JoVE Visualize What is visualize?
Related JoVE Video
 
Pubmed Article
Protective effect of quercetin on the development of preimplantation mouse embryos against hydrogen peroxide-induced oxidative injury.
PLoS ONE
PUBLISHED: 01-01-2014
Quercetin, a plant-derived flavonoid in Chinese herbs, fruits and wine, displays antioxidant properties in many pathological processes associated with oxidative stress. However, the effect of quercetin on the development of preimplantation embryos under oxidative stress is unclear. The present study sought to determine the protective effect and underlying mechanism of action of quercetin against hydrogen peroxide (H2O2)-induced oxidative injury in mouse zygotes. H2O2 treatment impaired the development of mouse zygotes in vitro, decreasing the rates of blastocyst formation and hatched, and increasing the fragmentation, apoptosis and retardation in blastocysts. Quercetin strongly protected zygotes from H2O2-induced oxidative injury by decreasing the reactive oxygen species level, maintaining mitochondrial function and modulating total antioxidant capability, the activity of the enzymatic antioxidants, including glutathione peroxidase and catalase activity to keep the cellular redox environment. Additionally, quercetin had no effect on the level of glutathione, the main non-enzymatic antioxidant in embryos.
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Published: 07-07-2014
ABSTRACT
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
20 Related JoVE Articles!
Play Button
Screening Assay for Oxidative Stress in a Feline Astrocyte Cell Line, G355-5
Authors: Maria Pia Testa, Omar Alvarado, Andrea Wournell, Jonathan Lee, Frederick T. Guilford, Steven H. Henriksen, Tom R. Phillips.
Institutions: Western University of Health Sciences, Western University of Health Sciences, Products.
An often-suggested mechanism of virus induced neuronal damage is oxidative stress. Astrocytes have an important role in controlling oxidative stress of the Central Nervous System (CNS). Astrocytes help maintain a homeostatic environment for neurons as well as protecting neurons from Reactive Oxygen Species (ROS). CM-H2DCFDA is a cell-permeable indicator for the presence of ROS. CM-H2DCFDA enters the cell as a non-fluorescent compound, and becomes fluorescent after cellular esterases remove the acetate groups, and the compound is oxidized. The number of cells, measured by flow cytometry, that are found to be green fluorescing is an indication of the number of cells that are in an oxidative state. CM-H2DCFDA is susceptible to oxidation by a large number of different ROS. This lack of specificity, regarding which ROS can oxidize CM-H2DCFDA, makes this compound a valuable regent for use in the early stages of a pathogenesis investigation, as this assay can be used to screen for an oxidative cellular environment regardless of which oxygen radical or combination of ROS are responsible for the cellular conditions. Once it has been established that ROS are present by oxidation of CM-H2DCFDA, then additional experiments can be performed to determine which ROS or combination of ROSs are involved in the particular pathogenesis process. The results of this study demonstrate that with the addition of hydrogen peroxide an increase in CM-H2DCFDA fluoresce was detected relative to the saline controls, indicating that this assay is a valuable test for detecting an oxidative environment within G355-5 cells, a feline astrocyte cell line.
Neuroscience, Issue 53, Astrocytes, oxidative stress, flow cytometry, CM-H2DCFDA
2841
Play Button
Human Skeletal Muscle Biopsy Procedures Using the Modified Bergström Technique
Authors: R. Andrew Shanely, Kevin A. Zwetsloot, N. Travis Triplett, Mary Pat Meaney, Gerard E. Farris, David C. Nieman.
Institutions: Appalacian State University, Appalachian State University, Carolinas Medical Center NorthEast.
The percutaneous biopsy technique enables researchers and clinicians to collect skeletal muscle tissue samples. The technique is safe and highly effective. This video describes the percutaneous biopsy technique using a modified Bergström needle to obtain skeletal muscle tissue samples from the vastus lateralis of human subjects. The Bergström needle consists of an outer cannula with a small opening (‘window’) at the side of the tip and an inner trocar with a cutting blade at the distal end. Under local anesthesia and aseptic conditions, the needle is advanced into the skeletal muscle through an incision in the skin, subcutaneous tissue, and fascia. Next, suction is applied to the inner trocar, the outer trocar is pulled back, skeletal muscle tissue is drawn into the window of the outer cannula by the suction, and the inner trocar is rapidly closed, thus cutting or clipping the skeletal muscle tissue sample. The needle is rotated 90° and another cut is made. This process may be repeated three more times. This multiple cutting technique typically produces a sample of 100-200 mg or more in healthy subjects and can be done immediately before, during, and after a bout of exercise or other intervention. Following post-biopsy dressing of the incision site, subjects typically resume their activities of daily living right away and can fully participate in vigorous physical activity within 48-72 hr. Subjects should avoid heavy resistance exercise for 48 hr to reduce the risk of herniation of the muscle through the incision in the fascia.
Medicine, Issue 91, percutaneous muscle biopsy, needle biopsy, suction-modified, metabolism, enzyme activity, mRNA, gene function, fiber type, histology, metabolomics, skeletal muscle function, humans
51812
Play Button
Mating and Tetrad Separation of Chlamydomonas reinhardtii for Genetic Analysis
Authors: Xingshan Jiang, David Stern.
Institutions: Cornell University.
The unicellular green alga Chlamydomonas reinhardtii (Chlamydomonas) has become a popular organism for research in diverse areas of cell biology and genetics because of its simple life cycle, ease of growth and manipulation for genetic analysis, genomic resources, and transformability of the nucleus and both organelles. Mating strains is a common practice when genetic approaches are used in Chlamydomonass, to create vegetative diploids for analysis of dominance, or following tetrad dissection to ascertain nuclear vs. organellar inheritance, to test allelism, to analyze epistasy, or to generate populations for the purpose of map-based cloning. Additionally, genetic crosses are routinely used to combine organellar genotypes with particular nuclear genotypes. Here we demonstrate standard methods for gametogenesis, mating, zygote germination and tetrad separation. This protocol consists of an easy-to-follow series of steps that will make genetic approaches amenable to scientists who are less familiar with Chlamydomonas. Key parameters and trouble spots are explained. Finally, resources for further information and alternative methods are provided.
Plant Biology, Issue 30, mating, zygote, tetrad, mating type, Chlamydomonas
1274
Play Button
Detecting, Visualizing and Quantitating the Generation of Reactive Oxygen Species in an Amoeba Model System
Authors: Xuezhi Zhang, Thierry Soldati.
Institutions: University of Geneva.
Reactive oxygen species (ROS) comprise a range of reactive and short-lived, oxygen-containing molecules, which are dynamically interconverted or eliminated either catalytically or spontaneously. Due to the short life spans of most ROS and the diversity of their sources and subcellular localizations, a complete picture can be obtained only by careful measurements using a combination of protocols. Here, we present a set of three different protocols using OxyBurst Green (OBG)-coated beads, or dihydroethidium (DHE) and Amplex UltraRed (AUR), to monitor qualitatively and quantitatively various ROS in professional phagocytes such as Dictyostelium. We optimised the beads coating procedures and used OBG-coated beads and live microscopy to dynamically visualize intraphagosomal ROS generation at the single cell level. We identified lipopolysaccharide (LPS) from E. coli as a potent stimulator for ROS generation in Dictyostelium. In addition, we developed real time, medium-throughput assays using DHE and AUR to quantitatively measure intracellular superoxide and extracellular H2O2 production, respectively.
Microbiology, Issue 81, Biology (general), Biochemistry, Reactive oxygen species, Superoxide, Hydrogen peroxide, OxyBurst Green, Carboxylated beads, Dihydroethidium, Amplex UltraRed, Phagocytosis, Dictyostelium discoideum
50717
Play Button
Quantification of the Respiratory Burst Response as an Indicator of Innate Immune Health in Zebrafish
Authors: Michelle F. Goody, Eric Peterman, Con Sullivan, Carol H. Kim.
Institutions: University of Maine.
The phagocyte respiratory burst is part of the innate immune response to pathogen infection and involves the production of reactive oxygen species (ROS). ROS are toxic and function to kill phagocytized microorganisms. In vivo quantification of phagocyte-derived ROS provides information regarding an organism's ability to mount a robust innate immune response. Here we describe a protocol to quantify and compare ROS in whole zebrafish embryos upon chemical induction of the phagocyte respiratory burst. This method makes use of a non-fluorescent compound that becomes fluorescent upon oxidation by ROS. Individual zebrafish embryos are pipetted into the wells of a microplate and incubated in this fluorogenic substrate with or without a chemical inducer of the respiratory burst. Fluorescence in each well is quantified at desired time points using a microplate reader. Fluorescence readings are adjusted to eliminate background fluorescence and then compared using an unpaired t-test. This method allows for comparison of the respiratory burst potential of zebrafish embryos at different developmental stages and in response to experimental manipulations such as protein knockdown, overexpression, or treatment with pharmacological agents. This method can also be used to monitor the respiratory burst response in whole dissected kidneys or cell preparations from kidneys of adult zebrafish and some other fish species. We believe that the relative simplicity and adaptability of this protocol will complement existing protocols and will be of interest to researchers who seek to better understand the innate immune response.
Immunology, Issue 79, Phagocytes, Immune System, Zebrafish, Reactive Oxygen Species, Immune System Processes, Host-Pathogen Interactions, Respiratory Burst, Immune System Phenomena, innate immunity, bacteria, virus, infection]
50667
Play Button
Microinjection Wound Assay and In vivo Localization of Epidermal Wound Response Reporters in Drosophila Embryos.
Authors: Michelle T. Juarez, Rachel A. Patterson, Wilson Li, William McGinnis.
Institutions: The City College of New York, University of California, San Diego.
The Drosophila embryo develops a robust epidermal layer that serves both to protect the internal cells from a harsh external environment as well as to maintain cellular homeostasis. Puncture injury with glass needles provides a direct method to trigger a rapid epidermal wound response that activates wound transcriptional reporters, which can be visualized by a localized reporter signal in living embryos or larvae. Puncture or laser injury also provides signals that promote the recruitment of hemocytes to the wound site. Surprisingly, severe (through and through) puncture injury in late stage embryos only rarely disrupts normal embryonic development, as greater than 90% of such wounded embryos survive to adulthood when embryos are injected in an oil medium that minimizes immediate leakage of hemolymph from puncture sites. The wound procedure does require micromanipulation of the Drosophila embryos, including manual alignment of the embryos on agar plates and transfer of the aligned embryos to microscope slides. The Drosophila epidermal wound response assay provides a quick system to test the genetic requirements of a variety of biological functions that promote wound healing, as well as a way to screen for potential chemical compounds that promote wound healing. The short life cycle and easy culturing routine make Drosophila a powerful model organism. Drosophila clean wound healing appears to coordinate the epidermal regenerative response, with the innate immune response, in ways that are still under investigation, which provides an excellent system to find conserved regulatory mechanisms common to Drosophila and mammalian epidermal wounding.
Bioengineering, Issue 81, wound, microinjection, epidermal, localization, Drosophila, green fluorescent protein (GFP), genetic mutations
50750
Play Button
Application of an In vitro DNA Protection Assay to Visualize Stress Mediation Properties of the Dps Protein
Authors: Vlad O. Karas, Ilja Westerlaken, Anne S. Meyer.
Institutions: Delft University of Technology.
Oxidative stress is an unavoidable byproduct of aerobic life. Molecular oxygen is essential for terrestrial metabolism, but it also takes part in many damaging reactions within living organisms. The combination of aerobic metabolism and iron, which is another vital compound for life, is enough to produce radicals through Fenton chemistry and degrade cellular components. DNA degradation is arguably the most damaging process involving intracellular radicals, as DNA repair is far from trivial. The assay presented in this article offers a quantitative technique to measure and visualize the effect of molecules and enzymes on radical-mediated DNA damage. The DNA protection assay is a simple, quick, and robust tool for the in vitro characterization of the protective properties of proteins or chemicals. It involves exposing DNA to a damaging oxidative reaction and adding varying concentrations of the compound of interest. The reduction or increase of DNA damage as a function of compound concentration is then visualized using gel electrophoresis. In this article we demonstrate the technique of the DNA protection assay by measuring the protective properties of the DNA-binding protein from starved cells (Dps). Dps is a mini-ferritin that is utilized by more than 300 bacterial species to powerfully combat environmental stressors. Here we present the Dps purification protocol and the optimized assay conditions for evaluating DNA protection by Dps.
Genetics, Issue 75, Microbiology, Molecular Biology, Cellular Biology, Biochemistry, Genomics, Proteins, Bacteria, Nucleic Acids, Nucleotides, Nucleosides, Chemical Actions and Uses, Enzymes, Coenzymes, Life Sciences (General), Dps, DNA protection, ferroxidase, oxidative damage, stress response, DNA, DNA damage, DNA repair, oxidative stress, cell culture
50390
Play Button
Analysis of Nephron Composition and Function in the Adult Zebrafish Kidney
Authors: Kristen K. McCampbell, Kristin N. Springer, Rebecca A. Wingert.
Institutions: University of Notre Dame.
The zebrafish model has emerged as a relevant system to study kidney development, regeneration and disease. Both the embryonic and adult zebrafish kidneys are composed of functional units known as nephrons, which are highly conserved with other vertebrates, including mammals. Research in zebrafish has recently demonstrated that two distinctive phenomena transpire after adult nephrons incur damage: first, there is robust regeneration within existing nephrons that replaces the destroyed tubule epithelial cells; second, entirely new nephrons are produced from renal progenitors in a process known as neonephrogenesis. In contrast, humans and other mammals seem to have only a limited ability for nephron epithelial regeneration. To date, the mechanisms responsible for these kidney regeneration phenomena remain poorly understood. Since adult zebrafish kidneys undergo both nephron epithelial regeneration and neonephrogenesis, they provide an outstanding experimental paradigm to study these events. Further, there is a wide range of genetic and pharmacological tools available in the zebrafish model that can be used to delineate the cellular and molecular mechanisms that regulate renal regeneration. One essential aspect of such research is the evaluation of nephron structure and function. This protocol describes a set of labeling techniques that can be used to gauge renal composition and test nephron functionality in the adult zebrafish kidney. Thus, these methods are widely applicable to the future phenotypic characterization of adult zebrafish kidney injury paradigms, which include but are not limited to, nephrotoxicant exposure regimes or genetic methods of targeted cell death such as the nitroreductase mediated cell ablation technique. Further, these methods could be used to study genetic perturbations in adult kidney formation and could also be applied to assess renal status during chronic disease modeling.
Cellular Biology, Issue 90, zebrafish; kidney; nephron; nephrology; renal; regeneration; proximal tubule; distal tubule; segment; mesonephros; physiology; acute kidney injury (AKI)
51644
Play Button
Use of LysoTracker to Detect Programmed Cell Death in Embryos and Differentiating Embryonic Stem Cells
Authors: Jennifer L. Fogel, Thu Zan Tun Thein, Francesca V. Mariani.
Institutions: University of Southern California.
Programmed cell death (PCD) occurs in adults to maintain normal tissue homeostasis and during embryological development to shape tissues and organs1,2,6,7. During development, toxic chemicals or genetic alterations can cause an increase in PCD or change PCD patterns resulting in developmental abnormalities and birth defects3-5. To understand the etiology of these defects, the study of embryos can be complemented with in vitro assays that use differentiating embryonic stem (ES) cells. Apoptosis is a well-studied form of PCD that involves both intrinsic and extrinsic signaling to activate the caspase enzyme cascade. Characteristic cell changes include membrane blebbing, nuclear shrinking, and DNA fragmentation. Other forms of PCD do not involve caspase activation and may be the end-result of prolonged autophagy. Regardless of the PCD pathway, dying cells need to be removed. In adults, the immune cells perform this function, while in embryos, where the immune system has not yet developed, removal occurs by an alternative mechanism. This mechanism involves neighboring cells (called "non-professional phagocytes") taking on a phagocytic role-they recognize the 'eat me' signal on the surface of the dying cell and engulf it8-10. After engulfment, the debris is brought to the lysosome for degradation. Thus regardless of PCD mechanism, an increase in lysosomal activity can be correlated with increased cell death. To study PCD, a simple assay to visualize lysosomes in thick tissues and multilayer differentiating cultures can be useful. LysoTracker dye is a highly soluble small molecule that is retained in acidic subcellular compartments such as the lysosome11-13. The dye is taken up by diffusion and through the circulation. Since penetration is not a hindrance, visualization of PCD in thick tissues and multi-layer cultures is possible12,13. In contrast, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) analysis14, is limited to small samples, histological sections, and monolayer cultures because the procedure requires the entry/permeability of a terminal transferase. In contrast to Aniline blue, which diffuses and is dissolved by solvents, LysoTracker Red DND-99 is fixable, bright, and stable. Staining can be visualized with standard fluorescent or confocal microscopy in whole-mount or section using aqueous or solvent-based mounting media12,13. Here we describe protocols using this dye to look at PCD in normal and sonic hedgehog null mouse embryos. In addition, we demonstrate analysis of PCD in differentiating ES cell cultures and present a simple quantification method. In summary, LysoTracker staining can be a great complement to other methods of detecting PCD.
Developmental Biology, Issue 68, Molecular Biology, Stem Cell Biology, Cellular Biology, mouse embryo, embryonic stem cells, lysosome, programmed cell death, imaging, sonic hedgehog
4254
Play Button
Determination of Mitochondrial Membrane Potential and Reactive Oxygen Species in Live Rat Cortical Neurons
Authors: Dinesh C. Joshi, Joanna C. Bakowska.
Institutions: Loyola University Chicago.
Mitochondrial membrane potential (ΔΨm) is critical for maintaining the physiological function of the respiratory chain to generate ATP. A significant loss of ΔΨm renders cells depleted of energy with subsequent death. Reactive oxygen species (ROS) are important signaling molecules, but their accumulation in pathological conditions leads to oxidative stress. The two major sources of ROS in cells are environmental toxins and the process of oxidative phosphorylation. Mitochondrial dysfunction and oxidative stress have been implicated in the pathophysiology of many diseases; therefore, the ability to determine ΔΨm and ROS can provide important clues about the physiological status of the cell and the function of the mitochondria. Several fluorescent probes (Rhodamine 123, TMRM, TMRE, JC-1) can be used to determine Δψm in a variety of cell types, and many fluorescence indicators (Dihydroethidium, Dihydrorhodamine 123, H2DCF-DA) can be used to determine ROS. Nearly all of the available fluorescence probes used to assess ΔΨm or ROS are single-wavelength indicators, which increase or decrease their fluorescence intensity proportional to a stimulus that increases or decreases the levels of ΔΨm or ROS. Thus, it is imperative to measure the fluorescence intensity of these probes at the baseline level and after the application of a specific stimulus. This allows one to determine the percentage of change in fluorescence intensity between the baseline level and a stimulus. This change in fluorescence intensity reflects the change in relative levels of ΔΨm or ROS. In this video, we demonstrate how to apply the fluorescence indicator, TMRM, in rat cortical neurons to determine the percentage change in TMRM fluorescence intensity between the baseline level and after applying FCCP, a mitochondrial uncoupler. The lower levels of TMRM fluorescence resulting from FCCP treatment reflect the depolarization of mitochondrial membrane potential. We also show how to apply the fluorescence probe H2DCF-DA to assess the level of ROS in cortical neurons, first at baseline and then after application of H2O2. This protocol (with minor modifications) can be also used to determine changes in ∆Ψm and ROS in different cell types and in neurons isolated from other brain regions.
Neuroscience, Issue 51, Mitochondrial membrane potential, reactive oxygen species, neuroscience, cortical neurons
2704
Play Button
Utero-tubal Embryo Transfer and Vasectomy in the Mouse Model
Authors: Pablo Bermejo-Alvarez, Ki-Eun Park, Bhanu P. Telugu.
Institutions: United States Department of Agriculture, University of Maryland.
The transfer of preimplantation embryos to a surrogate female is a required step for the production of genetically modified mice or to study the effects of epigenetic alterations originated during preimplantation development on subsequent fetal development and adult health. The use of an effective and consistent embryo transfer technique is crucial to enhance the generation of genetically modified animals and to determine the effect of different treatments on implantation rates and survival to term. Embryos at the blastocyst stage are usually transferred by uterine transfer, performing a puncture in the uterine wall to introduce the embryo manipulation pipette. The orifice performed in the uterus does not close after the pipette has been withdrawn, and the embryos can outflow to the abdominal cavity due to the positive pressure of the uterus. The puncture can also produce a hemorrhage that impairs implantation, blocks the transfer pipette and may affect embryo development, especially when embryos without zona are transferred. Consequently, this technique often results in very variable and overall low embryo survival rates. Avoiding these negative effects, utero-tubal embryo transfer take advantage of the utero-tubal junction as a natural barrier that impedes embryo outflow and avoid the puncture of the uterine wall. Vasectomized males are required for obtaining pseudopregnant recipients. A technique to perform vasectomy is described as a complement to the utero-tubal embryo transfer.
Basic Protocols, Issue 84, blastocyst, chimera, lentivirus, uterine transfer, oviductal transfer, utero-tubal transfer
51214
Play Button
Production and Detection of Reactive Oxygen Species (ROS) in Cancers
Authors: Danli Wu, Patricia Yotnda.
Institutions: Baylor College of Medicine.
Reactive oxygen species include a number of molecules that damage DNA and RNA and oxidize proteins and lipids (lipid peroxydation). These reactive molecules contain an oxygen and include H2O2 (hydrogen peroxide), NO (nitric oxide), O2- (oxide anion), peroxynitrite (ONOO-), hydrochlorous acid (HOCl), and hydroxyl radical (OH-). Oxidative species are produced not only under pathological situations (cancers, ischemic/reperfusion, neurologic and cardiovascular pathologies, infectious diseases, inflammatory diseases 1, autoimmune diseases 2, etc…) but also during physiological (non-pathological) situations such as cellular metabolism 3, 4. Indeed, ROS play important roles in many cellular signaling pathways (proliferation, cell activation 5, 6, migration 7 etc..). ROS can be detrimental (it is then referred to as "oxidative and nitrosative stress") when produced in high amounts in the intracellular compartments and cells generally respond to ROS by upregulating antioxidants such as superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH) that protects them by converting dangerous free radicals to harmless molecules (i.e. water). Vitamins C and E have also been described as ROS scavengers (antioxidants). Free radicals are beneficial in low amounts 3. Macrophage and neutrophils-mediated immune responses involve the production and release of NO, which inhibits viruses, pathogens and tumor proliferation 8. NO also reacts with other ROS and thus, also has a role as a detoxifier (ROS scavenger). Finally NO acts on vessels to regulate blood flow which is important for the adaptation of muscle to prolonged exercise 9, 10. Several publications have also demonstrated that ROS are involved in insulin sensitivity 11, 12. Numerous methods to evaluate ROS production are available. In this article we propose several simple, fast, and affordable assays; these assays have been validated by many publications and are routinely used to detect ROS or its effects in mammalian cells. While some of these assays detect multiple ROS, others detect only a single ROS.
Medicine, Issue 57, reactive oxygen species (ROS), stress, ischemia, cancer, chemotherapy, immune response
3357
Play Button
Respirometric Oxidative Phosphorylation Assessment in Saponin-permeabilized Cardiac Fibers
Authors: Curtis C. Hughey, Dustin S. Hittel, Virginia L. Johnsen, Jane Shearer.
Institutions: University of Calgary, University of Calgary.
Investigation of mitochondrial function represents an important parameter of cardiac physiology as mitochondria are involved in energy metabolism, oxidative stress, apoptosis, aging, mitochondrial encephalomyopathies and drug toxicity. Given this, technologies to measure cardiac mitochondrial function are in demand. One technique that employs an integrative approach to measure mitochondrial function is respirometric oxidative phosphorylation (OXPHOS) analysis. The principle of respirometric OXPHOS assessment is centered around measuring oxygen concentration utilizing a Clark electrode. As the permeabilized fiber bundle consumes oxygen, oxygen concentration in the closed chamber declines. Using selected substrate-inhibitor-uncoupler titration protocols, electrons are provided to specific sites of the electron transport chain, allowing evaluation of mitochondrial function. Prior to respirometric analysis of mitochondrial function, mechanical and chemical preparatory techniques are utilized to permeabilize the sarcolemma of muscle fibers. Chemical permeabilization employs saponin to selectively perforate the cell membrane while maintaining cellular architecture. This paper thoroughly describes the steps involved in preparing saponin-skinned cardiac fibers for oxygen consumption measurements to evaluate mitochondrial OXPHOS. Additionally, troubleshooting advice as well as specific substrates, inhibitors and uncouplers that may be used to determine mitochondria function at specific sites of the electron transport chain are provided. Importantly, the described protocol may be easily applied to cardiac and skeletal tissue of various animal models and human samples.
Physiology, Issue 48, cardiac fibers, mitochondria, oxygen consumption, mouse, methodology
2431
Play Button
Sex Stratified Neuronal Cultures to Study Ischemic Cell Death Pathways
Authors: Stacy L. Fairbanks, Rebekah Vest, Saurabh Verma, Richard J. Traystman, Paco S. Herson.
Institutions: University of Colorado School of Medicine, Oregon Health & Science University, University of Colorado School of Medicine.
Sex differences in neuronal susceptibility to ischemic injury and neurodegenerative disease have long been observed, but the signaling mechanisms responsible for those differences remain unclear. Primary disassociated embryonic neuronal culture provides a simplified experimental model with which to investigate the neuronal cell signaling involved in cell death as a result of ischemia or disease; however, most neuronal cultures used in research today are mixed sex. Researchers can and do test the effects of sex steroid treatment in mixed sex neuronal cultures in models of neuronal injury and disease, but accumulating evidence suggests that the female brain responds to androgens, estrogens, and progesterone differently than the male brain. Furthermore, neonate male and female rodents respond differently to ischemic injury, with males experiencing greater injury following cerebral ischemia than females. Thus, mixed sex neuronal cultures might obscure and confound the experimental results; important information might be missed. For this reason, the Herson Lab at the University of Colorado School of Medicine routinely prepares sex-stratified primary disassociated embryonic neuronal cultures from both hippocampus and cortex. Embryos are sexed before harvesting of brain tissue and male and female tissue are disassociated separately, plated separately, and maintained separately. Using this method, the Herson Lab has demonstrated a male-specific role for the ion channel TRPM2 in ischemic cell death. In this manuscript, we share and discuss our protocol for sexing embryonic mice and preparing sex-stratified hippocampal primary disassociated neuron cultures. This method can be adapted to prepare sex-stratified cortical cultures and the method for embryo sexing can be used in conjunction with other protocols for any study in which sex is thought to be an important determinant of outcome.
Neuroscience, Issue 82, male, female, sex, neuronal culture, ischemia, cell death, neuroprotection
50758
Play Button
Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells
Authors: Jason D. Vevea, Dana M. Alessi Wolken, Theresa C. Swayne, Adam B. White, Liza A. Pon.
Institutions: Columbia University, Columbia University.
Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.
Bioengineering, Issue 77, Microbiology, Cellular Biology, Molecular Biology, Biochemistry, life sciences, roGFP, redox-sensitive green fluorescent protein, GO-ATeam, ATP, FRET, ROS, mitochondria, biosensors, GFP, ImageJ, microscopy, confocal microscopy, cell, imaging
50633
Play Button
A Microplate Assay to Assess Chemical Effects on RBL-2H3 Mast Cell Degranulation: Effects of Triclosan without Use of an Organic Solvent
Authors: Lisa M. Weatherly, Rachel H. Kennedy, Juyoung Shim, Julie A. Gosse.
Institutions: University of Maine, Orono, University of Maine, Orono.
Mast cells play important roles in allergic disease and immune defense against parasites. Once activated (e.g. by an allergen), they degranulate, a process that results in the exocytosis of allergic mediators. Modulation of mast cell degranulation by drugs and toxicants may have positive or adverse effects on human health. Mast cell function has been dissected in detail with the use of rat basophilic leukemia mast cells (RBL-2H3), a widely accepted model of human mucosal mast cells3-5. Mast cell granule component and the allergic mediator β-hexosaminidase, which is released linearly in tandem with histamine from mast cells6, can easily and reliably be measured through reaction with a fluorogenic substrate, yielding measurable fluorescence intensity in a microplate assay that is amenable to high-throughput studies1. Originally published by Naal et al.1, we have adapted this degranulation assay for the screening of drugs and toxicants and demonstrate its use here. Triclosan is a broad-spectrum antibacterial agent that is present in many consumer products and has been found to be a therapeutic aid in human allergic skin disease7-11, although the mechanism for this effect is unknown. Here we demonstrate an assay for the effect of triclosan on mast cell degranulation. We recently showed that triclosan strongly affects mast cell function2. In an effort to avoid use of an organic solvent, triclosan is dissolved directly into aqueous buffer with heat and stirring, and resultant concentration is confirmed using UV-Vis spectrophotometry (using ε280 = 4,200 L/M/cm)12. This protocol has the potential to be used with a variety of chemicals to determine their effects on mast cell degranulation, and more broadly, their allergic potential.
Immunology, Issue 81, mast cell, basophil, degranulation, RBL-2H3, triclosan, irgasan, antibacterial, β-hexosaminidase, allergy, Asthma, toxicants, ionophore, antigen, fluorescence, microplate, UV-Vis
50671
Play Button
Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen
Authors: Dennis Ma, Jonathan Collins, Tomas Hudlicky, Siyaram Pandey.
Institutions: University of Windsor, Brock University.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Cancer Biology, Issue 63, Medicine, Biochemistry, Breast adenocarcinoma, neuroblastoma, tamoxifen, combination therapy, apoptosis, autophagy
3586
Play Button
Viability Assays for Cells in Culture
Authors: Jessica M. Posimo, Ajay S. Unnithan, Amanda M. Gleixner, Hailey J. Choi, Yiran Jiang, Sree H. Pulugulla, Rehana K. Leak.
Institutions: Duquesne University.
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function.
Cellular Biology, Issue 83, In-cell Western, DRAQ5, Sapphire, Cell Titer Glo, ATP, primary cortical neurons, toxicity, protection, N-acetyl cysteine, hormesis
50645
Play Button
A Microfluidic Device with Groove Patterns for Studying Cellular Behavior
Authors: Bong Geun Chung, Amir Manbachi, Ali Khademhosseini.
Institutions: Brigham and Women's Hospital.
We describe a microfluidic device with microgrooved patterns for studying cellular behavior. This microfluidic platform consists of a top fluidic channel and a bottom microgrooved substrate. To fabricate the microgrooved channels, a top poly(dimethylsiloxane) (PDMS) mold containing the impression of the microfluidic channels was aligned and bonded to a microgrooved substrate. Using this device, mouse fibroblast cells were immobilized and patterned within microgrooved substrates (25, 50, 75, and 100 μm wide). To study apoptosis in a microfluidic device, media containing hydrogen peroxide, Annexin V, and propidium iodide was perfused into the fluidic channel for 2 hours. We found that cells exposed to the oxidative stress became apoptotic. These apoptotic cells were confirmed by Annexin V that bound to phosphatidylserine at the outer leaflet of the plasma membrane during the apoptosis process. Using this microfluidic device with microgrooved patterns, the apoptosis process was observed in real-time and analyzed by using an inverted microscope containing an incubation chamber (37°C, 5% CO2). Therefore, this microfluidic device incorporated with microgrooved substrates could be useful for studying the cellular behavior and performing high-throughput drug screening.
Issue 7, Cell Biology, tissue engineering, microfluidic, apoptosis
270
Play Button
A Protocol for Detecting and Scavenging Gas-phase Free Radicals in Mainstream Cigarette Smoke
Authors: Long-Xi Yu, Boris G. Dzikovski, Jack H. Freed.
Institutions: CDCF-AOX Lab, Cornell University.
Cigarette smoking is associated with human cancers. It has been reported that most of the lung cancer deaths are caused by cigarette smoking 5,6,7,12. Although tobacco tars and related products in the particle phase of cigarette smoke are major causes of carcinogenic and mutagenic related diseases, cigarette smoke contains significant amounts of free radicals that are also considered as an important group of carcinogens9,10. Free radicals attack cell constituents by damaging protein structure, lipids and DNA sequences and increase the risks of developing various types of cancers. Inhaled radicals produce adducts that contribute to many of the negative health effects of tobacco smoke in the lung3. Studies have been conducted to reduce free radicals in cigarette smoke to decrease risks of the smoking-induced damage. It has been reported that haemoglobin and heme-containing compounds could partially scavenge nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke4. A 'bio-filter' consisted of haemoglobin and activated carbon was used to scavenge the free radicals and to remove up to 90% of the free radicals from cigarette smoke14. However, due to the cost-ineffectiveness, it has not been successfully commercialized. Another study showed good scavenging efficiency of shikonin, a component of Chinese herbal medicine8. In the present study, we report a protocol for introducing common natural antioxidant extracts into the cigarette filter for scavenging gas phase free radicals in cigarette smoke and measurement of the scavenge effect on gas phase free radicals in mainstream cigarette smoke (MCS) using spin-trapping Electron Spin Resonance (ESR) Spectroscopy1,2,14. We showed high scavenging capacity of lycopene and grape seed extract which could point to their future application in cigarette filters. An important advantage of these prospective scavengers is that they can be obtained in large quantities from byproducts of tomato or wine industry respectively11,13
Bioengineering, Issue 59, Cigarette smoke, free radical, spin-trap, ESR
3406
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.