JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
The temporal evolution and global spread of Cauliflower mosaic virus, a plant pararetrovirus.
PLoS ONE
PUBLISHED: 01-01-2014
Cauliflower mosaic virus (CaMV) is a plant pararetrovirus with a double-stranded DNA genome. It is the type member of the genus Caulimovirus in the family Caulimoviridae. CaMV is transmitted by sap inoculation and in nature by aphids in a semi-persistent manner. To investigate the patterns and timescale of CaMV migration and evolution, we sequenced and analyzed the genomes of 67 isolates of CaMV collected mostly in Greece, Iran, Turkey, and Japan together with nine published sequences. We identified the open-reading frames (ORFs) in the genomes and inferred their phylogeny. After removing recombinant sequences, we estimated the substitution rates, divergence times, and phylogeographic patterns of the virus populations. We found that recombination has been a common feature of CaMV evolution, and that ORFs I-V have a different evolutionary history from ORF VI. The ORFs have evolved at rates between 1.71 and 5.81×10(-4) substitutions/site/year, similar to those of viruses with RNA or ssDNA genomes. We found four geographically confined lineages. CaMV probably spread from a single population to other parts of the world around 400-500 years ago, and is now widely distributed among Eurasian countries. Our results revealed evidence of frequent gene flow between populations in Turkey and those of its neighboring countries, with similar patterns observed for Japan and the USA. Our study represents the first report on the spatial and temporal spread of a plant pararetrovirus.
Authors: Juan Ayllon, Adolfo García-Sastre, Luis Martínez-Sobrido.
Published: 10-11-2013
ABSTRACT
Newcastle disease virus (NDV), the prototype member of the Avulavirus genus of the family Paramyxoviridae1, is a non-segmented, negative-sense, single-stranded, enveloped RNA virus (Figure 1) with potential applications as a vector for vaccination and treatment of human diseases. In-depth exploration of these applications has only become possible after the establishment of reverse genetics techniques to rescue recombinant viruses from plasmids encoding their complete genomes as cDNA2-5. Viral cDNA can be conveniently modified in vitro by using standard cloning procedures to alter the genotype of the virus and/or to include new transcriptional units. Rescue of such genetically modified viruses provides a valuable tool to understand factors affecting multiple stages of infection, as well as allows for the development and improvement of vectors for the expression and delivery of antigens for vaccination and therapy. Here we describe a protocol for the rescue of recombinant NDVs.
23 Related JoVE Articles!
Play Button
Analysis of the Solvent Accessibility of Cysteine Residues on Maize rayado fino virus Virus-like Particles Produced in Nicotiana benthamiana Plants and Cross-linking of Peptides to VLPs
Authors: Angela Natilla, Rosemarie W. Hammond.
Institutions: Agricultural Research Service, United States Department of Agriculture, Agricultural Research Service, United States Department of Agriculture.
Mimicking and exploiting virus properties and physicochemical and physical characteristics holds promise to provide solutions to some of the world's most pressing challenges. The sheer range and types of viruses coupled with their intriguing properties potentially give endless opportunities for applications in virus-based technologies. Viruses have the ability to self- assemble into particles with discrete shape and size, specificity of symmetry, polyvalence, and stable properties under a wide range of temperature and pH conditions. Not surprisingly, with such a remarkable range of properties, viruses are proposed for use in biomaterials 9, vaccines 14, 15, electronic materials, chemical tools, and molecular electronic containers4, 5, 10, 11, 16, 18, 12. In order to utilize viruses in nanotechnology, they must be modified from their natural forms to impart new functions. This challenging process can be performed through several mechanisms including genetic modification of the viral genome and chemically attaching foreign or desired molecules to the virus particle reactive groups 8. The ability to modify a virus primarily depends upon the physiochemical and physical properties of the virus. In addition, the genetic or physiochemical modifications need to be performed without adversely affecting the virus native structure and virus function. Maize rayado fino virus (MRFV) coat proteins self-assemble in Escherichia coli producing stable and empty VLPs that are stabilized by protein-protein interactions and that can be used in virus-based technologies applications 8. VLPs produced in tobacco plants were examined as a scaffold on which a variety of peptides can be covalently displayed 13. Here, we describe the steps to 1) determine which of the solvent-accessible cysteines in a virus capsid are available for modification, and 2) bioconjugate peptides to the modified capsids. By using native or mutationally-inserted amino acid residues and standard coupling technologies, a wide variety of materials have been displayed on the surface of plant viruses such as, Brome mosaic virus 3, Carnation mottle virus 12, Cowpea chlorotic mottle virus 6, Tobacco mosaic virus 17, Turnip yellow mosaic virus 1, and MRFV 13.
Virology, Issue 72, Plant Biology, Infection, Molecular Biology, Biochemistry, Proteins, Chemicals and Drugs, Analytical, Diagnostic and Therapeutic Techniques and Equipment, Technology, Industry, Agriculture, Chemistry and materials, Virus-like particles (VLPs), VLP, sulfhydryl-reactive chemistries, labeling, cross-linking, multivalent display, Maize rayado fino virus, mosaic virus, virus, nanoparticle, drug delivery, peptides, Nicotiana benthamiana, plant model
50084
Play Button
Simple and Robust in vivo and in vitro Approach for Studying Virus Assembly
Authors: Sonali Chaturvedi, Bongsu Jung, Sharad Gupta, Bahman Anvari, A.L.N. Rao.
Institutions: University of California, Riverside , University of California, Riverside .
In viruses with positive-sense RNA genomes pathogenic to humans, animals and plants, progeny encapsidation into mature and stable virions is a cardinal phase during establishment of infection in a given host. Consequently, study of encapsidation deciphers the information regarding the know-how of the mechanism regulating virus assembly to form infectious virions. Such information is vital in formulating novel methods of curbing virus spread and disease control. Virus encapsidation can be studied in vivo and in vitro. Genome encapsidation in vivo is a highly regulated selective process involving macromolecular interactions and subcellular compartmentalization. Therefore, study leading to dissect events encompassing virus encapsidation in vivo would provide basic knowledge to understand how viruses proliferate and assemble. Recently in vitro encapsidation has been exploited for the research in the area of biomedical imaging and therapeutic applications. Non-enveloped plant viruses stand far ahead in the venture of in vitro encapsidation of the negatively charged foreign material. Brome mosaic virus (BMV), a non-enveloped multicomponent RNA virus pathogenic to plants, has been used as a model system for studying genome packaging in vivo and in vitro. For encapsidation assays in Nicotiana benthamiana plants, Agrobacterium -mediated transient expression, refer to as agroinfiltration, is an efficient and robust technique for the synchronized delivery and expression of multiple components to the same cell. In this approach, a suspension of Agrobacterium tumefaciens cells carrying binary plasmid vectors carrying cDNAs of desiredviral mRNAs is infiltrated into the intercellular space withina leaf using nothing more sophisticated than a 1 ml disposable syringe (without needle). This process results in the transfer of DNA insert into plant cells; the T-DNA insert remains transiently in the nucleus and is then transcribed by the host polymerase II, leading to the transient expression. The resulting mRNA transcript (capped and polyadenylated) is then exported to the cytoplasm for translation. After approximately 24 to 48 hours of incubation,sections of infiltrated leaves can be sampled for microscopyor biochemical analyses. Agroinfiltration permits large numbers (hundreds to thousands) of cells to be transfected simultaneously. For in vitro encapsidation, purified virions of BMV are dissociated into capsid protein by dialyzing against dissociation buffer containing calcium chloride followed by removal of RNA and un-dissociated virions by centrifugation. Genome depleted capsid protein subunits are then reassembled with desired viral genome components or non-viral components such as indocyanine dye.
Immunology, Issue 61, Agrobacterium, Brome mosaic virus, Nicotiana benthamiana, encapsidation, dissociation, in vitro assembly, Nano technology
3645
Play Button
Efficient Agroinfiltration of Plants for High-level Transient Expression of Recombinant Proteins
Authors: Kahlin Leuzinger, Matthew Dent, Jonathan Hurtado, Jake Stahnke, Huafang Lai, Xiaohong Zhou, Qiang Chen.
Institutions: Arizona State University .
Mammalian cell culture is the major platform for commercial production of human vaccines and therapeutic proteins. However, it cannot meet the increasing worldwide demand for pharmaceuticals due to its limited scalability and high cost. Plants have shown to be one of the most promising alternative pharmaceutical production platforms that are robust, scalable, low-cost and safe. The recent development of virus-based vectors has allowed rapid and high-level transient expression of recombinant proteins in plants. To further optimize the utility of the transient expression system, we demonstrate a simple, efficient and scalable methodology to introduce target-gene containing Agrobacterium into plant tissue in this study. Our results indicate that agroinfiltration with both syringe and vacuum methods have resulted in the efficient introduction of Agrobacterium into leaves and robust production of two fluorescent proteins; GFP and DsRed. Furthermore, we demonstrate the unique advantages offered by both methods. Syringe infiltration is simple and does not need expensive equipment. It also allows the flexibility to either infiltrate the entire leave with one target gene, or to introduce genes of multiple targets on one leaf. Thus, it can be used for laboratory scale expression of recombinant proteins as well as for comparing different proteins or vectors for yield or expression kinetics. The simplicity of syringe infiltration also suggests its utility in high school and college education for the subject of biotechnology. In contrast, vacuum infiltration is more robust and can be scaled-up for commercial manufacture of pharmaceutical proteins. It also offers the advantage of being able to agroinfiltrate plant species that are not amenable for syringe infiltration such as lettuce and Arabidopsis. Overall, the combination of syringe and vacuum agroinfiltration provides researchers and educators a simple, efficient, and robust methodology for transient protein expression. It will greatly facilitate the development of pharmaceutical proteins and promote science education.
Plant Biology, Issue 77, Genetics, Molecular Biology, Cellular Biology, Virology, Microbiology, Bioengineering, Plant Viruses, Antibodies, Monoclonal, Green Fluorescent Proteins, Plant Proteins, Recombinant Proteins, Vaccines, Synthetic, Virus-Like Particle, Gene Transfer Techniques, Gene Expression, Agroinfiltration, plant infiltration, plant-made pharmaceuticals, syringe agroinfiltration, vacuum agroinfiltration, monoclonal antibody, Agrobacterium tumefaciens, Nicotiana benthamiana, GFP, DsRed, geminiviral vectors, imaging, plant model
50521
Play Button
Agroinfiltration and PVX Agroinfection in Potato and Nicotiana benthamiana
Authors: Juan Du, Hendrik Rietman, Vivianne G. A. A. Vleeshouwers.
Institutions: Wageningen University, Huazhong Agricultural University.
Agroinfiltration and PVX agroinfection are two efficient transient expression assays for functional analysis of candidate genes in plants. The most commonly used agent for agroinfiltration is Agrobacterium tumefaciens, a pathogen of many dicot plant species. This implies that agroinfiltration can be applied to many plant species. Here, we present our protocols and expected results when applying these methods to the potato (Solanum tuberosum), its related wild tuber-bearing Solanum species (Solanum section Petota) and the model plant Nicotiana benthamiana. In addition to functional analysis of single genes, such as resistance (R) or avirulence (Avr) genes, the agroinfiltration assay is very suitable for recapitulating the R-AVR interactions associated with specific host pathogen interactions by simply delivering R and Avr transgenes into the same cell. However, some plant genotypes can raise nonspecific defense responses to Agrobacterium, as we observed for example for several potato genotypes. Compared to agroinfiltration, detection of AVR activity with PVX agroinfection is more sensitive, more high-throughput in functional screens and less sensitive to nonspecific defense responses to Agrobacterium. However, nonspecific defense to PVX can occur and there is a risk to miss responses due to virus-induced extreme resistance. Despite such limitations, in our experience, agroinfiltration and PVX agroinfection are both suitable and complementary assays that can be used simultaneously to confirm each other's results.
Plant Biology, Issue 83, Genetics, Bioengineering, Plants, Genetically Modified, DNA, Plant Immunity, Plant Diseases, Genes, Genome, Plant Pathology, Effectoromics, Agroinfiltration, PVX agroinfection, potato, Nicotiana benthamiana, high-throughput, functional genomics
50971
Play Button
Viral Nanoparticles for In vivo Tumor Imaging
Authors: Amy M. Wen, Karin L. Lee, Ibrahim Yildiz, Michael A. Bruckman, Sourabh Shukla, Nicole F. Steinmetz.
Institutions: Case Western Reserve University , Case Western Reserve University .
The use of nanomaterials has the potential to revolutionize materials science and medicine. Currently, a number of different nanoparticles are being investigated for applications in imaging and therapy. Viral nanoparticles (VNPs) derived from plants can be regarded as self-assembled bionanomaterials with defined sizes and shapes. Plant viruses under investigation in the Steinmetz lab include icosahedral particles formed by Cowpea mosaic virus (CPMV) and Brome mosaic virus (BMV), both of which are 30 nm in diameter. We are also developing rod-shaped and filamentous structures derived from the following plant viruses: Tobacco mosaic virus (TMV), which forms rigid rods with dimensions of 300 nm by 18 nm, and Potato virus X (PVX), which form filamentous particles 515 nm in length and 13 nm in width (the reader is referred to refs. 1 and 2 for further information on VNPs). From a materials scientist's point of view, VNPs are attractive building blocks for several reasons: the particles are monodisperse, can be produced with ease on large scale in planta, are exceptionally stable, and biocompatible. Also, VNPs are "programmable" units, which can be specifically engineered using genetic modification or chemical bioconjugation methods 3. The structure of VNPs is known to atomic resolution, and modifications can be carried out with spatial precision at the atomic level4, a level of control that cannot be achieved using synthetic nanomaterials with current state-of-the-art technologies. In this paper, we describe the propagation of CPMV, PVX, TMV, and BMV in Vigna ungiuculata and Nicotiana benthamiana plants. Extraction and purification protocols for each VNP are given. Methods for characterization of purified and chemically-labeled VNPs are described. In this study, we focus on chemical labeling of VNPs with fluorophores (e.g. Alexa Fluor 647) and polyethylene glycol (PEG). The dyes facilitate tracking and detection of the VNPs 5-10, and PEG reduces immunogenicity of the proteinaceous nanoparticles while enhancing their pharmacokinetics 8,11. We demonstrate tumor homing of PEGylated VNPs using a mouse xenograft tumor model. A combination of fluorescence imaging of tissues ex vivo using Maestro Imaging System, fluorescence quantification in homogenized tissues, and confocal microscopy is used to study biodistribution. VNPs are cleared via the reticuloendothelial system (RES); tumor homing is achieved passively via the enhanced permeability and retention (EPR) effect12. The VNP nanotechnology is a powerful plug-and-play technology to image and treat sites of disease in vivo. We are further developing VNPs to carry drug cargos and clinically-relevant imaging moieties, as well as tissue-specific ligands to target molecular receptors overexpressed in cancer and cardiovascular disease.
Cancer Biology, Issue 69, Bioengineering, Biomedical Engineering, Molecular Biology, Virology, Oncology, Viral nanoparticles, bioconjugate chemistry, tumor xenograft mouse model, fluorescence imaging
4352
Play Button
Separation of Single-stranded DNA, Double-stranded DNA and RNA from an Environmental Viral Community Using Hydroxyapatite Chromatography
Authors: Douglas W. Fadrosh, Cynthia Andrews-Pfannkoch, Shannon J. Williamson.
Institutions: The J. Craig Venter Institute, The J. Craig Venter Institute.
Viruses, particularly bacteriophages (phages), are the most numerous biological entities on Earth1,2. Viruses modulate host cell abundance and diversity, contribute to the cycling of nutrients, alter host cell phenotype, and influence the evolution of both host cell and viral communities through the lateral transfer of genes 3. Numerous studies have highlighted the staggering genetic diversity of viruses and their functional potential in a variety of natural environments. Metagenomic techniques have been used to study the taxonomic diversity and functional potential of complex viral assemblages whose members contain single-stranded DNA (ssDNA), double-stranded DNA (dsDNA) and RNA genotypes 4-9. Current library construction protocols used to study environmental DNA-containing or RNA-containing viruses require an initial nuclease treatment in order to remove nontargeted templates 10. However, a comprehensive understanding of the collective gene complement of the virus community and virus diversity requires knowledge of all members regardless of genome composition. Fractionation of purified nucleic acid subtypes provides an effective mechanism by which to study viral assemblages without sacrificing a subset of the community’s genetic signature. Hydroxyapatite, a crystalline form of calcium phosphate, has been employed in the separation of nucleic acids, as well as proteins and microbes, since the 1960s11. By exploiting the charge interaction between the positively-charged Ca2+ ions of the hydroxyapatite and the negatively charged phosphate backbone of the nucleic acid subtypes, it is possible to preferentially elute each nucleic acid subtype independent of the others. We recently employed this strategy to independently fractionate the genomes of ssDNA, dsDNA and RNA-containing viruses in preparation of DNA sequencing 12. Here, we present a method for the fractionation and recovery of ssDNA, dsDNA and RNA viral nucleic acids from mixed viral assemblages using hydroxyapatite chromotography.
Immunology, Issue 55, Hydroxyapatite, single-stranded DNA, double-stranded DNA, RNA, DNA, chromatography, viral ecology, virus, bacteriophage
3146
Play Button
Fluorescence in situ Hybridizations (FISH) for the Localization of Viruses and Endosymbiotic Bacteria in Plant and Insect Tissues
Authors: Adi Kliot, Svetlana Kontsedalov, Galina Lebedev, Marina Brumin, Pakkianathan Britto Cathrin, Julio Massaharu Marubayashi, Marisa Skaljac, Eduard Belausov, Henryk Czosnek, Murad Ghanim.
Institutions: Volcani Center, Hebrew University of Jerusalem, Institute for Adriatic Crops and Karst Reclamation, Volcani Center.
Fluorescence in situ hybridization (FISH) is a name given to a variety of techniques commonly used for visualizing gene transcripts in eukaryotic cells and can be further modified to visualize other components in the cell such as infection with viruses and bacteria. Spatial localization and visualization of viruses and bacteria during the infection process is an essential step that complements expression profiling experiments such as microarrays and RNAseq in response to different stimuli. Understanding the spatiotemporal infections with these agents complements biological experiments aimed at understanding their interaction with cellular components. Several techniques for visualizing viruses and bacteria such as reporter gene systems or immunohistochemical methods are time-consuming, and some are limited to work with model organisms and involve complex methodologies. FISH that targets RNA or DNA species in the cell is a relatively easy and fast method for studying spatiotemporal localization of genes and for diagnostic purposes. This method can be robust and relatively easy to implement when the protocols employ short hybridizing, commercially-purchased probes, which are not expensive. This is particularly robust when sample preparation, fixation, hybridization, and microscopic visualization do not involve complex steps. Here we describe a protocol for localization of bacteria and viruses in insect and plant tissues. The method is based on simple preparation, fixation, and hybridization of insect whole mounts and dissected organs or hand-made plant sections, with 20 base pairs short DNA probes conjugated to fluorescent dyes on their 5' or 3' ends. This protocol has been successfully applied to a number of insect and plant tissues, and can be used to analyze expression of mRNAs or other RNA or DNA species in the cell.
Infection, Issue 84, FISH, localization, insect, plant, virus, endosymbiont, transcript, fixation, confocal microscopy
51030
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
50680
Play Button
Mapping Bacterial Functional Networks and Pathways in Escherichia Coli using Synthetic Genetic Arrays
Authors: Alla Gagarinova, Mohan Babu, Jack Greenblatt, Andrew Emili.
Institutions: University of Toronto, University of Toronto, University of Regina.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10. Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) 'donor strains' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the 'Keio' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.
Genetics, Issue 69, Molecular Biology, Medicine, Biochemistry, Microbiology, Aggravating, alleviating, conjugation, double mutant, Escherichia coli, genetic interaction, Gram-negative bacteria, homologous recombination, network, synthetic lethality or sickness, suppression
4056
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
51242
Play Button
Isolation of Fidelity Variants of RNA Viruses and Characterization of Virus Mutation Frequency
Authors: Stéphanie Beaucourt, Antonio V. Bordería, Lark L. Coffey, Nina F. Gnädig, Marta Sanz-Ramos, Yasnee Beeharry, Marco Vignuzzi.
Institutions: Institut Pasteur .
RNA viruses use RNA dependent RNA polymerases to replicate their genomes. The intrinsically high error rate of these enzymes is a large contributor to the generation of extreme population diversity that facilitates virus adaptation and evolution. Increasing evidence shows that the intrinsic error rates, and the resulting mutation frequencies, of RNA viruses can be modulated by subtle amino acid changes to the viral polymerase. Although biochemical assays exist for some viral RNA polymerases that permit quantitative measure of incorporation fidelity, here we describe a simple method of measuring mutation frequencies of RNA viruses that has proven to be as accurate as biochemical approaches in identifying fidelity altering mutations. The approach uses conventional virological and sequencing techniques that can be performed in most biology laboratories. Based on our experience with a number of different viruses, we have identified the key steps that must be optimized to increase the likelihood of isolating fidelity variants and generating data of statistical significance. The isolation and characterization of fidelity altering mutations can provide new insights into polymerase structure and function1-3. Furthermore, these fidelity variants can be useful tools in characterizing mechanisms of virus adaptation and evolution4-7.
Immunology, Issue 52, Polymerase fidelity, RNA virus, mutation frequency, mutagen, RNA polymerase, viral evolution
2953
Play Button
Characterization of Complex Systems Using the Design of Experiments Approach: Transient Protein Expression in Tobacco as a Case Study
Authors: Johannes Felix Buyel, Rainer Fischer.
Institutions: RWTH Aachen University, Fraunhofer Gesellschaft.
Plants provide multiple benefits for the production of biopharmaceuticals including low costs, scalability, and safety. Transient expression offers the additional advantage of short development and production times, but expression levels can vary significantly between batches thus giving rise to regulatory concerns in the context of good manufacturing practice. We used a design of experiments (DoE) approach to determine the impact of major factors such as regulatory elements in the expression construct, plant growth and development parameters, and the incubation conditions during expression, on the variability of expression between batches. We tested plants expressing a model anti-HIV monoclonal antibody (2G12) and a fluorescent marker protein (DsRed). We discuss the rationale for selecting certain properties of the model and identify its potential limitations. The general approach can easily be transferred to other problems because the principles of the model are broadly applicable: knowledge-based parameter selection, complexity reduction by splitting the initial problem into smaller modules, software-guided setup of optimal experiment combinations and step-wise design augmentation. Therefore, the methodology is not only useful for characterizing protein expression in plants but also for the investigation of other complex systems lacking a mechanistic description. The predictive equations describing the interconnectivity between parameters can be used to establish mechanistic models for other complex systems.
Bioengineering, Issue 83, design of experiments (DoE), transient protein expression, plant-derived biopharmaceuticals, promoter, 5'UTR, fluorescent reporter protein, model building, incubation conditions, monoclonal antibody
51216
Play Button
Optimization and Utilization of Agrobacterium-mediated Transient Protein Production in Nicotiana
Authors: Moneim Shamloul, Jason Trusa, Vadim Mett, Vidadi Yusibov.
Institutions: Fraunhofer USA Center for Molecular Biotechnology.
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Plant Biology, Issue 86, Agroinfiltration, Nicotiana benthamiana, transient protein production, plant-based expression, viral vector, Agrobacteria
51204
Play Button
A Restriction Enzyme Based Cloning Method to Assess the In vitro Replication Capacity of HIV-1 Subtype C Gag-MJ4 Chimeric Viruses
Authors: Daniel T. Claiborne, Jessica L. Prince, Eric Hunter.
Institutions: Emory University, Emory University.
The protective effect of many HLA class I alleles on HIV-1 pathogenesis and disease progression is, in part, attributed to their ability to target conserved portions of the HIV-1 genome that escape with difficulty. Sequence changes attributed to cellular immune pressure arise across the genome during infection, and if found within conserved regions of the genome such as Gag, can affect the ability of the virus to replicate in vitro. Transmission of HLA-linked polymorphisms in Gag to HLA-mismatched recipients has been associated with reduced set point viral loads. We hypothesized this may be due to a reduced replication capacity of the virus. Here we present a novel method for assessing the in vitro replication of HIV-1 as influenced by the gag gene isolated from acute time points from subtype C infected Zambians. This method uses restriction enzyme based cloning to insert the gag gene into a common subtype C HIV-1 proviral backbone, MJ4. This makes it more appropriate to the study of subtype C sequences than previous recombination based methods that have assessed the in vitro replication of chronically derived gag-pro sequences. Nevertheless, the protocol could be readily modified for studies of viruses from other subtypes. Moreover, this protocol details a robust and reproducible method for assessing the replication capacity of the Gag-MJ4 chimeric viruses on a CEM-based T cell line. This method was utilized for the study of Gag-MJ4 chimeric viruses derived from 149 subtype C acutely infected Zambians, and has allowed for the identification of residues in Gag that affect replication. More importantly, the implementation of this technique has facilitated a deeper understanding of how viral replication defines parameters of early HIV-1 pathogenesis such as set point viral load and longitudinal CD4+ T cell decline.
Infectious Diseases, Issue 90, HIV-1, Gag, viral replication, replication capacity, viral fitness, MJ4, CEM, GXR25
51506
Play Button
Transmitting Plant Viruses Using Whiteflies
Authors: Jane E. Polston, H. Capobianco.
Institutions: University of Florida .
Whiteflies, Hemiptera: Aleyrodidae, Bemisia tabaci, a complex of morphologically indistinquishable species5, are vectors of many plant viruses. Several genera of these whitefly-transmitted plant viruses (Begomovirus, Carlavirus, Crinivirus, Ipomovirus, Torradovirus) include several hundred species of emerging and economically significant pathogens of important food and fiber crops (reviewed by9,10,16). These viruses do not replicate in their vector but nevertheless are moved readily from plant to plant by the adult whitefly by various means (reviewed by2,6,7,9,10,11,17). For most of these viruses whitefly feeding is required for acquisition and inoculation, while for others only probing is required. Many of these viruses are unable or cannot be easily transmitted by other means. Therefore maintenance of virus cultures, biological and molecular characterization (identification of host range and symptoms)3,13, ecology2,12, require that the viruses be transmitted to experimental hosts using the whitefly vector. In addition the development of new approaches to management, such as evaluation of new chemicals14 or compounds15, new cultural approaches1,4,19, or the selection and development of resistant cultivars7,8,18, requires the use of whiteflies for virus transmission. The use of whitefly transmission of plant viruses for the selection and development of resistant cultivars in breeding programs is particularly challenging7. Effective selection and screening for resistance employs large numbers of plants and there is a need for 100% of the plants to be inoculated in order to find the few genotypes which possess resistance genes. These studies use very large numbers of viruliferous whiteflies, often several times per year. Whitefly maintenance described here can generate hundreds or thousands of adult whiteflies on plants each week, year round, without the contamination of other plant viruses. Plants free of both whiteflies and virus must be produced to introduce into the whitefly colony each week. Whitefly cultures must be kept free of whitefly pathogens, parasites, and parasitoids that can reduce whitefly populations and/or reduce the transmission efficiency of the virus. Colonies produced in the manner described can be quickly scaled to increase or decrease population numbers as needed, and can be adjusted to accommodate the feeding preferences of the whitefly based on the plant host of the virus. There are two basic types of whitefly colonies that can be maintained: a nonviruliferous and a viruliferous whitefly colony. The nonviruliferous colony is composed of whiteflies reared on virus-free plants and allows the weekly availability of whiteflies which can be used to transmit viruses from different cultures. The viruliferous whitefly colony, composed of whiteflies reared on virus-infected plants, allows weekly availability of whiteflies which have acquired the virus thus omitting one step in the virus transmission process.
Plant Biology, Issue 81, Virology, Molecular Biology, Botany, Pathology, Infection, Plant viruses, Bemisia tabaci, Whiteflies, whitefly, insect transmission, Begomovirus, Carlavirus, Crinivirus, Ipomovirus, host pathogen interaction, virus, insect, plant
4332
Play Button
Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining
Authors: Frédéric Catez, Antoine Rousseau, Marc Labetoulle, Patrick Lomonte.
Institutions: CNRS UMR 5534, Université de Lyon 1, LabEX DEVweCAN, CNRS UPR 3296, CNRS UMR 5286.
Single cell codetection of a gene, its RNA product and cellular regulatory proteins is critical to study gene expression regulation. This is a challenge in the field of virology; in particular for nuclear-replicating persistent DNA viruses that involve animal models for their study. Herpes simplex virus type 1 (HSV-1) establishes a life-long latent infection in peripheral neurons. Latent virus serves as reservoir, from which it reactivates and induces a new herpetic episode. The cell biology of HSV-1 latency remains poorly understood, in part due to the lack of methods to detect HSV-1 genomes in situ in animal models. We describe a DNA-fluorescent in situ hybridization (FISH) approach efficiently detecting low-copy viral genomes within sections of neuronal tissues from infected animal models. The method relies on heat-based antigen unmasking, and directly labeled home-made DNA probes, or commercially available probes. We developed a triple staining approach, combining DNA-FISH with RNA-FISH and immunofluorescence, using peroxidase based signal amplification to accommodate each staining requirement. A major improvement is the ability to obtain, within 10 µm tissue sections, low-background signals that can be imaged at high resolution by confocal microscopy and wide-field conventional epifluorescence. Additionally, the triple staining worked with a wide range of antibodies directed against cellular and viral proteins. The complete protocol takes 2.5 days to accommodate antibody and probe penetration within the tissue.
Neuroscience, Issue 83, Life Sciences (General), Virology, Herpes Simplex Virus (HSV), Latency, In situ hybridization, Nuclear organization, Gene expression, Microscopy
51091
Play Button
Aseptic Laboratory Techniques: Plating Methods
Authors: Erin R. Sanders.
Institutions: University of California, Los Angeles .
Microorganisms are present on all inanimate surfaces creating ubiquitous sources of possible contamination in the laboratory. Experimental success relies on the ability of a scientist to sterilize work surfaces and equipment as well as prevent contact of sterile instruments and solutions with non-sterile surfaces. Here we present the steps for several plating methods routinely used in the laboratory to isolate, propagate, or enumerate microorganisms such as bacteria and phage. All five methods incorporate aseptic technique, or procedures that maintain the sterility of experimental materials. Procedures described include (1) streak-plating bacterial cultures to isolate single colonies, (2) pour-plating and (3) spread-plating to enumerate viable bacterial colonies, (4) soft agar overlays to isolate phage and enumerate plaques, and (5) replica-plating to transfer cells from one plate to another in an identical spatial pattern. These procedures can be performed at the laboratory bench, provided they involve non-pathogenic strains of microorganisms (Biosafety Level 1, BSL-1). If working with BSL-2 organisms, then these manipulations must take place in a biosafety cabinet. Consult the most current edition of the Biosafety in Microbiological and Biomedical Laboratories (BMBL) as well as Material Safety Data Sheets (MSDS) for Infectious Substances to determine the biohazard classification as well as the safety precautions and containment facilities required for the microorganism in question. Bacterial strains and phage stocks can be obtained from research investigators, companies, and collections maintained by particular organizations such as the American Type Culture Collection (ATCC). It is recommended that non-pathogenic strains be used when learning the various plating methods. By following the procedures described in this protocol, students should be able to: ● Perform plating procedures without contaminating media. ● Isolate single bacterial colonies by the streak-plating method. ● Use pour-plating and spread-plating methods to determine the concentration of bacteria. ● Perform soft agar overlays when working with phage. ● Transfer bacterial cells from one plate to another using the replica-plating procedure. ● Given an experimental task, select the appropriate plating method.
Basic Protocols, Issue 63, Streak plates, pour plates, soft agar overlays, spread plates, replica plates, bacteria, colonies, phage, plaques, dilutions
3064
Play Button
Virus-induced Gene Silencing (VIGS) in Nicotiana benthamiana and Tomato
Authors: Andrá C. Velásquez, Suma Chakravarthy, Gregory B. Martin.
Institutions: Cornell University, Boyce Thompson Institute for Plant Research.
RNA interference (RNAi) is a highly specific gene-silencing phenomenon triggered by dsRNA1. This silencing mechanism uses two major classes of RNA regulators: microRNAs, which are produced from non-protein coding genes and short interfering RNAs (siRNAs). Plants use RNAi to control transposons and to exert tight control over developmental processes such as flower organ formation and leaf development2,3,4. Plants also use RNAi to defend themselves against infection by viruses. Consequently, many viruses have evolved suppressors of gene silencing to allow their successful colonization of their host5. Virus-induced gene silencing (VIGS) is a method that takes advantage of the plant RNAi-mediated antiviral defense mechanism. In plants infected with unmodified viruses the mechanism is specifically targeted against the viral genome. However, with virus vectors carrying sequences derived from host genes, the process can be additionally targeted against the corresponding host mRNAs. VIGS has been adapted for high-throughput functional genomics in plants by using the plant pathogen Agrobacterium tumefaciens to deliver, via its Ti plasmid, a recombinant virus carrying the entire or part of the gene sequence targeted for silencing. Systemic virus spread and the endogenous plant RNAi machinery take care of the rest. dsRNAs corresponding to the target gene are produced and then cleaved by the ribonuclease Dicer into siRNAs of 21 to 24 nucleotides in length. These siRNAs ultimately guide the RNA-induced silencing complex (RISC) to degrade the target transcript2. Different vectors have been employed in VIGS and one of the most frequently used is based on tobacco rattle virus (TRV). TRV is a bipartite virus and, as such, two different A. tumefaciens strains are used for VIGS. One carries pTRV1, which encodes the replication and movement viral functions while the other, pTRV2, harbors the coat protein and the sequence used for VIGS6,7. Inoculation of Nicotiana benthamiana and tomato seedlings with a mixture of both strains results in gene silencing. Silencing of the endogenous phytoene desaturase (PDS) gene, which causes photobleaching, is used as a control for VIGS efficiency. It should be noted, however, that silencing in tomato is usually less efficient than in N. benthamiana. RNA transcript abundance of the gene of interest should always be measured to ensure that the target gene has efficiently been down-regulated. Nevertheless, heterologous gene sequences from N. benthamiana can be used to silence their respective orthologs in tomato and vice versa8.
Plant Biology, Issue 28, Virus-induced gene silencing (VIGS), RNA interference (RNAi), Tobacco Rattle Virus (TRV) vectors, Nicotiana benthamiana, tomato
1292
Play Button
Principles of Site-Specific Recombinase (SSR) Technology
Authors: Frank Bucholtz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Site-specific recombinase (SSR) technology allows the manipulation of gene structure to explore gene function and has become an integral tool of molecular biology. Site-specific recombinases are proteins that bind to distinct DNA target sequences. The Cre/lox system was first described in bacteriophages during the 1980's. Cre recombinase is a Type I topoisomerase that catalyzes site-specific recombination of DNA between two loxP (locus of X-over P1) sites. The Cre/lox system does not require any cofactors. LoxP sequences contain distinct binding sites for Cre recombinases that surround a directional core sequence where recombination and rearrangement takes place. When cells contain loxP sites and express the Cre recombinase, a recombination event occurs. Double-stranded DNA is cut at both loxP sites by the Cre recombinase, rearranged, and ligated ("scissors and glue"). Products of the recombination event depend on the relative orientation of the asymmetric sequences. SSR technology is frequently used as a tool to explore gene function. Here the gene of interest is flanked with Cre target sites loxP ("floxed"). Animals are then crossed with animals expressing the Cre recombinase under the control of a tissue-specific promoter. In tissues that express the Cre recombinase it binds to target sequences and excises the floxed gene. Controlled gene deletion allows the investigation of gene function in specific tissues and at distinct time points. Analysis of gene function employing SSR technology --- conditional mutagenesis -- has significant advantages over traditional knock-outs where gene deletion is frequently lethal.
Cellular Biology, Issue 15, Molecular Biology, Site-Specific Recombinase, Cre recombinase, Cre/lox system, transgenic animals, transgenic technology
718
Play Button
Interview: HIV-1 Proviral DNA Excision Using an Evolved Recombinase
Authors: Joachim Hauber.
Institutions: Heinrich-Pette-Institute for Experimental Virology and Immunology, University of Hamburg.
HIV-1 integrates into the host chromosome of infected cells and persists as a provirus flanked by long terminal repeats. Current treatment strategies primarily target virus enzymes or virus-cell fusion, suppressing the viral life cycle without eradicating the infection. Since the integrated provirus is not targeted by these approaches, new resistant strains of HIV-1 may emerge. Here, we report that the engineered recombinase Tre (see Molecular evolution of the Tre recombinase , Buchholz, F., Max Planck Institute for Cell Biology and Genetics, Dresden) efficiently excises integrated HIV-1 proviral DNA from the genome of infected cells. We produced loxLTR containing viral pseudotypes and infected HeLa cells to examine whether Tre recombinase can excise the provirus from the genome of HIV-1 infected human cells. A virus particle-releasing cell line was cloned and transfected with a plasmid expressing Tre or with a parental control vector. Recombinase activity and virus production were monitored. All assays demonstrated the efficient deletion of the provirus from infected cells without visible cytotoxic effects. These results serve as proof of principle that it is possible to evolve a recombinase to specifically target an HIV-1 LTR and that this recombinase is capable of excising the HIV-1 provirus from the genome of HIV-1-infected human cells. Before an engineered recombinase could enter the therapeutic arena, however, significant obstacles need to be overcome. Among the most critical issues, that we face, are an efficient and safe delivery to targeted cells and the absence of side effects.
Medicine, Issue 16, HIV, Cell Biology, Recombinase, provirus, HeLa Cells
793
Play Button
Testing Nicotine Tolerance in Aphids Using an Artificial Diet Experiment
Authors: John Sawyer Ramsey, Georg Jander.
Institutions: Cornell University.
Plants may upregulate the production of many different seconday metabolites in response to insect feeding. One of these metabolites, nicotine, is well know to have insecticidal properties. One response of tobacco plants to herbivory, or being gnawed upon by insects, is to increase the production of this neurotoxic alkaloid. Here, we will demonstrate how to set up an experiment to address this question of whether a tobacco-adapted strain of the green peach aphid, Myzus persicae, can tolerate higher levels of nicotine than the a strain of this insect that does not infest tobacco in the field.
Plant Biology, Issue 15, Annual Review, Nicotine, Aphids, Plant Feeding Resistance, Tobacco
701
Play Button
Testing the Physiological Barriers to Viral Transmission in Aphids Using Microinjection
Authors: Cecilia Tamborindeguy, Stewart Gray, Georg Jander.
Institutions: Cornell University, Cornell University.
Potato loafroll virus (PLRV), from the family Luteoviridae infects solanaceous plants. It is transmitted by aphids, primarily, the green peach aphid. When an uninfected aphid feeds on an infected plant it contracts the virus through the plant phloem. Once ingested, the virus must pass from the insect gut to the hemolymph (the insect blood ) and then must pass through the salivary gland, in order to be transmitted back to a new plant. An aphid may take up different viruses when munching on a plant, however only a small fraction will pass through the gut and salivary gland, the two main barriers for transmission to infect more plants. In the lab, we use physalis plants to study PLRV transmission. In this host, symptoms are characterized by stunting and interveinal chlorosis (yellowing of the leaves between the veins with the veins remaining green). The video that we present demonstrates a method for performing aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut is preventing viral transmission. The video that we present demonstrates a method for performing Aphid microinjection on insects that do not vector PLVR viruses and tests whether the gut or salivary gland is preventing viral transmission.
Plant Biology, Issue 15, Annual Review, Aphids, Plant Virus, Potato Leaf Roll Virus, Microinjection Technique
700
Play Button
Molecular Evolution of the Tre Recombinase
Authors: Frank Buchholz.
Institutions: Max Plank Institute for Molecular Cell Biology and Genetics, Dresden.
Here we report the generation of Tre recombinase through directed, molecular evolution. Tre recombinase recognizes a pre-defined target sequence within the LTR sequences of the HIV-1 provirus, resulting in the excision and eradication of the provirus from infected human cells. We started with Cre, a 38-kDa recombinase, that recognizes a 34-bp double-stranded DNA sequence known as loxP. Because Cre can effectively eliminate genomic sequences, we set out to tailor a recombinase that could remove the sequence between the 5'-LTR and 3'-LTR of an integrated HIV-1 provirus. As a first step we identified sequences within the LTR sites that were similar to loxP and tested for recombination activity. Initially Cre and mutagenized Cre libraries failed to recombine the chosen loxLTR sites of the HIV-1 provirus. As the start of any directed molecular evolution process requires at least residual activity, the original asymmetric loxLTR sequences were split into subsets and tested again for recombination activity. Acting as intermediates, recombination activity was shown with the subsets. Next, recombinase libraries were enriched through reiterative evolution cycles. Subsequently, enriched libraries were shuffled and recombined. The combination of different mutations proved synergistic and recombinases were created that were able to recombine loxLTR1 and loxLTR2. This was evidence that an evolutionary strategy through intermediates can be successful. After a total of 126 evolution cycles individual recombinases were functionally and structurally analyzed. The most active recombinase -- Tre -- had 19 amino acid changes as compared to Cre. Tre recombinase was able to excise the HIV-1 provirus from the genome HIV-1 infected HeLa cells (see "HIV-1 Proviral DNA Excision Using an Evolved Recombinase", Hauber J., Heinrich-Pette-Institute for Experimental Virology and Immunology, Hamburg, Germany). While still in its infancy, directed molecular evolution will allow the creation of custom enzymes that will serve as tools of "molecular surgery" and molecular medicine.
Cell Biology, Issue 15, HIV-1, Tre recombinase, Site-specific recombination, molecular evolution
791
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.