genetics
Play Button
Directed Differentiation of Induced Pluripotent Stem Cells towards T Lymphocytes
Authors: Fengyang Lei, Rizwanul Haque, Xiaofang Xiong, Jianxun Song.
Institutions: Pennsylvania State University College of Medicine.
Adoptive cell transfer (ACT) of antigen-specific CD8+ cytotoxic T lymphocytes (CTLs) is a promising treatment for a variety of malignancies 1. CTLs can recognize malignant cells by interacting tumor antigens with the T cell receptors (TCR), and release cytotoxins as well as cytokines to kill malignant cells. It is known that less-differentiated and central-memory-like (termed highly reactive) CTLs are the optimal population for ACT-based immunotherapy, because these CTLs have a high proliferative potential, are less prone to apoptosis than more differentiated cells and have a higher ability to respond to homeostatic cytokines 2-7. However, due to difficulties in obtaining a high number of such CTLs from patients, there is an urgent need to find a new approach to generate highly reactive Ag-specific CTLs for successful ACT-based therapies. TCR transduction of the self-renewable stem cells for immune reconstitution has a therapeutic potential for the treatment of diseases 8-10. However, the approach to obtain embryonic stem cells (ESCs) from patients is not feasible. Although the use of hematopoietic stem cells (HSCs) for therapeutic purposes has been widely applied in clinic 11-13, HSCs have reduced differentiation and proliferative capacities, and HSCs are difficult to expand in in vitro cell culture 14-16. Recent iPS cell technology and the development of an in vitro system for gene delivery are capable of generating iPS cells from patients without any surgical approach. In addition, like ESCs, iPS cells possess indefinite proliferative capacity in vitro, and have been shown to differentiate into hematopoietic cells. Thus, iPS cells have greater potential to be used in ACT-based immunotherapy compared to ESCs or HSCs. Here, we present methods for the generation of T lymphocytes from iPS cells in vitro, and in vivo programming of antigen-specific CTLs from iPS cells for promoting cancer immune surveillance. Stimulation in vitro with a Notch ligand drives T cell differentiation from iPS cells, and TCR gene transduction results in iPS cells differentiating into antigen-specific T cells in vivo, which prevents tumor growth. Thus, we demonstrate antigen-specific T cell differentiation from iPS cells. Our studies provide a potentially more efficient approach for generating antigen-specific CTLs for ACT-based therapies and facilitate the development of therapeutic strategies for diseases.
Stem Cell Biology, Issue 63, Immunology, T cells, induced pluripotent stem cells, differentiation, Notch signaling, T cell receptor, adoptive cell transfer
Play Button
Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice
Authors: Robert S. McNeill, Ralf S. Schmid, Ryan E. Bash, Mark Vitucci, Kristen K. White, Andrea M. Werneke, Brian H. Constance, Byron Huff, C. Ryan Miller.
Institutions: University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, University of North Carolina School of Medicine, Emory University School of Medicine, University of North Carolina School of Medicine.
Current astrocytoma models are limited in their ability to define the roles of oncogenic mutations in specific brain cell types during disease pathogenesis and their utility for preclinical drug development. In order to design a better model system for these applications, phenotypically wild-type cortical astrocytes and neural stem cells (NSC) from conditional, genetically engineered mice (GEM) that harbor various combinations of floxed oncogenic alleles were harvested and grown in culture. Genetic recombination was induced in vitro using adenoviral Cre-mediated recombination, resulting in expression of mutated oncogenes and deletion of tumor suppressor genes. The phenotypic consequences of these mutations were defined by measuring proliferation, transformation, and drug response in vitro. Orthotopic allograft models, whereby transformed cells are stereotactically injected into the brains of immune-competent, syngeneic littermates, were developed to define the role of oncogenic mutations and cell type on tumorigenesis in vivo. Unlike most established human glioblastoma cell line xenografts, injection of transformed GEM-derived cortical astrocytes into the brains of immune-competent littermates produced astrocytomas, including the most aggressive subtype, glioblastoma, that recapitulated the histopathological hallmarks of human astrocytomas, including diffuse invasion of normal brain parenchyma. Bioluminescence imaging of orthotopic allografts from transformed astrocytes engineered to express luciferase was utilized to monitor in vivo tumor growth over time. Thus, astrocytoma models using astrocytes and NSC harvested from GEM with conditional oncogenic alleles provide an integrated system to study the genetics and cell biology of astrocytoma pathogenesis in vitro and in vivo and may be useful in preclinical drug development for these devastating diseases.
Neuroscience, Issue 90, astrocytoma, cortical astrocytes, genetically engineered mice, glioblastoma, neural stem cells, orthotopic allograft
Play Button
Alternative Cultures for Human Pluripotent Stem Cell Production, Maintenance, and Genetic Analysis
Authors: Kevin G. Chen, Rebecca S. Hamilton, Pamela G. Robey, Barbara S. Mallon.
Institutions: National Institutes of Health, National Institutes of Health.
Human pluripotent stem cells (hPSCs) hold great promise for regenerative medicine and biopharmaceutical applications. Currently, optimal culture and efficient expansion of large amounts of clinical-grade hPSCs are critical issues in hPSC-based therapies. Conventionally, hPSCs are propagated as colonies on both feeder and feeder-free culture systems. However, these methods have several major limitations, including low cell yields and generation of heterogeneously differentiated cells. To improve current hPSC culture methods, we have recently developed a new method, which is based on non-colony type monolayer (NCM) culture of dissociated single cells. Here, we present detailed NCM protocols based on the Rho-associated kinase (ROCK) inhibitor Y-27632. We also provide new information regarding NCM culture with different small molecules such as Y-39983 (ROCK I inhibitor), phenylbenzodioxane (ROCK II inhibitor), and thiazovivin (a novel ROCK inhibitor). We further extend our basic protocol to cultivate hPSCs on defined extracellular proteins such as the laminin isoform 521 (LN-521) without the use of ROCK inhibitors. Moreover, based on NCM, we have demonstrated efficient transfection or transduction of plasmid DNAs, lentiviral particles, and oligonucleotide-based microRNAs into hPSCs in order to genetically modify these cells for molecular analyses and drug discovery. The NCM-based methods overcome the major shortcomings of colony-type culture, and thus may be suitable for producing large amounts of homogeneous hPSCs for future clinical therapies, stem cell research, and drug discovery.
Stem Cell Biology, Issue 89, Pluripotent stem cells, human embryonic stem cells, induced pluripotent stem cells, cell culture, non-colony type monolayer, single cell, plating efficiency, Rho-associated kinase, Y-27632, transfection, transduction
Play Button
Targeted Expression of GFP in the Hair Follicle Using Ex Vivo Viral Transduction
Authors: Robert M. Hoffman, Lingna Li.
Institutions: AntiCancer, Inc..
There are many cell types in the hair follicle, including hair matrix cells which form the hair shaft and stem cells which can initiate the hair shaft during early anagen, the growth phase of the hair cycle, as well as pluripotent stem cells that play a role in hair follicle growth but have the potential to differentiate to non-follicle cells such as neurons. These properties of the hair follicle are discussed. The various cell types of the hair follicle are potential targets for gene therapy. Gene delivery system for the hair follicle using viral vectors or liposomes for gene targeting to the various cell types in the hair follicle and the results obtained are also discussed.
Cellular Biology, Issue 13, Springer Protocols, hair follicles, liposomes, adenovirus, genes, stem cells
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.