JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry-based metabolomics approach to study the effects of jieduquyuziyin prescription on systemic lupus erythematosus.
PUBLISHED: 01-01-2014
Jieduquyuziyin prescription (JP), a traditional Chinese medicine (TCM) prescription, has been widely used for the clinical treatment of systemic lupus erythematosus (SLE). However, the complex chemical constituents of JP and the multifactorial pathogenesis of SLE make research on the therapeutic mechanism of JP in SLE challenging. In this paper, a serum metabolomics approach based on rapid resolution liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (RRLC-Q-TOF/MS) was employed to acquire the metabolic characteristics of serum samples obtained from mice in the SLE model group, JP-treated group, prednisone acetate (PA)-treated group and control group. The orthogonal partial least squares (OPLS) was applied to recognize metabolic patterns, and an obvious separation of groups was obtained. Thirteen metabolites, namely, phosphatidylethanolamine (PE 20:3), hepoxilin B3, lyso- phosphatidylethanolamine (lyso-PE 22:6), 12S-hydroxypentaenoic acid (12S-HEPE), traumatic acid, serotonin, platelet-activating factor (PAF), phosphatidylcholine (PC 20:5),eicosapentaenoic acid (EPA), 12(S)-hydroxyei- cosatetraenoic acid (12S-HETE), 14-hydroxy docosahexaenoic acid (14-HDOHE), lyso-phosphatidylcholine (lyso-PC 20:4), and indole acetaldehyde, were identified and characterized as differential metabolites involved in the pathogenesis of SLE. After treatment with JP, the relative content of 12(S)-HETE, PAF, 12(S)-HEPE, EPA, PE (20:3), Lyso-PE(22:6), and 14-HDOHE were effectively regulated, which suggested that the therapeutic effects of JP on SLE may involve regulating disturbances to the metabolism of unsaturated fatty acid, tryptophan and phospholipid. This research also demonstrated that metabolomics is a powerful tool for researching complex disease mechanisms and evaluating the mechanism of action of TCM.
Non-targeted metabolite profiling by ultra performance liquid chromatography coupled with mass spectrometry (UPLC-MS) is a powerful technique to investigate metabolism. The approach offers an unbiased and in-depth analysis that can enable the development of diagnostic tests, novel therapies, and further our understanding of disease processes. The inherent chemical diversity of the metabolome creates significant analytical challenges and there is no single experimental approach that can detect all metabolites. Additionally, the biological variation in individual metabolism and the dependence of metabolism on environmental factors necessitates large sample numbers to achieve the appropriate statistical power required for meaningful biological interpretation. To address these challenges, this tutorial outlines an analytical workflow for large scale non-targeted metabolite profiling of serum by UPLC-MS. The procedure includes guidelines for sample organization and preparation, data acquisition, quality control, and metabolite identification and will enable reliable acquisition of data for large experiments and provide a starting point for laboratories new to non-targeted metabolite profiling by UPLC-MS.
20 Related JoVE Articles!
Play Button
Untargeted Metabolomics from Biological Sources Using Ultraperformance Liquid Chromatography-High Resolution Mass Spectrometry (UPLC-HRMS)
Authors: Nathaniel W. Snyder, Maya Khezam, Clementina A. Mesaros, Andrew Worth, Ian A. Blair.
Institutions: University of Pennsylvania .
Here we present a workflow to analyze the metabolic profiles for biological samples of interest including; cells, serum, or tissue. The sample is first separated into polar and non-polar fractions by a liquid-liquid phase extraction, and partially purified to facilitate downstream analysis. Both aqueous (polar metabolites) and organic (non-polar metabolites) phases of the initial extraction are processed to survey a broad range of metabolites. Metabolites are separated by different liquid chromatography methods based upon their partition properties. In this method, we present microflow ultra-performance (UP)LC methods, but the protocol is scalable to higher flows and lower pressures. Introduction into the mass spectrometer can be through either general or compound optimized source conditions. Detection of a broad range of ions is carried out in full scan mode in both positive and negative mode over a broad m/z range using high resolution on a recently calibrated instrument. Label-free differential analysis is carried out on bioinformatics platforms. Applications of this approach include metabolic pathway screening, biomarker discovery, and drug development.
Biochemistry, Issue 75, Chemistry, Molecular Biology, Cellular Biology, Physiology, Medicine, Pharmacology, Genetics, Genomics, Mass Spectrometry, MS, Metabolism, Metabolomics, untargeted, extraction, lipids, accurate mass, liquid chromatography, ultraperformance liquid chromatography, UPLC, high resolution mass spectrometry, HRMS, spectrometry
Play Button
Concentration of Metabolites from Low-density Planktonic Communities for Environmental Metabolomics using Nuclear Magnetic Resonance Spectroscopy
Authors: R. Craig Everroad, Seiji Yoshida, Yuuri Tsuboi, Yasuhiro Date, Jun Kikuchi, Shigeharu Moriya.
Institutions: RIKEN Advanced Science Institute, Yokohama City University, RIKEN Plant Science Center, Nagoya University.
Environmental metabolomics is an emerging field that is promoting new understanding in how organisms respond to and interact with the environment and each other at the biochemical level1. Nuclear magnetic resonance (NMR) spectroscopy is one of several technologies, including gas chromatography–mass spectrometry (GC-MS), with considerable promise for such studies. Advantages of NMR are that it is suitable for untargeted analyses, provides structural information and spectra can be queried in quantitative and statistical manners against recently available databases of individual metabolite spectra2,3. In addition, NMR spectral data can be combined with data from other omics levels (e.g. transcriptomics, genomics) to provide a more comprehensive understanding of the physiological responses of taxa to each other and the environment4,5,6. However, NMR is less sensitive than other metabolomic techniques, making it difficult to apply to natural microbial systems where sample populations can be low-density and metabolite concentrations low compared to metabolites from well-defined and readily extractable sources such as whole tissues, biofluids or cell-cultures. Consequently, the few direct environmental metabolomic studies of microbes performed to date have been limited to culture-based or easily defined high-density ecosystems such as host-symbiont systems, constructed co-cultures or manipulations of the gut environment where stable isotope labeling can be additionally used to enhance NMR signals7,8,9,10,11,12. Methods that facilitate the concentration and collection of environmental metabolites at concentrations suitable for NMR are lacking. Since recent attention has been given to the environmental metabolomics of organisms within the aquatic environment, where much of the energy and material flow is mediated by the planktonic community13,14, we have developed a method for the concentration and extraction of whole-community metabolites from planktonic microbial systems by filtration. Commercially available hydrophilic poly-1,1-difluoroethene (PVDF) filters are specially treated to completely remove extractables, which can otherwise appear as contaminants in subsequent analyses. These treated filters are then used to filter environmental or experimental samples of interest. Filters containing the wet sample material are lyophilized and aqueous-soluble metabolites are extracted directly for conventional NMR spectroscopy using a standardized potassium phosphate extraction buffer2. Data derived from these methods can be analyzed statistically to identify meaningful patterns, or integrated with other omics levels for comprehensive understanding of community and ecosystem function.
Molecular Biology, Issue 62, environmental metabolomics, metabolic profiling, microbial ecology, plankton, NMR spectroscopy, PCA
Play Button
Annotation of Plant Gene Function via Combined Genomics, Metabolomics and Informatics
Authors: Takayuki Tohge, Alisdair R. Fernie.
Institutions: Max-Planck-Institut.
Given the ever expanding number of model plant species for which complete genome sequences are available and the abundance of bio-resources such as knockout mutants, wild accessions and advanced breeding populations, there is a rising burden for gene functional annotation. In this protocol, annotation of plant gene function using combined co-expression gene analysis, metabolomics and informatics is provided (Figure 1). This approach is based on the theory of using target genes of known function to allow the identification of non-annotated genes likely to be involved in a certain metabolic process, with the identification of target compounds via metabolomics. Strategies are put forward for applying this information on populations generated by both forward and reverse genetics approaches in spite of none of these are effortless. By corollary this approach can also be used as an approach to characterise unknown peaks representing new or specific secondary metabolites in the limited tissues, plant species or stress treatment, which is currently the important trial to understanding plant metabolism.
Plant Biology, Issue 64, Genetics, Bioinformatics, Metabolomics, Plant metabolism, Transcriptome analysis, Functional annotation, Computational biology, Plant biology, Theoretical biology, Spectroscopy and structural analysis
Play Button
Antibody Transfection into Neurons as a Tool to Study Disease Pathogenesis
Authors: Joshua N. Douglas, Lidia A. Gardner, Sangmin Lee, Yoojin Shin, Chassidy J. Groover, Michael C. Levin.
Institutions: Veterans Administration Medical Center, Memphis, TN, University of Tennessee Health Science Center, Memphis, TN, University of Tennessee Health Science Center, Memphis, TN.
Antibodies provide the ability to gain novel insight into various events taking place in living systems. The ability to produce highly specific antibodies to target proteins has allowed for very precise biological questions to be addressed. Importantly, antibodies have been implicated in the pathogenesis of a number of human diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), paraneoplastic syndromes, multiple sclerosis (MS) and human T-lymphotropic virus type 1 (HTLV-1) associated myelopathy/tropical spastic paraparesis (HAM/TSP) 1-9. How antibodies cause disease is an area of ongoing investigation, and data suggests that interactions between antibodies and various intracellular molecules results in inflammation, altered cellular messaging, and apoptosis 10. It has been shown that patients with MS and HAM/TSP produce autoantibodies to the intracellular RNA binding protein heterogeneous ribonuclear protein A1 (hnRNP A1) 3, 5-7, 9, 11. Recent data indicate that antibodies to both intra-neuronal and surface antigens are pathogenic 3, 5-9, 11. Thus, a procedure that allows for the study of intracellular antibody:protein interactions would lend great insight into disease pathogenesis. Genes are commonly transfected into primary cells and cell lines in culture, however transfection of antibodies into cells has been hindered by alteration of antibody structure or poor transfection efficiency 12. Other methods of transfection include antibody transfection based on cationic liposomes (consisting of DOTAP/DOPE) and polyethylenimines (PEI); both of which resulted in a ten-fold decrease in antibody transfection compared to controls 12. The method performed in our study is similar to cationic lipid-mediated methods and uses a lipid-based mechanism to form non-covalent complexes with the antibodies through electrostatic and hydrophobic interactions 13. We utilized Ab-DeliverIN reagent, which is a lipid formulation capable of capturing antibodies through non-covalent electrostatic and hydrophobic interactions and delivering them inside cells. Thus chemical and genetic couplings are not necessary for delivery of functional antibodies into living cells. This method has enabled us to perform various antibody tracing and protein localization experiments, as well as the analyses of the molecular consequences of intracellular antibody:protein interactions 9. In this protocol, we will show how to transfect antibodies into neurons rapidly, reproducibly and with a high degree of transfection efficiency. As an example, we will use anti-hnRNP A1 and anti-IgG antibodies. For easy quantification of transfection efficiency we used anti-hnRNP A1 antibodies labelled with Atto-550-NHS and FITC-labeled IgG. Atto550 NHS is a new label with high molecular absorbtion and quantum yield. Excitation source and fluorescent filters for Atto550 are similar to Cy3 (Ex. 556 Em. 578). In addition, Atto550 has high photostability. FITC-labeled IgG were used as a control to show that this method is versatile and not dye dependent. This approach and the data that is generated will assist in understanding of the role that antibodies to intracellular target antigens might play in the pathogenesis of human diseases.
Neuroscience, Issue 67, Medicine, Molecular Biology, Immunology, Transfection, antibodies, neuron, immunocytochemistry, fluorescent microscopy, autoimmunity
Play Button
Arabidopsis thaliana Polar Glycerolipid Profiling by Thin Layer Chromatography (TLC) Coupled with Gas-Liquid Chromatography (GLC)
Authors: Zhen Wang, Christoph Benning.
Institutions: Michigan State University.
Biological membranes separate cells from the environment. From a single cell to multicellular plants and animals, glycerolipids, such as phosphatidylcholine or phosphatidylethanolamine, form bilayer membranes which act as both boundaries and interfaces for chemical exchange between cells and their surroundings. Unlike animals, plant cells have a special organelle for photosynthesis, the chloroplast. The intricate membrane system of the chloroplast contains unique glycerolipids, namely glycolipids lacking phosphorus: monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG)4. The roles of these lipids are beyond simply structural. These glycolipids and other glycerolipids were found in the crystal structures of photosystem I and II indicating the involvement of glycerolipids in photosynthesis8,11. During phosphate starvation, DGDG is transferred to extraplastidic membranes to compensate the loss of phospholipids9,12. Much of our knowledge of the biosynthesis and function of these lipids has been derived from a combination of genetic and biochemical studies with Arabidopsis thaliana14. During these studies, a simple procedure for the analysis of polar lipids has been essential for the screening and analysis of lipid mutants and will be outlined in detail. A leaf lipid extract is first separated by thin layer chromatography (TLC) and glycerolipids are stained reversibly with iodine vapor. The individual lipids are scraped from the TLC plate and converted to fatty acyl methylesters (FAMEs), which are analyzed by gas-liquid chromatography coupled with flame ionization detection (FID-GLC) (Figure 1). This method has been proven to be a reliable tool for mutant screening. For example, the tgd1,2,3,4 endoplasmic reticulum-to-plastid lipid trafficking mutants were discovered based on the accumulation of an abnormal galactoglycerolipid: trigalactosyldiacylglycerol (TGDG) and a decrease in the relative amount of 18:3 (carbons : double bonds) fatty acyl groups in membrane lipids 3,13,18,20. This method is also applicable for determining enzymatic activities of proteins using lipids as substrate6.
Plant Biology, Issue 49, Lipid Analysis, Galactolipids, Thin-layer Chromatogrpahy, Chlorplast Lipids, Arabidopsis
Play Button
In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions
Authors: Grant E. Johnson, K. Don Dasitha Gunaratne, Julia Laskin.
Institutions: Pacific Northwest National Laboratory.
Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of materials that are inaccessible using conventional synthesis techniques. Coupling soft landing with in situ characterization using secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS) enables analysis of well-defined surfaces under clean vacuum conditions. The capabilities of three soft-landing instruments constructed in our laboratory are illustrated for the representative system of surface-bound organometallics prepared by soft landing of mass-selected ruthenium tris(bipyridine) dications, [Ru(bpy)3]2+ (bpy = bipyridine), onto carboxylic acid terminated self-assembled monolayer surfaces on gold (COOH-SAMs). In situ time-of-flight (TOF)-SIMS provides insight into the reactivity of the soft-landed ions. In addition, the kinetics of charge reduction, neutralization and desorption occurring on the COOH-SAM both during and after ion soft landing are studied using in situ Fourier transform ion cyclotron resonance (FT-ICR)-SIMS measurements. In situ IRRAS experiments provide insight into how the structure of organic ligands surrounding metal centers is perturbed through immobilization of organometallic ions on COOH-SAM surfaces by soft landing. Collectively, the three instruments provide complementary information about the chemical composition, reactivity and structure of well-defined species supported on surfaces.
Chemistry, Issue 88, soft landing, mass selected ions, electrospray, secondary ion mass spectrometry, infrared spectroscopy, organometallic, catalysis
Play Button
Isolation and Chemical Characterization of Lipid A from Gram-negative Bacteria
Authors: Jeremy C. Henderson, John P. O'Brien, Jennifer S. Brodbelt, M. Stephen Trent.
Institutions: The University of Texas at Austin, The University of Texas at Austin, The University of Texas at Austin.
Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate immune response, and have provided many new targets in the development of antibacterial compounds.
Chemistry, Issue 79, Membrane Lipids, Toll-Like Receptors, Endotoxins, Glycolipids, Lipopolysaccharides, Lipid A, Microbiology, Lipids, lipid A, Bligh-Dyer, thin layer chromatography (TLC), lipopolysaccharide, mass spectrometry, Collision Induced Dissociation (CID), Photodissociation (PD)
Play Button
Matrix-assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) Mass Spectrometric Analysis of Intact Proteins Larger than 100 kDa
Authors: Luca Signor, Elisabetta Boeri Erba.
Institutions: Université J. Fourier.
Effectively determining masses of proteins is critical to many biological studies (e.g. for structural biology investigations). Accurate mass determination allows one to evaluate the correctness of protein primary sequences, the presence of mutations and/or post-translational modifications, the possible protein degradation, the sample homogeneity, and the degree of isotope incorporation in case of labelling (e.g. 13C labelling). Electrospray ionization (ESI) mass spectrometry (MS) is widely used for mass determination of denatured proteins, but its efficiency is affected by the composition of the sample buffer. In particular, the presence of salts, detergents, and contaminants severely undermines the effectiveness of protein analysis by ESI-MS. Matrix-assisted laser desorption/ionization (MALDI) MS is an attractive alternative, due to its salt tolerance and the simplicity of data acquisition and interpretation. Moreover, the mass determination of large heterogeneous proteins (bigger than 100 kDa) is easier by MALDI-MS due to the absence of overlapping high charge state distributions which are present in ESI spectra. Here we present an accessible approach for analyzing proteins larger than 100 kDa by MALDI-time of flight (TOF). We illustrate the advantages of using a mixture of two matrices (i.e. 2,5-dihydroxybenzoic acid and α-cyano-4-hydroxycinnamic acid) and the utility of the thin layer method as approach for sample deposition. We also discuss the critical role of the matrix and solvent purity, of the standards used for calibration, of the laser energy, and of the acquisition time. Overall, we provide information necessary to a novice for analyzing intact proteins larger than 100 kDa by MALDI-MS.
Chemistry, Issue 79, Chemistry Techniques, Analytical, Mass Spectrometry, Analytic Sample Preparation Methods, biochemistry, Analysis of intact proteins, mass spectrometry, matrix-assisted laser desorption ionization, time of flight, sample preparation
Play Button
Expansion of Human Peripheral Blood γδ T Cells using Zoledronate
Authors: Makoto Kondo, Takamichi Izumi, Nao Fujieda, Atsushi Kondo, Takeharu Morishita, Hirokazu Matsushita, Kazuhiro Kakimi.
Institutions: University of Tokyo Hospital, MEDINET Co., Ltd.
Human γδ T cells can recognize and respond to a wide variety of stress-induced antigens, thereby developing innate broad anti-tumor and anti-infective activity.1 The majority of γδ T cells in peripheral blood have the Vγ9Vδ2 T cell receptor. These cells recognize antigen in a major histocompatibility complex-independent manner and develop strong cytolytic and Th1-like effector functions.1Therefore, γδ T cells are attractive candidate effector cells for cancer immunotherapy. Vγ9Vδ2 T cells respond to phosphoantigens such as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), which is synthesized in bacteria via isoprenoid biosynthesis;2 and isopentenyl pyrophosphate (IPP), which is produced in eukaryotic cells through the mevalonate pathway.3 In physiological condition, the generation of IPP in nontransformed cell is not sufficient for the activation of γδ T cells. Dysregulation of mevalonate pathway in tumor cells leads to accumulation of IPP and γδ T cells activation.3 Because aminobisphosphonates (such as pamidronate or zoledronate) inhibit farnesyl pyrophosphate synthase (FPPS), the enzyme acting downstream of IPP in the mevalonate pathway, intracellular levels of IPP and sensitibity to γδ T cells recognition can be therapeutically increased by aminobisphosphonates. IPP accumulation is less efficient in nontransfomred cells than tumor cells with a pharmacologically relevant concentration of aminobisphosphonates, that allow us immunotherapy for cancer by activating γδ T cells with aminobisphosphonates. 4 Interestingly, IPP accumulates in monocytes when PBMC are treated with aminobisphosphonates, because of efficient drug uptake by these cells. 5 Monocytes that accumulate IPP become antigen-presenting cells and stimulate Vγ9Vδ2 T cells in the peripheral blood.6 Based on these mechanisms, we developed a technique for large-scale expansion of γδ T cell cultures using zoledronate and interleukin-2 (IL-2).7 Other methods for expansion of γδ T cells utilize the synthetic phosphoantigens bromohydrin pyrophosphate (BrHPP)8 or 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP).9 All of these methods allow ex vivo expansion, resulting in large numbers of γδ T cells for use in adoptive immunotherapy. However, only zoledronate is an FDA-approved commercially available reagent. Zoledronate-expanded γδ T cells display CD27-CD45RA- effector memory phenotype and thier function can be evaluated by IFN-γ production assay. 7
Immunology, Issue 55, γδ T Cell, zoledronate, PBMC, peripheral blood mononuclear cells
Play Button
Biochemical and High Throughput Microscopic Assessment of Fat Mass in Caenorhabditis Elegans
Authors: Elizabeth C. Pino, Christopher M. Webster, Christopher E. Carr, Alexander A. Soukas.
Institutions: Massachusetts General Hospital and Harvard Medical School, Massachusetts Institute of Technology.
The nematode C. elegans has emerged as an important model for the study of conserved genetic pathways regulating fat metabolism as it relates to human obesity and its associated pathologies. Several previous methodologies developed for the visualization of C. elegans triglyceride-rich fat stores have proven to be erroneous, highlighting cellular compartments other than lipid droplets. Other methods require specialized equipment, are time-consuming, or yield inconsistent results. We introduce a rapid, reproducible, fixative-based Nile red staining method for the accurate and rapid detection of neutral lipid droplets in C. elegans. A short fixation step in 40% isopropanol makes animals completely permeable to Nile red, which is then used to stain animals. Spectral properties of this lipophilic dye allow it to strongly and selectively fluoresce in the yellow-green spectrum only when in a lipid-rich environment, but not in more polar environments. Thus, lipid droplets can be visualized on a fluorescent microscope equipped with simple GFP imaging capability after only a brief Nile red staining step in isopropanol. The speed, affordability, and reproducibility of this protocol make it ideally suited for high throughput screens. We also demonstrate a paired method for the biochemical determination of triglycerides and phospholipids using gas chromatography mass-spectrometry. This more rigorous protocol should be used as confirmation of results obtained from the Nile red microscopic lipid determination. We anticipate that these techniques will become new standards in the field of C. elegans metabolic research.
Genetics, Issue 73, Biochemistry, Cellular Biology, Molecular Biology, Developmental Biology, Physiology, Anatomy, Caenorhabditis elegans, Obesity, Energy Metabolism, Lipid Metabolism, C. elegans, fluorescent lipid staining, lipids, Nile red, fat, high throughput screening, obesity, gas chromatography, mass spectrometry, GC/MS, animal model
Play Button
Cellular Lipid Extraction for Targeted Stable Isotope Dilution Liquid Chromatography-Mass Spectrometry Analysis
Authors: Stacy L. Gelhaus, A. Clementina Mesaros, Ian A. Blair.
Institutions: University of Pennsylvania , University of Pennsylvania .
The metabolism of fatty acids, such as arachidonic acid (AA) and linoleic acid (LA), results in the formation of oxidized bioactive lipids, including numerous stereoisomers1,2. These metabolites can be formed from free or esterified fatty acids. Many of these oxidized metabolites have biological activity and have been implicated in various diseases including cardiovascular and neurodegenerative diseases, asthma, and cancer3-7. Oxidized bioactive lipids can be formed enzymatically or by reactive oxygen species (ROS). Enzymes that metabolize fatty acids include cyclooxygenase (COX), lipoxygenase (LO), and cytochromes P450 (CYPs)1,8. Enzymatic metabolism results in enantioselective formation whereas ROS oxidation results in the racemic formation of products. While this protocol focuses primarily on the analysis of AA- and some LA-derived bioactive metabolites; it could be easily applied to metabolites of other fatty acids. Bioactive lipids are extracted from cell lysate or media using liquid-liquid (l-l) extraction. At the beginning of the l-l extraction process, stable isotope internal standards are added to account for errors during sample preparation. Stable isotope dilution (SID) also accounts for any differences, such as ion suppression, that metabolites may experience during the mass spectrometry (MS) analysis9. After the extraction, derivatization with an electron capture (EC) reagent, pentafluorylbenzyl bromide (PFB) is employed to increase detection sensitivity10,11. Multiple reaction monitoring (MRM) is used to increase the selectivity of the MS analysis. Before MS analysis, lipids are separated using chiral normal phase high performance liquid chromatography (HPLC). The HPLC conditions are optimized to separate the enantiomers and various stereoisomers of the monitored lipids12. This specific LC-MS method monitors prostaglandins (PGs), isoprostanes (isoPs), hydroxyeicosatetraenoic acids (HETEs), hydroxyoctadecadienoic acids (HODEs), oxoeicosatetraenoic acids (oxoETEs) and oxooctadecadienoic acids (oxoODEs); however, the HPLC and MS parameters can be optimized to include any fatty acid metabolites13. Most of the currently available bioanalytical methods do not take into account the separate quantification of enantiomers. This is extremely important when trying to deduce whether or not the metabolites were formed enzymatically or by ROS. Additionally, the ratios of the enantiomers may provide evidence for a specific enzymatic pathway of formation. The use of SID allows for accurate quantification of metabolites and accounts for any sample loss during preparation as well as the differences experienced during ionization. Using the PFB electron capture reagent increases the sensitivity of detection by two orders of magnitude over conventional APCI methods. Overall, this method, SID-LC-EC-atmospheric pressure chemical ionization APCI-MRM/MS, is one of the most sensitive, selective, and accurate methods of quantification for bioactive lipids.
Bioengineering, Issue 57, lipids, extraction, stable isotope dilution, chiral chromatography, electron capture, mass spectrometry
Play Button
A Strategy for Sensitive, Large Scale Quantitative Metabolomics
Authors: Xiaojing Liu, Zheng Ser, Ahmad A. Cluntun, Samantha J. Mentch, Jason W. Locasale.
Institutions: Cornell University, Cornell University.
Metabolite profiling has been a valuable asset in the study of metabolism in health and disease. However, current platforms have different limiting factors, such as labor intensive sample preparations, low detection limits, slow scan speeds, intensive method optimization for each metabolite, and the inability to measure both positively and negatively charged ions in single experiments. Therefore, a novel metabolomics protocol could advance metabolomics studies. Amide-based hydrophilic chromatography enables polar metabolite analysis without any chemical derivatization. High resolution MS using the Q-Exactive (QE-MS) has improved ion optics, increased scan speeds (256 msec at resolution 70,000), and has the capability of carrying out positive/negative switching. Using a cold methanol extraction strategy, and coupling an amide column with QE-MS enables robust detection of 168 targeted polar metabolites and thousands of additional features simultaneously.  Data processing is carried out with commercially available software in a highly efficient way, and unknown features extracted from the mass spectra can be queried in databases.
Chemistry, Issue 87, high-resolution mass spectrometry, metabolomics, positive/negative switching, low mass calibration, Orbitrap
Play Button
Multi-step Preparation Technique to Recover Multiple Metabolite Compound Classes for In-depth and Informative Metabolomic Analysis
Authors: Charmion Cruickshank-Quinn, Kevin D. Quinn, Roger Powell, Yanhui Yang, Michael Armstrong, Spencer Mahaffey, Richard Reisdorph, Nichole Reisdorph.
Institutions: National Jewish Health, University of Colorado Denver.
Metabolomics is an emerging field which enables profiling of samples from living organisms in order to obtain insight into biological processes. A vital aspect of metabolomics is sample preparation whereby inconsistent techniques generate unreliable results. This technique encompasses protein precipitation, liquid-liquid extraction, and solid-phase extraction as a means of fractionating metabolites into four distinct classes. Improved enrichment of low abundance molecules with a resulting increase in sensitivity is obtained, and ultimately results in more confident identification of molecules. This technique has been applied to plasma, bronchoalveolar lavage fluid, and cerebrospinal fluid samples with volumes as low as 50 µl.  Samples can be used for multiple downstream applications; for example, the pellet resulting from protein precipitation can be stored for later analysis. The supernatant from that step undergoes liquid-liquid extraction using water and strong organic solvent to separate the hydrophilic and hydrophobic compounds. Once fractionated, the hydrophilic layer can be processed for later analysis or discarded if not needed. The hydrophobic fraction is further treated with a series of solvents during three solid-phase extraction steps to separate it into fatty acids, neutral lipids, and phospholipids. This allows the technician the flexibility to choose which class of compounds is preferred for analysis. It also aids in more reliable metabolite identification since some knowledge of chemical class exists.
Bioengineering, Issue 89, plasma, chemistry techniques, analytical, solid phase extraction, mass spectrometry, metabolomics, fluids and secretions, profiling, small molecules, lipids, liquid chromatography, liquid-liquid extraction, cerebrospinal fluid, bronchoalveolar lavage fluid
Play Button
Metabolomic Analysis of Rat Brain by High Resolution Nuclear Magnetic Resonance Spectroscopy of Tissue Extracts
Authors: Norbert W. Lutz, Evelyne Béraud, Patrick J. Cozzone.
Institutions: Aix-Marseille Université, Aix-Marseille Université.
Studies of gene expression on the RNA and protein levels have long been used to explore biological processes underlying disease. More recently, genomics and proteomics have been complemented by comprehensive quantitative analysis of the metabolite pool present in biological systems. This strategy, termed metabolomics, strives to provide a global characterization of the small-molecule complement involved in metabolism. While the genome and the proteome define the tasks cells can perform, the metabolome is part of the actual phenotype. Among the methods currently used in metabolomics, spectroscopic techniques are of special interest because they allow one to simultaneously analyze a large number of metabolites without prior selection for specific biochemical pathways, thus enabling a broad unbiased approach. Here, an optimized experimental protocol for metabolomic analysis by high-resolution NMR spectroscopy is presented, which is the method of choice for efficient quantification of tissue metabolites. Important strengths of this method are (i) the use of crude extracts, without the need to purify the sample and/or separate metabolites; (ii) the intrinsically quantitative nature of NMR, permitting quantitation of all metabolites represented by an NMR spectrum with one reference compound only; and (iii) the nondestructive nature of NMR enabling repeated use of the same sample for multiple measurements. The dynamic range of metabolite concentrations that can be covered is considerable due to the linear response of NMR signals, although metabolites occurring at extremely low concentrations may be difficult to detect. For the least abundant compounds, the highly sensitive mass spectrometry method may be advantageous although this technique requires more intricate sample preparation and quantification procedures than NMR spectroscopy. We present here an NMR protocol adjusted to rat brain analysis; however, the same protocol can be applied to other tissues with minor modifications.
Neuroscience, Issue 91, metabolomics, brain tissue, rodents, neurochemistry, tissue extracts, NMR spectroscopy, quantitative metabolite analysis, cerebral metabolism, metabolic profile
Play Button
Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer
Authors: Cuong H. Le, Jun Han, Christoph H. Borchers.
Institutions: University of Victoria, University of Victoria.
Mass spectrometry imaging (MSI) determines the spatial localization and distribution patterns of compounds on the surface of a tissue section, mainly using MALDI (matrix assisted laser desorption/ionization)-based analytical techniques. New matrices for small-molecule MSI, which can improve the analysis of low-molecular weight (MW) compounds, are needed. These matrices should provide increased analyte signals while decreasing MALDI background signals. In addition, the use of ultrahigh-resolution instruments, such as Fourier transform ion cyclotron resonance (FTICR) mass spectrometers, has the ability to resolve analyte signals from matrix signals, and this can partially overcome many problems associated with the background originating from the MALDI matrix. The reduction in the intensities of the metastable matrix clusters by FTICR MS can also help to overcome some of the interferences associated with matrix peaks on other instruments. High-resolution instruments such as the FTICR mass spectrometers are advantageous as they can produce distribution patterns of many compounds simultaneously while still providing confidence in chemical identifications. Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging. In this work, a protocol for the use of DT for MALDI imaging of endogenous lipids from the surfaces of mammalian tissue sections, by positive-ion MALDI-MS, on an ultrahigh-resolution hybrid quadrupole FTICR instrument has been provided.
Basic Protocol, Issue 81, eye, molecular imaging, chemistry technique, analytical, mass spectrometry, matrix assisted laser desorption/ionization (MALDI), tandem mass spectrometry, lipid, tissue imaging, bovine lens, dithranol, matrix, FTICR (Fourier Transform Ion Cyclotron Resonance)
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
Play Button
The Use of Gas Chromatography to Analyze Compositional Changes of Fatty Acids in Rat Liver Tissue during Pregnancy
Authors: Helena L. Fisk, Annette L. West, Caroline E. Childs, Graham C. Burdge, Philip C. Calder.
Institutions: University of Southampton.
Gas chromatography (GC) is a highly sensitive method used to identify and quantify the fatty acid content of lipids from tissues, cells, and plasma/serum, yielding results with high accuracy and high reproducibility. In metabolic and nutrition studies GC allows assessment of changes in fatty acid concentrations following interventions or during changes in physiological state such as pregnancy. Solid phase extraction (SPE) using aminopropyl silica cartridges allows separation of the major lipid classes including triacylglycerols, different phospholipids, and cholesteryl esters (CE). GC combined with SPE was used to analyze the changes in fatty acid composition of the CE fraction in the livers of virgin and pregnant rats that had been fed various high and low fat diets. There are significant diet/pregnancy interaction effects upon the omega-3 and omega-6 fatty acid content of liver CE, indicating that pregnant females have a different response to dietary manipulation than is seen among virgin females.
Chemistry, Issue 85, gas chromatography, fatty acid, pregnancy, cholesteryl ester, solid phase extraction, polyunsaturated fatty acids
Play Button
Conducting Miller-Urey Experiments
Authors: Eric T. Parker, James H. Cleaves, Aaron S. Burton, Daniel P. Glavin, Jason P. Dworkin, Manshui Zhou, Jeffrey L. Bada, Facundo M. Fernández.
Institutions: Georgia Institute of Technology, Tokyo Institute of Technology, Institute for Advanced Study, NASA Johnson Space Center, NASA Goddard Space Flight Center, University of California at San Diego.
In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using an apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200 mmHg of CH4, and 200 mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage electric discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.
Chemistry, Issue 83, Geosciences (General), Exobiology, Miller-Urey, Prebiotic chemistry, amino acids, spark discharge
Play Button
A Quantitative Assessment of The Yeast Lipidome using Electrospray Ionization Mass Spectrometry
Authors: Simon D. Bourque, Vladimir I. Titorenko.
Institutions: Concordia University.
Lipids are one of the major classes of biomolecules and play important roles membrane dynamics, energy storage, and signalling1-4. The budding yeast Saccharomyces cerevisiae, a genetically and biochemically manipulable unicellular eukaryote with annotated genome and very simple lipidome, is a valuable model for studying biological functions of various lipid species in multicellular eukaryotes2,3,5. S. cerevisiae has 10 major classes of lipids with chain lengths mainly of 16 or 18 carbon atoms and either zero or one degree of unsaturation6,7. Existing methods for lipid identification and quantification - such as high performance liquid chromatography, thin-layer chromatography, fluorescence microscopy, and gas chromatography followed by MS - are well established but have low sensitivity, insufficiently separate various molecular forms of lipids, require lipid derivitization prior to analysis, or can be quite time consuming. Here we present a detailed description of our experimental approach to solve these inherent limitations by using survey-scan ESI/MS for the identification and quantification of the entire complement of lipids in yeast cells. The described method does not require chromatographic separation of complex lipid mixtures recovered from yeast cells, thereby greatly accelerating the process of data acquisition. This method enables lipid identification and quantification at the concentrations as low as g/ml and has been successfully applied to assessing lipidomes of whole yeast cells and their purified organelles. Lipids extraction from whole yeast cells for using this method of lipid analysis takes two to three hours. It takes only five to ten minutes to run each sample of extracted and dried lipids on a Q-TOF mass spectrometer equipped with a nano-electrospray source.
Cellular Biology, Issue 30, mass spectrometry, lipidomics, lipid identification, lipid quantification
Play Button
One-step Metabolomics: Carbohydrates, Organic and Amino Acids Quantified in a Single Procedure
Authors: James D. Shoemaker.
Institutions: Saint Louis University School of Medicine.
Every infant born in the US is now screened for up to 42 rare genetic disorders called "inborn errors of metabolism". The screening method is based on tandem mass spectrometry and quantifies acylcarnitines as a screen for organic acidemias and also measures amino acids. All states also perform enzymatic testing for carbohydrate disorders such as galactosemia. Because the results can be non-specific, follow-up testing of positive results is required using a more definitive method. The present report describes the "urease" method of sample preparation for inborn error screening. Crystalline urease enzyme is used to remove urea from body fluids which permits most other water-soluble metabolites to be dehydrated and derivatized for gas chromatography in a single procedure. Dehydration by evaporation in a nitrogen stream is facilitated by adding acetonitrile and methylene chloride. Then, trimethylsilylation takes place in the presence of a unique catalyst, triethylammonium trifluoroacetate. Automated injection and chromatography is followed by macro-driven custom quantification of 192 metabolites and semi-quantification of every major component using specialized libraries of mass spectra of TMS derivatized biological compounds. The analysis may be performed on the widely-used Chemstation platform using the macros and libraries available from the author. In our laboratory, over 16,000 patient samples have been analyzed using the method with a diagnostic yield of about 17%--that is, 17% of the samples results reveal findings that should be acted upon by the ordering physician. Included in these are over 180 confirmed inborn errors, of which about 38% could not have been diagnosed using previous methods.
Biochemistry, Issue 40, metabolomics, gas chromatography/mass spectrometry, GC/MS, inborn errors, vitamin deficiency, BNA analyses, carbohydrate, amino acid, organic acid, urease
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.