JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.
PUBLISHED: 01-01-2014
In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.
The small intestinal mucosa exhibits a repetitive architecture organized into two fundamental structures: villi, projecting into the intestinal lumen and composed of mature enterocytes, goblet cells and enteroendocrine cells; and crypts, residing proximal to the submucosa and the muscularis, harboring adult stem and progenitor cells and mature Paneth cells, as well as stromal and immune cells of the crypt microenvironment. Until the last few years, in vitro studies of small intestine was limited to cell lines derived from either benign or malignant tumors, and did not represent the physiology of normal intestinal epithelia and the influence of the microenvironment in which they reside. Here, we demonstrate a method adapted from Sato et al. (2009) for culturing primary mouse intestinal crypt organoids derived from C57BL/6 mice. In addition, we present the use of crypt organoid cultures to assay the crypt metabolic profile in real time by measurement of basal oxygen consumption, glycolytic rate, ATP production and respiratory capacity. Organoids maintain properties defined by their source and retain aspects of their metabolic adaptation reflected by oxygen consumption and extracellular acidification rates. Real time metabolic studies in this crypt organoid culture system are a powerful tool to study crypt organoid energy metabolism, and how it can be modulated by nutritional and pharmacological factors.
22 Related JoVE Articles!
Play Button
Metabolic Profile Analysis of Zebrafish Embryos
Authors: Yann Gibert, Sean L. McGee, Alister C. Ward.
Institutions: School of Medicine, Deakin University.
A growing goal in the field of metabolism is to determine the impact of genetics on different aspects of mitochondrial function. Understanding these relationships will help to understand the underlying etiology for a range of diseases linked with mitochondrial dysfunction, such as diabetes and obesity. Recent advances in instrumentation, has enabled the monitoring of distinct parameters of mitochondrial function in cell lines or tissue explants. Here we present a method for a rapid and sensitive analysis of mitochondrial function parameters in vivo during zebrafish embryonic development using the Seahorse bioscience XF 24 extracellular flux analyser. This protocol utilizes the Islet Capture microplates where a single embryo is placed in each well, allowing measurement of bioenergetics, including: (i) basal respiration; (ii) basal mitochondrial respiration (iii) mitochondrial respiration due to ATP turnover; (iv) mitochondrial uncoupled respiration or proton leak and (iv) maximum respiration. Using this approach embryonic zebrafish respiration parameters can be compared between wild type and genetically altered embryos (mutant, gene over-expression or gene knockdown) or those manipulated pharmacologically. It is anticipated that dissemination of this protocol will provide researchers with new tools to analyse the genetic basis of metabolic disorders in vivo in this relevant vertebrate animal model.
Developmental Biology, Issue 71, Genetics, Biochemistry, Cellular Biology, Molecular Biology, Physiology, Embryology, Metabolism, Metabolomics, metabolic profile, respiration, mitochondria, ATP, development, Oil Red O staining, zebrafish, Danio rerio, animal model
Play Button
Determining Soil-transmitted Helminth Infection Status and Physical Fitness of School-aged Children
Authors: Peiling Yap, Thomas Fürst, Ivan Müller, Susi Kriemler, Jürg Utzinger, Peter Steinmann.
Institutions: Swiss Tropical and Public Health Institute, Basel, Switzerland, University of Basel, Basel, Switzerland.
Soil-transmitted helminth (STH) infections are common. Indeed, more than 1 billion people are affected, mainly in the developing world where poverty prevails and hygiene behavior, water supply, and sanitation are often deficient1,2. Ascaris lumbricoides, Trichuris trichiura, and the two hookworm species, Ancylostoma duodenale and Necator americanus, are the most prevalent STHs3. The estimated global burden due to hookworm disease, ascariasis, and trichuriasis is 22.1, 10.5, and 6.4 million disability-adjusted life years (DALYs), respectively4. Furthermore, an estimated 30-100 million people are infected with Strongyloides stercoralis, the most neglected STH species of global significance which arguably also causes a considerable public health impact5,6. Multiple-species infections (i.e., different STHs harbored in a single individual) are common, and infections have been linked to lowered productivity and thus economic outlook of developing countries1,3. For the diagnosis of common STHs, the World Health Organization (WHO) recommends the Kato-Katz technique7,8, which is a relatively straightforward method for determining the prevalence and intensity of such infections. It facilitates the detection of parasite eggs that infected subjects pass in their feces. With regard to the diagnosis of S.stercoralis, there is currently no simple and accurate tool available. The Baermann technique is the most widely employed method for its diagnosis. The principle behind the Baermann technique is that active S.stercoralis larvae migrate out of an illuminated fresh fecal sample as the larvae are phototactic9. It requires less sophisticated laboratory materials and is less time consuming than culture and immunological methods5. Morbidities associated with STH infections range from acute but common symptoms, such as abdominal pain, diarrhea, and pruritus, to chronic symptoms, such as anemia, under- and malnutrition, and cognitive impairment10. Since the symptoms are generally unspecific and subtle, they often go unnoticed, are considered a normal condition by affected individuals, or are treated as symptoms of other diseases that might be more common in a given setting. Hence, it is conceivable that the true burden of STH infections is underestimated by assessment tools relying on self-declared signs and symptoms as is usually the case in population-based surveys. In the late 1980s and early 1990s, Stephenson and colleagues highlighted the possibility of STH infections lowering the physical fitness of boys aged 6-12 years11,12. This line of scientific inquiry gained new momentum recently13,14,15. The 20-meter (m) shuttle run test was developed and validated by Léger et al.16 and is used worldwide to measure the aerobic fitness of children17. The test is easy to standardize and can be performed wherever a 20-m long and flat running course and an audio source are available, making its use attractive in resource-constrained settings13. To facilitate and standardize attempts at assessing whether STH infections have an effect on the physical fitness of school-aged children, we present methodologies that diagnose STH infections or measure physical fitness that are simple to execute and yet, provide accurate and reproducible outcomes. This will help to generate new evidence regarding the health impact of STH infections.
Infection, Issue 66, Immunology, Medicine, Infectious Diseases, Soil-transmitted helminths, physical fitness, Kato-Katz technique, Baermann technique, 20-meter shuttle run test, children
Play Button
Rapid Diagnosis of Avian Influenza Virus in Wild Birds: Use of a Portable rRT-PCR and Freeze-dried Reagents in the Field
Authors: John Y. Takekawa, Nichola J. Hill, Annie K. Schultz, Samuel A. Iverson, Carol J. Cardona, Walter M. Boyce, Joseph P. Dudley.
Institutions: USGS Western Ecological Research Center, University of California, Davis, University of California, Davis, University of Minnesota , Science Applications International Corporation.
Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAI) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds for avian influenza virus (AIV) is often conducted in remote regions, but results are often delayed because of the need to transport samples to a laboratory equipped for molecular testing. Real-time reverse transcriptase polymerase chain reaction (rRT-PCR) is a molecular technique that offers one of the most accurate and sensitive methods for diagnosis of AIV. The previously strict lab protocols needed for rRT-PCR are now being adapted for the field. Development of freeze-dried (lyophilized) reagents that do not require cold chain, with sensitivity at the level of wet reagents has brought on-site remote testing to a practical goal. Here we present a method for the rapid diagnosis of AIV in wild birds using an rRT-PCR unit (Ruggedized Advanced Pathogen Identification Device or RAPID, Idaho Technologies, Salt Lake City, UT) that employs lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies). The reagents contain all of the necessary components for testing at appropriate concentrations in a single tube: primers, probes, enzymes, buffers and internal positive controls, eliminating errors associated with improper storage or handling of wet reagents. The portable unit performs a screen for Influenza A by targeting the matrix gene and yields results in 2-3 hours. Genetic subtyping is also possible with H5 and H7 primer sets that target the hemagglutinin gene. The system is suitable for use on cloacal and oropharyngeal samples collected from wild birds, as demonstrated here on the migratory shorebird species, the western sandpiper (Calidrus mauri) captured in Northern California. Animal handling followed protocols approved by the Animal Care and Use Committee of the U.S. Geological Survey Western Ecological Research Center and permits of the U.S. Geological Survey Bird Banding Laboratory. The primary advantage of this technique is to expedite diagnosis of wild birds, increasing the chances of containing an outbreak in a remote location. On-site diagnosis would also prove useful for identifying and studying infected individuals in wild populations. The opportunity to collect information on host biology (immunological and physiological response to infection) and spatial ecology (migratory performance of infected birds) will provide insights into the extent to which wild birds can act as vectors for AIV over long distances.
Immunology, Issue 54, migratory birds, active surveillance, lyophilized reagents, avian influenza, H5N1
Play Button
Experimental Protocol for Manipulating Plant-induced Soil Heterogeneity
Authors: Angela J. Brandt, Gaston A. del Pino, Jean H. Burns.
Institutions: Case Western Reserve University.
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Environmental Sciences, Issue 85, Coexistence, community assembly, environmental drivers, plant-soil feedback, soil heterogeneity, soil microbial communities, soil patch
Play Button
Parasite Induced Genetically Driven Autoimmune Chagas Heart Disease in the Chicken Model
Authors: Antonio R. L. Teixeira, Nadjar Nitz, Francisco M. Bernal, Mariana M. Hecht.
Institutions: University of Brasilia.
The Trypanosoma cruzi acute infections acquired in infancy and childhood seem asymptomatic, but approximately one third of the chronically infected cases show Chagas disease up to three decades or later. Autoimmunity and parasite persistence are competing theories to explain the pathogenesis of Chagas disease 1, 2. To separate roles played by parasite persistence and autoimmunity in Chagas disease we inoculate the T. cruzi in the air chamber of fertilized eggs. The mature chicken immune system is a tight biological barrier against T. cruzi and the infection is eradicated upon development of its immune system by the end of the first week of growth 3. The chicks are parasite-free at hatching, but they retain integrated parasite mitochondrial kinetoplast DNA (kDNA) minicircle within their genome that are transferred to their progeny. Documentation of the kDNA minicircle integration in the chicken genome was obtained by a targeted prime TAIL-PCR, Southern hybridizations, cloning, and sequencing 3, 4. The kDNA minicircle integrations rupture open reading frames for transcription and immune system factors, phosphatase (GTPase), adenylate cyclase and phosphorylases (PKC, NF-Kappa B activator, PI-3K) associated with cell physiology, growth, and differentiation 3, 5-7, and other gene functions. Severe myocarditis due to rejection of target heart fibers by effectors cytotoxic lymphocytes is seen in the kDNA mutated chickens, showing an inflammatory cardiomyopathy similar to that seen in human Chagas disease. Notably, heart failure and skeletal muscle weakness are present in adult chickens with kDNA rupture of the dystrophin gene in chromosome 1 8. Similar genotipic alterations are associated with tissue destruction carried out by effectors CD45+, CD8γδ+, CD8α lymphocytes. Thus this protozoan infection can induce genetically driven autoimmune disease.
Immunology, Issue 65, Infection, Genetics, Parasitology, Trypanosoma cruzi, Gallus gallus, transfer of mitochondrial kDNA minicircle, targeted-prime TAIL-PCR, genotype modifications, Chagas disease
Play Button
Design and Operation of a Continuous 13C and 15N Labeling Chamber for Uniform or Differential, Metabolic and Structural, Plant Isotope Labeling
Authors: Jennifer L Soong, Dan Reuss, Colin Pinney, Ty Boyack, Michelle L Haddix, Catherine E Stewart, M. Francesca Cotrufo.
Institutions: Colorado State University, USDA-ARS, Colorado State University.
Tracing rare stable isotopes from plant material through the ecosystem provides the most sensitive information about ecosystem processes; from CO2 fluxes and soil organic matter formation to small-scale stable-isotope biomarker probing. Coupling multiple stable isotopes such as 13C with 15N, 18O or 2H has the potential to reveal even more information about complex stoichiometric relationships during biogeochemical transformations. Isotope labeled plant material has been used in various studies of litter decomposition and soil organic matter formation1-4. From these and other studies, however, it has become apparent that structural components of plant material behave differently than metabolic components (i.e. leachable low molecular weight compounds) in terms of microbial utilization and long-term carbon storage5-7. The ability to study structural and metabolic components separately provides a powerful new tool for advancing the forefront of ecosystem biogeochemical studies. Here we describe a method for producing 13C and 15N labeled plant material that is either uniformly labeled throughout the plant or differentially labeled in structural and metabolic plant components. Here, we present the construction and operation of a continuous 13C and 15N labeling chamber that can be modified to meet various research needs. Uniformly labeled plant material is produced by continuous labeling from seedling to harvest, while differential labeling is achieved by removing the growing plants from the chamber weeks prior to harvest. Representative results from growing Andropogon gerardii Kaw demonstrate the system's ability to efficiently label plant material at the targeted levels. Through this method we have produced plant material with a 4.4 atom%13C and 6.7 atom%15N uniform plant label, or material that is differentially labeled by up to 1.29 atom%13C and 0.56 atom%15N in its metabolic and structural components (hot water extractable and hot water residual components, respectively). Challenges lie in maintaining proper temperature, humidity, CO2 concentration, and light levels in an airtight 13C-CO2 atmosphere for successful plant production. This chamber description represents a useful research tool to effectively produce uniformly or differentially multi-isotope labeled plant material for use in experiments on ecosystem biogeochemical cycling.
Environmental Sciences, Issue 83, 13C, 15N, plant, stable isotope labeling, Andropogon gerardii, metabolic compounds, structural compounds, hot water extraction
Play Button
Metabolic Labeling of Newly Transcribed RNA for High Resolution Gene Expression Profiling of RNA Synthesis, Processing and Decay in Cell Culture
Authors: Bernd Rädle, Andrzej J. Rutkowski, Zsolt Ruzsics, Caroline C. Friedel, Ulrich H. Koszinowski, Lars Dölken.
Institutions: Max von Pettenkofer Institute, University of Cambridge, Ludwig-Maximilians-University Munich.
The development of whole-transcriptome microarrays and next-generation sequencing has revolutionized our understanding of the complexity of cellular gene expression. Along with a better understanding of the involved molecular mechanisms, precise measurements of the underlying kinetics have become increasingly important. Here, these powerful methodologies face major limitations due to intrinsic properties of the template samples they study, i.e. total cellular RNA. In many cases changes in total cellular RNA occur either too slowly or too quickly to represent the underlying molecular events and their kinetics with sufficient resolution. In addition, the contribution of alterations in RNA synthesis, processing, and decay are not readily differentiated. We recently developed high-resolution gene expression profiling to overcome these limitations. Our approach is based on metabolic labeling of newly transcribed RNA with 4-thiouridine (thus also referred to as 4sU-tagging) followed by rigorous purification of newly transcribed RNA using thiol-specific biotinylation and streptavidin-coated magnetic beads. It is applicable to a broad range of organisms including vertebrates, Drosophila, and yeast. We successfully applied 4sU-tagging to study real-time kinetics of transcription factor activities, provide precise measurements of RNA half-lives, and obtain novel insights into the kinetics of RNA processing. Finally, computational modeling can be employed to generate an integrated, comprehensive analysis of the underlying molecular mechanisms.
Genetics, Issue 78, Cellular Biology, Molecular Biology, Microbiology, Biochemistry, Eukaryota, Investigative Techniques, Biological Phenomena, Gene expression profiling, RNA synthesis, RNA processing, RNA decay, 4-thiouridine, 4sU-tagging, microarray analysis, RNA-seq, RNA, DNA, PCR, sequencing
Play Button
High-throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities
Authors: Colin W. Bell, Barbara E. Fricks, Jennifer D. Rocca, Jessica M. Steinweg, Shawna K. McMahon, Matthew D. Wallenstein.
Institutions: Colorado State University, Oak Ridge National Laboratory, University of Colorado.
Microbes in soils and other environments produce extracellular enzymes to depolymerize and hydrolyze organic macromolecules so that they can be assimilated for energy and nutrients. Measuring soil microbial enzyme activity is crucial in understanding soil ecosystem functional dynamics. The general concept of the fluorescence enzyme assay is that synthetic C-, N-, or P-rich substrates bound with a fluorescent dye are added to soil samples. When intact, the labeled substrates do not fluoresce. Enzyme activity is measured as the increase in fluorescence as the fluorescent dyes are cleaved from their substrates, which allows them to fluoresce. Enzyme measurements can be expressed in units of molarity or activity. To perform this assay, soil slurries are prepared by combining soil with a pH buffer. The pH buffer (typically a 50 mM sodium acetate or 50 mM Tris buffer), is chosen for the buffer's particular acid dissociation constant (pKa) to best match the soil sample pH. The soil slurries are inoculated with a nonlimiting amount of fluorescently labeled (i.e. C-, N-, or P-rich) substrate. Using soil slurries in the assay serves to minimize limitations on enzyme and substrate diffusion. Therefore, this assay controls for differences in substrate limitation, diffusion rates, and soil pH conditions; thus detecting potential enzyme activity rates as a function of the difference in enzyme concentrations (per sample). Fluorescence enzyme assays are typically more sensitive than spectrophotometric (i.e. colorimetric) assays, but can suffer from interference caused by impurities and the instability of many fluorescent compounds when exposed to light; so caution is required when handling fluorescent substrates. Likewise, this method only assesses potential enzyme activities under laboratory conditions when substrates are not limiting. Caution should be used when interpreting the data representing cross-site comparisons with differing temperatures or soil types, as in situ soil type and temperature can influence enzyme kinetics.
Environmental Sciences, Issue 81, Ecological and Environmental Phenomena, Environment, Biochemistry, Environmental Microbiology, Soil Microbiology, Ecology, Eukaryota, Archaea, Bacteria, Soil extracellular enzyme activities (EEAs), fluorometric enzyme assays, substrate degradation, 4-methylumbelliferone (MUB), 7-amino-4-methylcoumarin (MUC), enzyme temperature kinetics, soil
Play Button
Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells
Authors: Jason D. Vevea, Dana M. Alessi Wolken, Theresa C. Swayne, Adam B. White, Liza A. Pon.
Institutions: Columbia University, Columbia University.
Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.
Bioengineering, Issue 77, Microbiology, Cellular Biology, Molecular Biology, Biochemistry, life sciences, roGFP, redox-sensitive green fluorescent protein, GO-ATeam, ATP, FRET, ROS, mitochondria, biosensors, GFP, ImageJ, microscopy, confocal microscopy, cell, imaging
Play Button
The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism
Authors: Sara Tremblay, Vincent Beaulé, Sébastien Proulx, Louis-Philippe Lafleur, Julien Doyon, Małgorzata Marjańska, Hugo Théoret.
Institutions: University of Montréal, McGill University, University of Minnesota.
Transcranial direct current stimulation (tDCS) is a neuromodulation technique that has been increasingly used over the past decade in the treatment of neurological and psychiatric disorders such as stroke and depression. Yet, the mechanisms underlying its ability to modulate brain excitability to improve clinical symptoms remains poorly understood 33. To help improve this understanding, proton magnetic resonance spectroscopy (1H-MRS) can be used as it allows the in vivo quantification of brain metabolites such as γ-aminobutyric acid (GABA) and glutamate in a region-specific manner 41. In fact, a recent study demonstrated that 1H-MRS is indeed a powerful means to better understand the effects of tDCS on neurotransmitter concentration 34. This article aims to describe the complete protocol for combining tDCS (NeuroConn MR compatible stimulator) with 1H-MRS at 3 T using a MEGA-PRESS sequence. We will describe the impact of a protocol that has shown great promise for the treatment of motor dysfunctions after stroke, which consists of bilateral stimulation of primary motor cortices 27,30,31. Methodological factors to consider and possible modifications to the protocol are also discussed.
Neuroscience, Issue 93, proton magnetic resonance spectroscopy, transcranial direct current stimulation, primary motor cortex, GABA, glutamate, stroke
Play Button
Setting-up an In Vitro Model of Rat Blood-brain Barrier (BBB): A Focus on BBB Impermeability and Receptor-mediated Transport
Authors: Yves Molino, Françoise Jabès, Emmanuelle Lacassagne, Nicolas Gaudin, Michel Khrestchatisky.
Institutions: VECT-HORUS SAS, CNRS, NICN UMR 7259.
The blood brain barrier (BBB) specifically regulates molecular and cellular flux between the blood and the nervous tissue. Our aim was to develop and characterize a highly reproducible rat syngeneic in vitro model of the BBB using co-cultures of primary rat brain endothelial cells (RBEC) and astrocytes to study receptors involved in transcytosis across the endothelial cell monolayer. Astrocytes were isolated by mechanical dissection following trypsin digestion and were frozen for later co-culture. RBEC were isolated from 5-week-old rat cortices. The brains were cleaned of meninges and white matter, and mechanically dissociated following enzymatic digestion. Thereafter, the tissue homogenate was centrifuged in bovine serum albumin to separate vessel fragments from nervous tissue. The vessel fragments underwent a second enzymatic digestion to free endothelial cells from their extracellular matrix. The remaining contaminating cells such as pericytes were further eliminated by plating the microvessel fragments in puromycin-containing medium. They were then passaged onto filters for co-culture with astrocytes grown on the bottom of the wells. RBEC expressed high levels of tight junction (TJ) proteins such as occludin, claudin-5 and ZO-1 with a typical localization at the cell borders. The transendothelial electrical resistance (TEER) of brain endothelial monolayers, indicating the tightness of TJs reached 300 ohm·cm2 on average. The endothelial permeability coefficients (Pe) for lucifer yellow (LY) was highly reproducible with an average of 0.26 ± 0.11 x 10-3 cm/min. Brain endothelial cells organized in monolayers expressed the efflux transporter P-glycoprotein (P-gp), showed a polarized transport of rhodamine 123, a ligand for P-gp, and showed specific transport of transferrin-Cy3 and DiILDL across the endothelial cell monolayer. In conclusion, we provide a protocol for setting up an in vitro BBB model that is highly reproducible due to the quality assurance methods, and that is suitable for research on BBB transporters and receptors.
Medicine, Issue 88, rat brain endothelial cells (RBEC), mouse, spinal cord, tight junction (TJ), receptor-mediated transport (RMT), low density lipoprotein (LDL), LDLR, transferrin, TfR, P-glycoprotein (P-gp), transendothelial electrical resistance (TEER),
Play Button
Bioenergetic Profile Experiment using C2C12 Myoblast Cells
Authors: David G. Nicholls, Victor M. Darley-Usmar, Min Wu, Per Bo Jensen, George W. Rogers, David A. Ferrick.
Institutions: Novato, CA, University of Alabama at Birmingham - UAB, North Billerica, MA.
The ability to measure cellular metabolism and understand mitochondrial dysfunction, has enabled scientists worldwide to advance their research in understanding the role of mitochondrial function in obesity, diabetes, aging, cancer, cardiovascular function and safety toxicity. Cellular metabolism is the process of substrate uptake, such as oxygen, glucose, fatty acids, and glutamine, and subsequent energy conversion through a series of enzymatically controlled oxidation and reduction reactions. These intracellular biochemical reactions result in the production of ATP, the release of heat and chemical byproducts, such as lactate and CO2 into the extracellular environment. Valuable insight into the physiological state of cells, and the alteration of the state of those cells, can be gained through measuring the rate of oxygen consumed by the cells, an indicator of mitochondrial respiration - the Oxygen Consumption Rate - or OCR. Cells also generate ATP through glycolysis, i.e.: the conversion of glucose to lactate, independent of oxygen. In cultured wells, lactate is the primary source of protons. Measuring the lactic acid produced indirectly via protons released into the extracellular medium surrounding the cells, which causes acidification of the medium provides the Extra-Cellular Acidification Rate - or ECAR. In this experiment, C2C12 myoblast cells are seeded at a given density in Seahorse cell culture plates. The basal oxygen consumption (OCR) and extracellular acidification (ECAR) rates are measured to establish baseline rates. The cells are then metabolically perturbed by three additions of different compounds (in succession) that shift the bioenergetic profile of the cell. This assay is derived from a classic experiment to assess mitochondria and serves as a framework with which to build more complex experiments aimed at understanding both physiologic and pathophysiologic function of mitochondria and to predict the ability of cells to respond to stress and/or insults.
Cellular Biology, Issue 46, Mitochondrial dysfunction, cellular, bioenergetics, metabolism, cancer, obesity, diabetes, aging, neurodegeneration
Play Button
Bioenergetics and the Oxidative Burst: Protocols for the Isolation and Evaluation of Human Leukocytes and Platelets
Authors: Philip A. Kramer, Balu K. Chacko, Saranya Ravi, Michelle S. Johnson, Tanecia Mitchell, Victor M. Darley-Usmar.
Institutions: University of Alabama at Birmingham.
Mitochondrial dysfunction is known to play a significant role in a number of pathological conditions such as atherosclerosis, diabetes, septic shock, and neurodegenerative diseases but assessing changes in bioenergetic function in patients is challenging. Although diseases such as diabetes or atherosclerosis present clinically with specific organ impairment, the systemic components of the pathology, such as hyperglycemia or inflammation, can alter bioenergetic function in circulating leukocytes or platelets. This concept has been recognized for some time but its widespread application has been constrained by the large number of primary cells needed for bioenergetic analysis. This technical limitation has been overcome by combining the specificity of the magnetic bead isolation techniques, cell adhesion techniques, which allow cells to be attached without activation to microplates, and the sensitivity of new technologies designed for high throughput microplate respirometry. An example of this equipment is the extracellular flux analyzer. Such instrumentation typically uses oxygen and pH sensitive probes to measure rates of change in these parameters in adherent cells, which can then be related to metabolism. Here we detail the methods for the isolation and plating of monocytes, lymphocytes, neutrophils and platelets, without activation, from human blood and the analysis of mitochondrial bioenergetic function in these cells. In addition, we demonstrate how the oxidative burst in monocytes and neutrophils can also be measured in the same samples. Since these methods use only 8-20 ml human blood they have potential for monitoring reactive oxygen species generation and bioenergetics in a clinical setting.
Immunology, Issue 85, bioenergetics, translational, mitochondria, oxidative stress, reserve capacity, leukocytes
Play Button
An Experimental and Bioinformatics Protocol for RNA-seq Analyses of Photoperiodic Diapause in the Asian Tiger Mosquito, Aedes albopictus
Authors: Monica F. Poelchau, Xin Huang, Allison Goff, Julie Reynolds, Peter Armbruster.
Institutions: Georgetown University, The Ohio State University.
Photoperiodic diapause is an important adaptation that allows individuals to escape harsh seasonal environments via a series of physiological changes, most notably developmental arrest and reduced metabolism. Global gene expression profiling via RNA-Seq can provide important insights into the transcriptional mechanisms of photoperiodic diapause. The Asian tiger mosquito, Aedes albopictus, is an outstanding organism for studying the transcriptional bases of diapause due to its ease of rearing, easily induced diapause, and the genomic resources available. This manuscript presents a general experimental workflow for identifying diapause-induced transcriptional differences in A. albopictus. Rearing techniques, conditions necessary to induce diapause and non-diapause development, methods to estimate percent diapause in a population, and RNA extraction and integrity assessment for mosquitoes are documented. A workflow to process RNA-Seq data from Illumina sequencers culminates in a list of differentially expressed genes. The representative results demonstrate that this protocol can be used to effectively identify genes differentially regulated at the transcriptional level in A. albopictus due to photoperiodic differences. With modest adjustments, this workflow can be readily adapted to study the transcriptional bases of diapause or other important life history traits in other mosquitoes.
Genetics, Issue 93, Aedes albopictus Asian tiger mosquito, photoperiodic diapause, RNA-Seq de novo transcriptome assembly, mosquito husbandry
Play Button
Helminth Collection and Identification from Wildlife
Authors: Maria S Sepulveda, John M Kinsella.
Institutions: Purdue University, Helm West Laboratory.
Wild animals are commonly parasitized by a wide range of helminths. The four major types of helminths are "roundworms" (nematodes), "thorny-headed worms" (acanthocephalans), "flukes" (trematodes), and "tapeworms" (cestodes). The optimum method for collecting helminths is to examine a host that has been dead less than 4-6 hr since most helminths will still be alive. A thorough necropsy should be conducted and all major organs examined. Organs are washed over a 106 μm sieve under running water and contents examined under a stereo microscope. All helminths are counted and a representative number are fixed (either in 70% ethanol, 10% buffered formalin, or alcohol-formalin-acetic acid). For species identification, helminths are either cleared in lactophenol (nematodes and small acanthocephalans) or stained (trematodes, cestodes, and large acanthocephalans) using Harris' hematoxylin or Semichon's carmine. Helminths are keyed to species by examining different structures (e.g. male spicules in nematodes or the rostellum in cestodes). The protocols outlined here can be applied to any vertebrate animal. They require some expertise on recognizing the different organs and being able to differentiate helminths from other tissue debris or gut contents. Collection, preservation, and staining are straightforward techniques that require minimal equipment and reagents. Taxonomic identification, especially to species, can be very time consuming and might require the submission of specimens to an expert or DNA analysis.
Environmental Sciences, Issue 82, Helminths, eukaryotic parasites, worms, nematodes, cestodes, trematodes, acanthocephalans, wildlife
Play Button
Who is Who? Non-invasive Methods to Individually Sex and Mark Altricial Chicks
Authors: Iris Adam, Constance Scharff, Mariam Honarmand.
Institutions: Freie Universität Berlin.
Many experiments require early determination of offspring's sex as well as early marking of newborns for individual recognition. According to animal welfare guidelines, non-invasive techniques should be preferred whenever applicable. In our group, we work on different species of song birds in the lab and in the field, and we successfully apply non-invasive methods to sex and individually mark chicks. This paper presents a comprehensive non-invasive tool-box. Sexing birds prior to the expression of secondary sexual traits requires the collection of DNA-bearing material for PCR. We established a quick and easy method to sex birds of any age (post hatching) by extracting DNA from buccal swabs. Results can be obtained within 3 hours. For individual marking chick's down feathers are trimmed in specific patterns allowing fast identification within the hatching order. This set of methods is easily applicable in a standard equipped lab and especially suitable for working in the field as no special equipment is required for sampling and storage. Handling of chicks is minimized and marking and sexing techniques are non-invasive thereby supporting the RRR-principle of animal welfare guidelines.
Developmental Biology, Issue 87, songbird, molecular sexing, PCR, individual marking, down feather, DNA extraction, sample storage, zebra finch, buccal swabs, saliva, gender
Play Button
Using Coculture to Detect Chemically Mediated Interspecies Interactions
Authors: Elizabeth Anne Shank.
Institutions: University of North Carolina at Chapel Hill .
In nature, bacteria rarely exist in isolation; they are instead surrounded by a diverse array of other microorganisms that alter the local environment by secreting metabolites. These metabolites have the potential to modulate the physiology and differentiation of their microbial neighbors and are likely important factors in the establishment and maintenance of complex microbial communities. We have developed a fluorescence-based coculture screen to identify such chemically mediated microbial interactions. The screen involves combining a fluorescent transcriptional reporter strain with environmental microbes on solid media and allowing the colonies to grow in coculture. The fluorescent transcriptional reporter is designed so that the chosen bacterial strain fluoresces when it is expressing a particular phenotype of interest (i.e. biofilm formation, sporulation, virulence factor production, etc.) Screening is performed under growth conditions where this phenotype is not expressed (and therefore the reporter strain is typically nonfluorescent). When an environmental microbe secretes a metabolite that activates this phenotype, it diffuses through the agar and activates the fluorescent reporter construct. This allows the inducing-metabolite-producing microbe to be detected: they are the nonfluorescent colonies most proximal to the fluorescent colonies. Thus, this screen allows the identification of environmental microbes that produce diffusible metabolites that activate a particular physiological response in a reporter strain. This publication discusses how to: a) select appropriate coculture screening conditions, b) prepare the reporter and environmental microbes for screening, c) perform the coculture screen, d) isolate putative inducing organisms, and e) confirm their activity in a secondary screen. We developed this method to screen for soil organisms that activate biofilm matrix-production in Bacillus subtilis; however, we also discuss considerations for applying this approach to other genetically tractable bacteria.
Microbiology, Issue 80, High-Throughput Screening Assays, Genes, Reporter, Microbial Interactions, Soil Microbiology, Coculture, microbial interactions, screen, fluorescent transcriptional reporters, Bacillus subtilis
Play Button
Preparation of Primary Myogenic Precursor Cell/Myoblast Cultures from Basal Vertebrate Lineages
Authors: Jacob Michael Froehlich, Iban Seiliez, Jean-Charles Gabillard, Peggy R. Biga.
Institutions: University of Alabama at Birmingham, INRA UR1067, INRA UR1037.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Basic Protocol, Issue 86, myogenesis, zebrafish, myoblast, cell culture, giant danio, moustached danio, myotubes, proliferation, differentiation, Danioninae, axolotl
Play Button
Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy
Authors: Nikki M. Curthoys, Michael J. Mlodzianoski, Dahan Kim, Samuel T. Hess.
Institutions: University of Maine.
Localization-based super resolution microscopy can be applied to obtain a spatial map (image) of the distribution of individual fluorescently labeled single molecules within a sample with a spatial resolution of tens of nanometers. Using either photoactivatable (PAFP) or photoswitchable (PSFP) fluorescent proteins fused to proteins of interest, or organic dyes conjugated to antibodies or other molecules of interest, fluorescence photoactivation localization microscopy (FPALM) can simultaneously image multiple species of molecules within single cells. By using the following approach, populations of large numbers (thousands to hundreds of thousands) of individual molecules are imaged in single cells and localized with a precision of ~10-30 nm. Data obtained can be applied to understanding the nanoscale spatial distributions of multiple protein types within a cell. One primary advantage of this technique is the dramatic increase in spatial resolution: while diffraction limits resolution to ~200-250 nm in conventional light microscopy, FPALM can image length scales more than an order of magnitude smaller. As many biological hypotheses concern the spatial relationships among different biomolecules, the improved resolution of FPALM can provide insight into questions of cellular organization which have previously been inaccessible to conventional fluorescence microscopy. In addition to detailing the methods for sample preparation and data acquisition, we here describe the optical setup for FPALM. One additional consideration for researchers wishing to do super-resolution microscopy is cost: in-house setups are significantly cheaper than most commercially available imaging machines. Limitations of this technique include the need for optimizing the labeling of molecules of interest within cell samples, and the need for post-processing software to visualize results. We here describe the use of PAFP and PSFP expression to image two protein species in fixed cells. Extension of the technique to living cells is also described.
Basic Protocol, Issue 82, Microscopy, Super-resolution imaging, Multicolor, single molecule, FPALM, Localization microscopy, fluorescent proteins
Play Button
An Affordable HIV-1 Drug Resistance Monitoring Method for Resource Limited Settings
Authors: Justen Manasa, Siva Danaviah, Sureshnee Pillay, Prevashinee Padayachee, Hloniphile Mthiyane, Charity Mkhize, Richard John Lessells, Christopher Seebregts, Tobias F. Rinke de Wit, Johannes Viljoen, David Katzenstein, Tulio De Oliveira.
Institutions: University of KwaZulu-Natal, Durban, South Africa, Jembi Health Systems, University of Amsterdam, Stanford Medical School.
HIV-1 drug resistance has the potential to seriously compromise the effectiveness and impact of antiretroviral therapy (ART). As ART programs in sub-Saharan Africa continue to expand, individuals on ART should be closely monitored for the emergence of drug resistance. Surveillance of transmitted drug resistance to track transmission of viral strains already resistant to ART is also critical. Unfortunately, drug resistance testing is still not readily accessible in resource limited settings, because genotyping is expensive and requires sophisticated laboratory and data management infrastructure. An open access genotypic drug resistance monitoring method to manage individuals and assess transmitted drug resistance is described. The method uses free open source software for the interpretation of drug resistance patterns and the generation of individual patient reports. The genotyping protocol has an amplification rate of greater than 95% for plasma samples with a viral load >1,000 HIV-1 RNA copies/ml. The sensitivity decreases significantly for viral loads <1,000 HIV-1 RNA copies/ml. The method described here was validated against a method of HIV-1 drug resistance testing approved by the United States Food and Drug Administration (FDA), the Viroseq genotyping method. Limitations of the method described here include the fact that it is not automated and that it also failed to amplify the circulating recombinant form CRF02_AG from a validation panel of samples, although it amplified subtypes A and B from the same panel.
Medicine, Issue 85, Biomedical Technology, HIV-1, HIV Infections, Viremia, Nucleic Acids, genetics, antiretroviral therapy, drug resistance, genotyping, affordable
Play Button
Characterizing Herbivore Resistance Mechanisms: Spittlebugs on Brachiaria spp. as an Example
Authors: Soroush Parsa, Guillermo Sotelo, Cesar Cardona.
Institutions: CIAT.
Plants can resist herbivore damage through three broad mechanisms: antixenosis, antibiosis and tolerance1. Antixenosis is the degree to which the plant is avoided when the herbivore is able to select other plants2. Antibiosis is the degree to which the plant affects the fitness of the herbivore feeding on it1.Tolerance is the degree to which the plant can withstand or repair damage caused by the herbivore, without compromising the herbivore's growth and reproduction1. The durability of herbivore resistance in an agricultural setting depends to a great extent on the resistance mechanism favored during crop breeding efforts3. We demonstrate a no-choice experiment designed to estimate the relative contributions of antibiosis and tolerance to spittlebug resistance in Brachiaria spp. Several species of African grasses of the genus Brachiaria are valuable forage and pasture plants in the Neotropics, but they can be severely challenged by several native species of spittlebugs (Hemiptera: Cercopidae)4.To assess their resistance to spittlebugs, plants are vegetatively-propagated by stem cuttings and allowed to grow for approximately one month, allowing the growth of superficial roots on which spittlebugs can feed. At that point, each test plant is individually challenged with six spittlebug eggs near hatching. Infestations are allowed to progress for one month before evaluating plant damage and insect survival. Scoring plant damage provides an estimate of tolerance while scoring insect survival provides an estimate of antibiosis. This protocol has facilitated our plant breeding objective to enhance spittlebug resistance in commercial brachiariagrases5.
Plant Biology, Issue 52, host plant resistance, antibiosis, antixenosis, tolerance, Brachiaria, spittlebugs
Play Button
Measurement of Metabolic Rate in Drosophila using Respirometry
Authors: Andriy S. Yatsenko, April K. Marrone, Mariya M. Kucherenko, Halyna R. Shcherbata.
Institutions: Max Planck Institute for Biophysical Chemistry.
Metabolic disorders are a frequent problem affecting human health. Therefore, understanding the mechanisms that regulate metabolism is a crucial scientific task. Many disease causing genes in humans have a fly homologue, making Drosophila a good model to study signaling pathways involved in the development of different disorders. Additionally, the tractability of Drosophila simplifies genetic screens to aid in identifying novel therapeutic targets that may regulate metabolism. In order to perform such a screen a simple and fast method to identify changes in the metabolic state of flies is necessary. In general, carbon dioxide production is a good indicator of substrate oxidation and energy expenditure providing information about metabolic state. In this protocol we introduce a simple method to measure CO2 output from flies. This technique can potentially aid in the identification of genetic perturbations affecting metabolic rate.
Physiology, Issue 88, Insects, Diptera, Metabolism, Drosophila, energy homeostasis, respiration, carbon dioxide (CO2), oxygen (O2)
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.